Mplus Short Courses Topic 1 Exploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Continuous Outcomes Linda K. Muthén

Bengt Muthén

Copyright © 2008 Muthén & Muthén www.statmodel.com

1

Table Of Contents General Latent Variable Modeling Framework 4 Regression Analysis 14 Path Analysis 26 35 Indirect Effects Measurement Errors And Multiple Indicators Of Latent Variables 39 Factor Analysis 47 Exploratory Factor Analysis 58 106 Confirmatory Factor Analysis Technical Aspects Of Maximum-Likelihood Estimation And Testing 120 EFA In A CFA Framework 132 Simple Structure CFA 145 Special Factor Analysis Models 154 Measurement Invariance And Population Heterogeneity 163 CFA With Covariates (MIMIC) 168 Multiple Group Analysis 196 Structural Equation Modeling (SEM) 223 Model Identification 234 Formative Indicators 238 Latent Variable Interactions 246 Monte Carlo Simulations 248 Model Constraints 254 Model Test 257 260 2 References

Mplus

Several programs in one

- Exploratory factor analysis
- Structural equation modeling
- Item response theory analysis
- Latent class analysis
- Latent transition analysis
- Survival analysis
- Growth modeling
- Multilevel analysis
- Complex survey data analysis
- Monte Carlo simulation

Fully integrated in the general latent variable framework

	Overview					
Single-Level Analysis						
	Cross-Sectional	Longitudinal				
Continuous Observed And Latent Variables	Day 1 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	<i>Day 2</i> Growth Analysis				
Adding Categorical Observed And Latent Variables	Day 3 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling Latent Class Analysis Factor Mixture Analysis Structural Equation Mixture Modeling	Day 4 Latent Transition Analysis Latent Class Growth Analysis Growth Analysis Growth Mixture Modeling Discrete-Time Survival Mixture Analysis Missing Data Analysis				

Overview (Continued)						
	Multilevel Analysis	8				
	Cross-Sectional	Longitudinal				
Continuous Observed And Latent Variables	Day 5 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	<i>Day 5</i> Growth Analysis				
Adding Categorical Observed And Latent Variables	Day 5 Latent Class Analysis Factor Mixture Analysis	Day 5 Growth Mixture Modeling				
		13				

Regression Analysis	
Regression model:	
$y_i = \alpha + \beta x_i + \varepsilon_i ,$	(1)
$E(\varepsilon_i x_i) = E(\varepsilon_i) = E(\varepsilon) = 0$ (x and ε uncorrelated),	(2)
$V(\varepsilon_i x_i) = V(\varepsilon_i) = V(\varepsilon)$ (constant variance).	(3)
For inference and ML estimation, we also assume ε norm	nal.
The model implies	
$E(y x) = \alpha + \beta x$ (conditional expectation funct	tion)
$V(y \mid x) = V(\varepsilon)$ (homoscedastic	city)

Regression Analysis (Continued)			
Population formulas: $y_i = \alpha + \beta x_i + \varepsilon_i$,	(1)		
$E(y) = E(\alpha) + E(\beta x) + E(\varepsilon)$			
$= \alpha + \beta E(x)$ $V(y) = V(\alpha) + V(\beta x) + V(\varepsilon)$	(2)		
$=\beta^2 V(x) + V(\varepsilon)$	(3)		
$Cov(y, x) = E[y - E(y)] [x - E(x)] = \beta V(x)$	(4)		
$R^2 = \beta^2 V(x) / (\beta^2 V(x) + V(\varepsilon))$	(5)		
$Stdyx \ \beta = \beta \frac{SD(x)}{SD(y)}$	(6)		
	18		

Regression Analysis (Continued)

The model has 3 parameters: α , β , and $V(\varepsilon)$ Note: E(x) and V(x) are not model parameters

Formulas for ML and OLS parameter estimates based on a random sample

$$\hat{\beta} = s_{yx} / s_{xx}$$
$$\hat{\alpha} = \overline{y} - \hat{\beta} \,\overline{x}$$
$$\hat{V}(\varepsilon) = s_{yy} - \hat{\beta}^2 s_{xx}$$

Prediction

$$\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$$

Iı	nput For Regression Of Math10 On Gender And Math7
TITLE:	Regressing math10 on math7 and gender
DATA:	FILE = dropout.dat; FORMAT = 11f8 6f8.2 1f8 2f8.2 10f2;
VARIABLE:	<pre>NAMES ARE id school gender mothed fathed fathsei ethni expect pacpush pmpush homeres math7 math8 math9 math10 math11 math12 problem esteem mathatt clocatn dlocatn elocatn flocatn glocatn hlocatn ilocatn jlocatn klocatn llocatn; MISSING = mothed (8) fathed (8) fathsei (996 998) ethnic (8) homeres (98) math7-math12 (996 998); USEVAR = math7 math10 male;</pre>
DEFINE:	<pre>male = gender - 1; ! male is a 0/1 variable created fr</pre>
MODEL:	math10 ON male math7;
OUTPUT:	TECH1 SAMPSTAT STANDARDIZED;
PLOT:	TYPE = PLOT1;
	22

Output Excerpts For Regression Of Math10 On Gender And Math7					
Estimated	Sample Stati	stics			
1	Means				
	MATH10	MATH7	MALE		
1	62.423	50.378	0.522		
	Covariances				
	MATH10	MATH7	MALE		
MATH10	186.926				
MATH7	109.826	103.950			
MALE	-0.163	-0.334	0.250		
	Correlations				
	MATH10	MATH7	MALE		
MATH10	1.000				
MATH7	0.788	1.000			
MALE	-0.024	-0.066	1.000		

Output Excerpts For Regression Of Math10 On Gender And Math7 (Continued)

Model Results	Estimates	S.E.	Est./S.E.	Std	StdYX
MATH10 ON					
MALE	0.763	0.374	2.037	0.763	0.028
MATH7	1.059	0.018	57.524	1.059	0.790
Intercepts					
MATH10	8.675	0.994	8.726	8.675	0.635
Residual Variances					
MATH10	70.747	2.225	31.801	70.747	0.378
R-SQUARE					
Observed Variable	R-Square				
MATH10	0.622				
					24

Agregati A 9	r Finlay P (1007) Statistical methods for the social
Agresti, A. o	Thindy, B. (1997). <u>Statistical methods for the social</u>
sciences	. Inita edition. New Jersey: Prenuce Hall.
Amemiya, T	. (1985). <u>Advanced econometrics</u> . Cambridge, Mass.:
Harvard	University Press.
Hamilton, L.	C. (1992). <u>Regression with graphics</u> . Belmont, CA:
Wadswo	orth.
Johnston, J.	(1984). Econometric methods. Third edition. New York:
McGraw	z-Hill.
Lewis-Beck	M S (1980) Applied regression: An introduction Newbur
Park CA	A Sage Publications
Moore DS	& McCabe G.P. (1999) Introduction to the practice of
statistica	Third adition New York: WH Freeman and Company
<u>Statistics</u>	L (1007) M kick with the second secon
Pednazur, E.	J. (1997). Multiple regression in benavioral research. Third
Edition.	New York: Harcourt Brace College Publishers.

Input For Maternal Health Project Path Analysis			
TITLE:	Maternal health project path analysis		
DATA:	FILE IS headalln.dat; FORMAT IS 1f8.2 47f7.2;		
VARIABLE:	NAMES ARE id weight0 weight8 weight18 weigh36 height0 height8 height18 height36 hcirc0 hcirc8 hcirc18 hcirc36 momalc1 momalc2 momalc3 momalc8 momalc18 momalc36 momcig1 momcig2 momcig3 momcig8 momcig18 momcig36 gender eth momht gestage age8 age18 age36 esteem8 esteem18 esteem36 faminc0 faminc8 faminc18 faminc36 momdrg36 gravid sick8 sick18 sick36 advp advm1 advm2 advm3;		
	MISSING = ALL (999);		
	USEV = momalc3 momcig3 hcirc0 hcirc36 gender eth;		
	USEOBS = id NE 1121 AND NOT (momalc1 EQ 999 AND momalc2 EQ 999 AND momalc3 EQ 999);		

Input For Maternal Health Project Path Analysis (Continued)

DEFINE:	<pre>hcirc0 = hcirc1/10; hcirc36 = hcirc36/10; momalc3 = log(momalc3 +1);</pre>
MODEL:	hcirc36 ON hcirc0 gender eth; hcirc0 ON momalc3 momcig3 gender eth;
OUTPUT:	SAMPSTAT STANDARDIZED;

Output Excerpts Maternal Health Project Path Analysis				
Tests Of Model Fit				
Chi-Square Test of Model Fit				
Value	1.781			
Degrees of Freedom	2			
P-Value	.4068			
RMSEA (Root Mean Square Error Of Approximat:	ion)			
Estimate	.000			
90 Percent C.I.	.000	0.079		
Probability RMSEA <= .05	.774			

Output Excerpts Maternal Health Project Path Analysis (Continued)

Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdYX
HCIRC36 ON					
HCIRC0	.415	.036	11.382	.415	.439
GENDER	.762	.107	7.146	.762	.270
ETH	094	.107	879	094	033
HCIRCO ON					
MOMALC3	500	.239	-2.090	500	084
MOMCIG3	013	.005	-2.604	013	108
GENDER	.495	.118	4.185	.495	.166
ETH	.578	.125	4.625	.578	.194
					33

Proje	ect Path Ar	alysis	(Conti	nued)	
Residual Vari	ances				
HCIRC0	2.043	.119	17.107	2.043	.920
HCIRC36	1.385	.087	15.844	1.385	.697
Intercepts					
HCIRC0	33.729	.112	301.357	33.729	22.629
HCIRC36	35.338	1.227	28.791	35.338	25.069
R-Square					
Observed					
Variable	R-Square				
HCIRC0	.080				
HCIRC36	.303				

The CINTERVAL option of the OUTPUT command can be used to obtain confidence intervals for the indirect effects and the standardized indirect effects. Three types of 95% and 99% confidence intervals can be obtained: symmetric, bootstrap, or bias-corrected bootstrap confidence intervals. The bootstrapped distribution of each parameter estimate is used to determine the bootstrap and bias-corrected bootstrap confidence intervals. These intervals take non-normality of the parameter estimate distribution into account. As a result, they are not necessarily symmetric around the parameter estimate.

Measurement Errors And Multiple Indicators Of Latent Variables

Factor Analysis Terminology

- Factor pattern: Λ
- Factor structure: $\Lambda^*\Psi$, correlations between items and factors
- Heywood case: $\theta_{jj} < 0$
- Factor scores: $\hat{\eta}_i$
- Factor determinacy: quality of factor scores; correlation between η_i and $\hat{\eta}_i$

Formulas For The Path Diagram

 $y_{i1} = v_1 + \lambda_{11} f_{i1} + 0 f_{i2} + \varepsilon_{i1}$ $y_{i2} = v_2 + \lambda_{21} f_{i1} + 0 f_{i2} + \varepsilon_{i2}$ $y_{i3} = v_3 + \lambda_{31} f_{i1} + 0 f_{i2} + \varepsilon_{i3}$ $y_{i4} = v_4 + 0 f_{i1} + \lambda_{42} f_{i2} + \varepsilon_{i4}$ $y_{i5} = v_5 + 0 f_{i1} + \lambda_{52} f_{i2} + \varepsilon_{i5}$ $y_{i6} = v_6 + 0 f_{i1} + \lambda_{62} f_{i2} + \varepsilon_{i6}$ Elements of $\Sigma = \Lambda \Psi \Lambda' + \Theta$: Variance of $y_1 = \sigma_{11} = \lambda_{11}^2 \psi_{11} + \theta_{11}$

Covariance of $y_1, y_2 = \sigma_{21} = \lambda_{11} \psi_{11} \lambda_{21}$

Covariance of $y_1, y_4 = \sigma_{41} = \lambda_{11} \psi_{21} \lambda_{42}$

Recommendations For Using Factor Analysis In Practice

Issues

•

- History of EFA versus CFA
 - Can hypothesized dimensions be found?
 - Validity of measurements

A Possible Research Strategy For Instrument Development

- 1. Pilot study 1
 - Small n, EFA
 - Revise, delete, add items

Recommendations For Using Factor Analysis In Practice (Continued)

- 2. Pilot study 2
 - Small n, EFA
 - Formulate tentative CFA model
- 3. Pilot study 3
 - Larger n, CFA
 - Test model from Pilot study 2 using random half of the sample
 - Revise into new CFA model
 - Cross-validate new CFA model using other half of data
- 4. Large scale study, CFA
- 5. Investigate other populations

57

Exploratory Factor Analysis

Exploratory Factor Analysis (EFA)

Used to explore the dimensionality of a measurement instrument by finding the smallest number of interpretable factors needed to explain the correlations among a set of variables – exploratory in the sense that it places no structure on the linear relationships between the observed variables and the factors but only specifies the number of latent variables

- Find the number of factors
- Determine the quality of a measurement instrument
 - Identify variables that are poor factor indicators
 - Identify factors that are poorly measured

59

Holzinger-Swineford Data

The data are taken from the classic 1939 study by Karl J. Holzinger and Frances Swineford. Twenty-six tests intended to measure a general factor and five specific factors were administered to seventh and eighth grade students in two schools, the Grant-White School (n = 145) and Pasteur School (n = 156). Students from the Grant-White School came from homes where the parents were American-born. Students from the Pasteur School came from the homes of workers in factories who were foreign-born.

Data for the analysis include nineteen test intended to measure four domains: spatial ability, verbal ability, speed, and memory. Data from the 145 students from the Grant-White School are used.

V	ariables	(Conti	nued)	
Test 17 Object-N	Jumber	Name		
		Date		
Here is a l objects. Ea a number. S list so tha remember th each object	ist of ch one has tudy the t you can e number of	After eac object, w number th belongs t	h rite the at o it.	
<u>Object</u>	Number	<u>Object</u>	Number	
apple	29	pupil		
brush	71			
candy	58	house		
chair	44	sugar		
cloud	53	flour		
dress	67	river		
flour	15	apple		
grass	32	match		
heart	86	train		

	VISUAL	CUBES	PAPER	LOZENGES	GENERAL
VISUAL					
CUBES	.326				
PAPER	.372	.190			
LOZENGES	.449	.417	.366		
GENERAL	.328	.275	.309	.381	
PARAGRAP	.342	.228	.260	.328	.622
SENTENCE	.309	.159	.266	.287	.654
WORDC	.326	.156	.334	.380	.574
WORDM	.317	.195	.260	.347	.720
ADDITION	.104	.066	.128	.075	.314
CODE	.306	.151	.248	.181	.342
COUNTING	.308	.168	.198	.239	.210
STRAIGHT	.487	.248	.389	.373	.343
WORDR	.130	.082	.250	.161	.261
NUMBERR	.223	.135	.186	.205	.219
FIGURER	.419	.289	.307	.289	.177
OBJECT	.169	.011	.128	.139	.213
NUMBERF	.364	.264	.259	.353	.259
FIGUREW	.267	.110	.155	.180	.196

Data (Continued)					
	PARAGRAP	SENTENCE	WORDC	WORDM	ADDITION
SENTENCE	.719				
WORDC	.520	.633			
WORDM	.714	.685	.537		
ADDITION	.209	.254	.297	.179	
CODE	.360	.248	.294	.287	.468
COUNTING	.104	.198	.290	.121	.587
STRAIGHT	.314	.356	.405	.272	.418
WORDR	.286	.233	.243	.250	.157
NUMBERR	.249	.157	.170	.213	.150
FIGURER	.288	.201	.299	236	.137
OBJECT	.276	.251	.271	.285	.301
NUMBERF	.167	.176	.258	.213	.320
FIGUREW	.251	.241	.261	.277	.199

Sample Co	rrelations Data (For Ho Continu	lzinger 1ed)	-Swii	neford
	CODE	COUNTING	STRAIGHT	WORDR	NUMBERR
COUNTING	.422				
STRAIGHT	.527	.528			

.130

.163

.128

.278

.347

.108

.452

.327

FIGURER OBJECT

.193

.138

.277

.191

.325

.252

NUMBERF

.358

.387

.382

.372

.199

.219

FIGUREW

.313

.346

.318

.183

67

.324

.238

.314

.357

.346

.290

.339

.355

.254

WORDR

NUMBERR

FIGURER

OBJECT

NUMBERF

FIGUREW

OBJECT

NUMBERF

FIGUREW

	EFA Model Estimation
Es	timators
In	EFA, a correlation matrix is analyzed.
•	 ULS – minimizes the residuals, observed minus estimated correlations Fast Not fully efficient ML – minimizes the differences between matrix summaries (determinant and trace) of observed and estimated
	correlations
	Computationally more demandingEfficient

EFA Model Indeterminacies And Rotations

A model that is identified has only one set of parameter values. To be identified, an EFA model must have m² restrictions on factor loadings, variances, and covariances. There are an infinite number of possible ways to place the restrictions. In software, restrictions are placed in two steps.

Step 1 – Mathematically convenient restrictions

- m(m+1)/2 come from fixing the factor variances to one and the factor covariances to zero
- m(m-1)/2 come from fixing (functions of) factor loadings to zero
 - ULS $\Lambda'\Lambda$ diagonal
 - $ML \Lambda' \Theta^{-1} \Lambda$ diagonal
 - General approach fill the upper right hand corner of lambda with zeros

New EFA Features In Mplus Version 5

- · Several new rotations including Quartimin and Geomin
- Standard errors for rotated loadings and factor correlations
- · Non-normality robust standard errors and chi-square tests of model fit
- · Modification indices for residual correlations
- Maximum likelihood estimation with censored, categorical, and count variables
- Exploratory factor analysis for complex survey data (stratification, clustering, and weights)

TYPE = COMPLEX EFA # #;

- Exploratory factor mixture analysis with class-specific rotations TYPE = MIXTURE EFA # #;
- Two-level exploratory factor analysis for continuous and categorical variables with new rotations and standard errors, including unrestricted model for either level

TYPE = TWOLEVEL EFA # # UW # # UB;

Determining The Number Of Factors That Explain The Correlations Among Variables Descriptive Values Descriptive Values • Eigenvalues • Residual Variances Tests Of Model Fit • RMSR – average residuals for the correlation matrix – recommend to be less than .05

72

1111	Jut For Hoizinger-Swineford EFA
TITLE:	EFA on 19 variables from Holzinger and Swineford (1939)
DATA:	<pre>FILE IS holzall.dat; FORMAT IS f3,2f2,f3,2f2/3x,13(1x,f3)/3x,11(1x,f3);</pre>
VARIABLE:	NAMES ARE id female grade agey agem school visual cubes paper lozenges general paragrap sentence wordc wordm addition code counting straight wordr numberr figurer object numberf figurew deduct numeric problemr series arithmet;
	USEV ARE visual cubes paper lozenges general paragrap sentence wordc wordm addition code counting straight wordr numberr figurer object numberf figurew;
	USEOBS IS school EQ 0;
ANALYSIS:	TYPE=EFA 1 8; ESTIMATOR = ML;

amin	e The Fit Measur	es And Resi	dual Varia	ances
.L, n =	= 145)			
Factors	$\begin{array}{c c} Chi-Square \\ x^2 & df & p \end{array}$	RMSEA	RMSR	Negative Res. Var.
1	469.81 (152) .000	.120	.1130	no
2	276.44 (134) .000	.086	.0762	no
3	188.75 (117) .000	.065	.0585	no
4	110.34 (101) .248	.025	.0339	no
5	82.69 (86) .581	.000	.0280	no
6	no. conv.			
7	no. conv.			
8	no. conv.			

Interpret The Factors

- Examine factor loadings for the set of possible solutions
- Determine if factors support theory

Using 19 Variables Promax Rotated Loadings – 3 Factor Solution						
	1	2	3			
VISUAL	.740	087	002			
CUBES	.522	118	008			
PAPER	.508	028	.058			
LOZENGES	.650	153	.092			
GENERAL	.043	.084	.745			
PARAGRAP	.090	066	.803			
SENTENCE	052	.046	.851			
WORDC	.144	.136	.547			
WORDM	.061	092	.853			
ADDITION	257	.923	.073			
CODE	.223	.482	.054			
COUNTING	.112	.728	149			
STRAIGHT	.389	.405	.013			

Promax Rota	ated Loadings	– 3 Factor	Solution	
	SPATIAL/ MEMORY	SPEED	VERBAL	
	1	2	3	
WORDR	.284	.063	.128	
NUMBERR	.374	.038	.022	
FIGURER	.666	072	063	
OBJECT	.214	.270	.086	
NUMBERF	.534	.237	146	
FIGUREW	.302	.090	.094	
Promax Fact	tor Correlation	18		
	1	2	3	
1	1.000			
2	.536	1.000		
3	.539	.379	1.000	

romov Rota								
UIIIAX KUta	ted Loadings SPATIAL	-4 Factor MEMORY	Solution VERBAL	SPEED				
	1	2	3	4				
VISUAL	.713	.027	.008	.005				
CUBES	.541	051	.007	050				
PAPER	.466	.047	.070	.022				
LOZENGES	.650	028	.106	062				
GENERAL	.094	043	.749	.083				
PARAGRAP	.040	.107	.791	092				
SENTENCE	.002	050	.846	.052				
VORDC	.155	.014	.550	.146				
IORDM	.022	.078	.840	107				
DITION	203	.108	.081	.785				
ODE	.087	.289	.055	.419				
COUNTING	.179	024	132	.760				
	470	0.0.4	0.2.2	100				

	ited Loadings	– 4 Factor S	Solution		
	SPATIAL	MEMORY	VERBAL	SPEED	
	1	2	3	4	
WORDR	037	.551	.098	052	
NUMBERR	.062	.532	006	064	
FIGURER	.368	.504	086	141	
OBJECT	205	.736	.042	.119	
NUMBERF	.275	.446	154	.178	
FIGUREW	.082	.376	.080	.019	
Promax Fact	or Correlation	18			
	1	2	3	4	
1	1.000				
2	.468	1.000			
3	.468	.421	1.000		
4	.360	.388	.325	1.000	

Using 19 Variables (Continued) Varimax Rotated Loadings – 4 Factor Solution							
	1	2	3	4			
VISUAL	.666	.194	.183	.143			
CUBES	.487	.072	.117	.042			
PAPER	.455	.170	.191	.126			
LOZENGES	.608	.135	.241	.068			
GENERAL	.230	.133	.743	.183			
PARAGRAP	.195	.244	.772	.038			
SENTENCE	.158	.119	.808	.146			
WORDC	.267	.174	.589	.242			
WORDM	.180	.219	.806	.021			
ADDITION	062	.189	.177	.754			
CODE	.191	.367	.197	.486			
COUNTING	.224	.110	.034	.748			
STRAIGHT	.489	.103	.206	.545			

		MEMORY	VERBAL	SPEED
	1	2	3	4
WORDR	.077	.522	.184	.064
NUMBERR	.144	.506	.103	.054
FIGURER	.398	.524	.081	.021
OBJECT	036	.673	.155	.229
NUMBERF	.326	.484	.034	.293
FIGUREW	.160	.392	.173	.118

L

Output Excerpts Holzinger-Swineford EFA Using 19 Variables (Continued) Promax Rotated Loadings – 5 Factor Solution							
	1	2	3	4	5		
VISUAL	.613	.211	.006	.050	.011		
CUBES	.552	044	.029	028	044		
PAPER	.399	.187	.058	.057	.023		
LOZENGES	.696	070	.129	018	05		
GENERAL	.137	094	.771	042	.09		
PARAGRAP	006	.131	.772	.110	10		
SENTENCE	010	.083	.826	049	.04		
WORDC	.149	.061	.543	.018	.14		
WORDM	.050	075	.845	.081	09		
ADDITION	185	.032	.095	.113	.76		
CODE	009	.291	.028	.295	.41		
COUNTING	.167	.098	112	014	.74		
STRAIGHT	.374	.474	013	124	.49		

Output Excerpts Holzinger-Swineford EFA Using 19 Variables (Continued)

	SPATIAL		VERBAL	MEMORY	SPEED
	11	2	3	4	5
WORDR	085	.098	.082	.552	060
NUMBERR	.071	094	.010	.543	059
FIGURER	.286	.144	101	.533	150
OBJECT	160	163	.056	.745	.124
NUMBERF	.358	256	126	.502	.195
FIGUREW	.074	.004	.075	.386	.026
Promax Fact	or Correlation	IS			
	1	2	3	4	5
1	1.000				
2	.206	1.000			
-	.415	.287	1.000		
3					
3	.425	.335	.424	1.000	

Output Excerpts Using 19 Variables Quartimin Rotated Loadings

	SPATIAL	MEMORY	VERBAL	SPEED
VISUAL	0.646	0.076	0.092	0.050
CUBES	0.488	-0.010	0.064	-0.018
PAPER	0.422	0.077	0.128	0.053
FLAGS	0.585	0.017	0.178	-0.021
GENERAL	0.058	-0.049	0.773	0.093
PARAGRAP	0.019	0.088	0.810	-0.079
SENTENCE	-0.028	-0.064	0.860	0.056
WORDC	0.121	0.014	0.584	0.159
WORDM	0.000	0.058	0.855	-0.095
ADDITION	-0.196	0.093	0.100	0.769
CODE	0.084	0.283	0.100	0.431
COUNTING	0.149	-0.001	-0.081	0.761
STRAIGHT	0.418	-0.051	0.105	0.507
				8

Ou	tput Excer	pts Using	19 Variat	oles
Quart	imin Rotat	ed Loadir	ngs (Conti	nued)
	SPATIAL	MEMORY	VERBAL	SPEED
WORDR	-0.006	0.517	0.124	-0.034
NUMBERR	0.086	0.509	0.028	0.041
FIGURER	0.366	0.505	-0.023	-0.100
OBJECT	-0.150	0.683	0.065	0.131
NUMBERF	0.274	0.447	-0.092	0.207
FIGUREW	0.091	0.361	0.113	0.037
	QUA	RTIMIN FACTOR	CORRELATIONS	
SPATIAL	1.000			
MEMORY	0.289	1.000		
VERBAL	0.371	0.377	1.000	
SPEED	0.266	0.323	0.290	1.000
				89

Determine The Quality C)f The Variables (Continued)
• Numberf (Memory) – load	ls on Spatial and Memory
Requires rememberir number	ng a figure and associating it with a
Here is a list of numbers. Each has a figure, or picture, with it. Study the list so that you can remember the figure that belongs with each number.	After each number draw the figure that belongs with it
Number Figure	Number Figure
52	
74	65
12 🔀	37
	93

Output Excerpts Holzinger-Swineford EFA Using 15 Variables							
romax Rotated Loadings – 4 Factor Solution							
	SPATIAL	MEMORY	SPEED	VERBAL			
	1	2	3	4			
VISUAL	.590	.040	.078	.034			
CUBES	.566	089	.007	012			
PAPER	.419	.104	.029	.056			
LOZENGES	.734	012	014	.028			
GENERAL	.128	037	.050	.739			
PARAGRAP	.031	.108	118	.792			
SENTENCE	041	044	.043	.878			
WORDC	.132	.008	.158	.568			
WORDM	.043	.060	109	.826			
ADDITION	161	.087	.698	.127			
COUNTING	.200	012	.841	147			
WORDR	.000	.613	066	.023			
NUMBERR	.133	.585	044	104			
OBJECT	127	.646	.144	.019			
FIGUREW	.066	.350	004	.096			

L

Outpu EFA	it Excerp Using 15	ts Holzi Variabl	nger-Swi es (Cont	ineford inued)
Estimated B	Error Varia	nces		
VISUAL	CUBES	PAPER	LOZENGES	GENERAL
.576	.714	.738	.452	.346
PARAGRAP	SENTENCE	WORDC	WORDM	ADDITION
.306	.274	.488	. 279	.444
COUNTING	WORDR	NUMBERR	OBJECT	FIGUREW
.257	.635	.657	.541	.809
Fests Of M	odel Fit			
Chi-square RMSEA RMSR	48.0 .000 .02	536 (51) .5681) 75		

	EFA Us	ing 13 V	ariables	
romax Rota	ted Loadings	- 3 Factor	Solution	
	SPATIAL	MEMORY	VERBAL	
	1	2	3	
VISUAL	0.577	0.061	0.035	
CUBES	0.602	-0.114	-0.039	
PAPER	0.434	0.115	0.033	
LOZENGES	0.765	-0.032	-0.010	
GENERAL	0.152	-0.029	0.728	
PARAGRAP	0.009	0.080	0.777	
SENTENCE	-0.060	-0.015	0.891	
WORDC	0.149	0.065	0.572	
WORDM	0.015	0.037	0.816	
WORDR	-0.023	0.611	0.010	
NUMBERR	0.116	0.573	-0.114	
OBJECT	-0.127	0.678	0.043	
FIGUREW	0.081	0.351	0.076	

Maximum Number Of Factors That Can Be Extracted $a \le b$ where a = number of parameters to be estimated (H_0) b = number of variances/covariances (H_1) $a = p m + m (m+1)/2 + p - m^2$ Λ ΨΘ b = p (p + 1)/2where p = number of observed variables m = number of factors Example: p = 5 which gives b = 15m = 1: a = 10m = 2: a = 14m = 3: a = 17Even if $a \le b$, it may not be possible to extract m factors due to Heywood cases. 103

Used to study how well a hypothesized factor model fits a new sample from the same population or a sample from a different population. CFA is characterized by allowing restrictions on factor loadings, variances, covariances, and residual variances.

- See if factor models fits a new sample from the same population the confirmatory aspect
- See if the factor models fits a sample from a different population measurement invariance
 - Study the properties of individuals by examining factor variances, and covariances
 - Factor variances show the heterogeneity in a population
 - Factor correlations show the strength of the association between factors

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

CFA Modeling Estimation And Testing
Estimator
In CFA, a covariance matrix is analyzed.
• ML – minimizes the differences between matrix summaries (determinant and trace) of observed and estimated
variances/covariances
 Robust ML – same estimates as ML, standard errors and chi- square robust to non-normality of outcomes and non- independence of observations
Chi-square test of model fit
Tests that the model does not fit significantly worse
than a model where the variables correlate freely – p-values
greater than or equal to .05 indicate good fit
H_0 : Factor model
H_{1} : Free variance-covariance model
If $p < .05$. H_0 is rejected
Note: We want large p
11 ²

Chi-Square Difference Testing Of Nested Models

- When a model H_a imposes restrictions on parameters of model H_b , H_a is said to be nested within H_b
- To test if the nested model H_a fits significantly worse than H_b , a chi-square test can be obtained as the difference in the chisquare values for the two models (testing against an unrestricted model) using as degrees of freedom the difference in number of parameters for the two models
- The chi-square difference is the same as 2 times the difference in log likelihood values for the two models
- The chi-square theory does not hold if H_a has restricted any of the H_b parameters to be on the border of their admissible parameter space (e.g. variance = 0)

Factor Scores

Factor Score

- Estimate of the factor value for each individual based on the model and the individual's observed scores
- Regression method

Factor Determinacy

- Measure of how well the factor scores are estimated
- Correlation between the estimated score and the true score
- Ranges from 0 to 1 with 1 being best

Uses Of Factor Scores

- Rank people on a dimension
- Create percentiles

•

- Proxies for latent variables
 - Independent variables in a model not as dependent variables

119

Technical Aspects Of Maximum-Likelihood Estimation And Testing

ML Estimation

The ML estimator chooses parameter values (estimates) so that the likelihood of the sample is maximized. Normal theory ML assumes multivariate normality for y_i and n i.i.d. observations,

$$logL = -c - n / 2 log |\Sigma| - l / 2 A, \qquad (1)$$

where $c = n / 2 \log (2\pi)$ and

$$A = \sum_{i=1}^{n} (\mathbf{y}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}_i - \boldsymbol{\mu})$$
(2)

= trace
$$[\Sigma^{-1}\sum_{i=1}^{n} (y_i - \mu) (y_i - \mu)']$$
 (3)

$$= n \ trace \left[\Sigma^{-1} \left(\mathbf{S} + (\bar{\mathbf{y}} - \boldsymbol{\mu}) \left(\bar{\mathbf{y}} - \boldsymbol{\mu} \right)' \right]. \tag{4}$$

122

Model Testing

The standard H_1 model considers an unrestricted mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Under this model $\hat{\boldsymbol{\mu}} = \bar{\boldsymbol{y}}$ and $\hat{\boldsymbol{\Sigma}} = \boldsymbol{S}$, which gives the maximum-likelihood value

$$log L_{H_1} = -c - n / 2 log |S| - n / 2 p,$$
 (8)

Note that

$$F_{ML}(\boldsymbol{\pi}) = -\log L/n + \log L_{H_{I}}/n, \qquad (9)$$

Letting $\hat{\pi}$ denote the ML estimate under H_0 , the value of the likelihood-ratio χ^2 -test of model fit for H_0 against H_1 is therefore obtained as $2 n F_{ML}(\hat{\pi})$

123

Model Fit With Non-Normal Continuous Outcomes

- Non-normality robust chi-square testing
 - A robust goodness-of-fit test (cf. Satorra & Bentler, 1988, 1994; Satorra, 1992) is obtained as the mean-adjusted chi square defined as

$$T_m = 2 n F(\hat{\pi}) / c, \qquad (1)$$

where *c* is a scaling correction factor,

$$c = tr[\mathbf{U}\boldsymbol{\Gamma}] / d, \qquad (2)$$

with

$$\mathbf{U} = (\mathbf{W}^{-1} - \mathbf{W}^{-1} \Delta (\Delta' \mathbf{W}^{-1} \Delta)^{-1} \Delta' \mathbf{W}^{-1})$$
(3)

and where d is the degrees of freedom of the model.

Model Fit With Non-Normal Continuous Outcomes (Continued)

• Chi-square difference testing with robust (mean-adjusted) chi-square T_{md} (Satorra, 2000, Satorra & Bentler, 1999)

$$T_{md} = (T_0 - T_1)/c_d, \qquad (4)$$

$$= (T_{m0} c_0 - T_{m1} c_1)/c_d, \qquad (5)$$

$$c_d = (d_0 c_0 - d_1 c_1)/(d_0 - d_1), \tag{6}$$

where the 0/1 subscript refers to the more/less restrictive model, *c* refers to a scaling correction factor, and *d* refers to degrees of freedom.

Common Model Fit Indices (Continued)

where d_B and d_{H_0} denote the degrees of freedom of the baseline and H_0 models, respectively. The baseline model has uncorrelated outcomes with unrestricted variances and unrestricted means and / or thresholds.

• SRMR (standardized root mean square residual)

$$SRMR = \sqrt{\sum_{j} \sum_{k \le j} r_{jk}^2 / e}.$$
 (10)

Here, e = p (p + 1)/2, where p is the number of outcomes and r_{ik} is a residual in a correlation metric.

127

Computational Issues Related To CFA

- Scale of observed variables important to keep them on a similar scale
- Convergence often related to starting values or the type of model being estimated
 - Program stops because maximum number of iterations has been reached
 - If no negative residual variances, either increase the number of iterations or use the preliminary parameter estimates as starting values
 - If there are large negative residual variances, try better starting values
 - Program stops before the maximum number of iterations has been reached
 - Check if variables are on a similar scale
 - Try new starting values
- Starting values the most important parameters to give starting values to are residual variances

Mplus MODEL Command For CFA (Continued)

Example 2 – Alternative parameterization

MODEL: f1 BY y1* y2 y3; f2 BY y4* y5 y6; f1@1 f2@1; ! or f1-f2@1;

Promax Rota	ted Loadings	- 3 Factor	Solution	
	Spatial	Memory	Verbal	
VISUAL	0.577	0.061	0.035	
CUBES	0.602	-0.114	-0.039	
PAPER	0.434	0.115	0.033	
LOZENGES	0.765	-0.032	-0.010	
GENERAL	0.152	-0.029	0.728	
PARAGRAP	0.009	0.080	0.777	
SENTENCE	-0.060	-0.015	0.891	
WORDC	0.149	0.065	0.572	
WORDM	0.015	0.037	0.816	
WORDR	-0.023	0.611	0.010	
NUMBERR	0.116	0.573	-0.114	
OBJECT	0.127	0.678	0.043	
FIGUREW	0.081	0.351	0.076	

nput Fo	or Holzinger-Swineford EFA In A CFA Framework Using 13 Variables
TITLE:	EFA in a CFA framework using 13 variables from Holzinger and Swineford (1939)
DATA:	FILE IS holzall.dat; FORMAT IS f3,2f2,f3,2f2/3x,13(1x,f3)/3x,11(1x,f3);
VARIABLE:	NAMES ARE id female grade agey agem school visual cubes paper lozenges general paragrap sentence wordc wordm addition code counting straight wordr numberr figurer object numberf figurew deduct numeric problemr series arithmet;
	USEV ARE visual cubes paper lozenges general paragrap sentence wordc wordm wordr numberr object figurew;
	USEOBS IS school EQ 0;
ANALYSIS:	ESTIMATOR = ML;
	13:

Inp Fi	ut For amew	• F	Iolzinger-Swinef rk Using 13 Vari	io a	rd EFA In A CFA bles (Continued)
DEL:					
	spatial	ву	visual-figurew*0	!	start all items at O
			lozenges*1	!	start anchor item at 1
			cubes*1	!	start other large items at
			<pre>sentence@0 wordr@0;</pre>	!	remove 2 indeterminacies
	memory	ву	visual-figurew*0	!	start all items at 0
			wordr*1	!	start anchor item at 1
			object*1	!	start other large items at
			<pre>lozenges@0 sentence@0;</pre>	!	remove 2 indeterminacies
	verbal	ву	visual-figurew*0	!	start all items at 0
			sentence*1	!	start anchor item at 1
			wordm*1	!	start other large items at
			<pre>lozenges@0 wordr@0;</pre>	!	remove 2 indeterminacies
	spatial	-ve:	rbal@1;	!	remove 3 indeterminacies
TPUT:	STANDARI	DIZ	ED MODINDICES(3.84) SAM	PS	TAT FSDETERMINACY;
					10.68

Jutput E	xcerpts Holzinger-Swineford Framework Using 13 Varia	l EFA In ables	A CFA
Tests Of M	lodel Fit		
Chi-Square	Test of Model Fit		
	Value	39.028	
	Degrees of Freedom	42	
	P-Value	0.6022	
CFI/TLI			
	CFI	1.000	
	TLI	1.009	
RMSEA (Roo	t Mean Square Error Of Approximation	n)	
	Estimate	0.000	
	90 Percent C.I.	0.000	0.050
	Probability RMSEA <= .05	0.949	
SRMR (Stan	dardized Root Mean Square Residual)		
	Value	0.028	
Factor Det	terminacies		
SPATIAL	0.869		
MEMORY	0.841		
VERBAL	0.948		137

Framewo	ork Using 13	3 Varia	bles (Co	ontinue	d)
Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdYX
SPATIAL BY					
VISUAL	3.933	0.811	4.848	3.933	0.571
CUBES	2.584	0.559	4.620	2.584	0.583
PAPER	1.216	0.327	3.717	1.216	0.432
LOZENGES	6.173	0.765	8.071	6.173	0.745
*GENERAL	2.278	1.060	2.149	2.278	0.196
PARAGRAP	0.212	0.307	0.692	0.212	0.063
SENTENCE	0.000	0.000	0.000	0.000	0.000
WORDC	0.994	0.526	1.889	0.994	0.186
WORDM	0.554	0.710	0.780	0.554	0.070
WORDR	0.000	0.000	0.000	0.000	0.000
NUMBERR	0.956	1.019	0.938	0.956	0.127
OBJECT	-0.439	0.663	-0.661	-0.439	-0.096
FIGUREW	0.350	0.441	0.793	0.350	0.098

Output Excerpts Holzinger-Swineford EFA In A CFA Framework Using 13 Variables (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
MEMORY BY					
VISUAL	0.580	0.808	0.718	0.580	0.084
CUBES	-0.398	0.558	-0.712	-0.398	-0.090
PAPER	0.374	0.333	1.123	0.374	0.133
LOZENGES	0.000	0.000	0.000	0.000	0.000
GENERAL	-0.100	1.103	-0.091	-0.100	-0.009
PARAGRAP	0.318	0.309	1.030	0.318	0.094
SENTENCE	0.000	0.000	0.000	0.000	0.000
WORDC	0.436	0.540	0.808	0.436	0.082
WORDM	0.425	0.720	0.590	0.425	0.054
WORDR	6.541	1.058	6.180	6.541	0.606
NUMBERR	4.291	0.977	4.392	4.291	0.571
OBJECT	3.040	0.646	4.704	3.040	0.668
FIGUREW	1.264	0.433	2.923	1.264	0.353
					139 *

Output Excerpts Holzinger-Swineford EFA In A CFA Framework Using 13 Variables (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
		~			
VERBAL DI					
VISUAL	0.265	0.811	0.326	0.265	0.038
CUBES	-0.129	0.546	-0.236	-0.129	-0.029
PAPER	0.096	0.327	0.294	0.096	0.034
LOZENGES	0.000	0.000	0.000	0.00	0.000
GENERAL	8.130	1.058	7.682	8.130	0.700
PARAGRAP	2.501	0.303	8.264	2.501	0.744
SENTENCE	3.954	0.322	12.263	3.954	0.853
WORDC	2.927	0.517	5.656	2.927	0.548
WORDM	6.191	0.707	8.751	6.191	0.782
WORDR	0.000	0.000	0.000	0.000	0.000
NUMBERR	-0.870	1.033	-0.842	-0.870	-0.116
OBJECT	0.139	0.653	0.212	0.139	0.030
FIGUREW	0.247	0.433	0.570	0.247	0.069
					140 *

Output Excerpts Holzinger-Swineford EFA In A CFA Framework Using 13 Variables (Continued)

	Estimates	S.E. Est./S.E.	Std Ste	dYX
VERBAL WITH SPATIAL	0.467	0.119 3.937	0.467 0.	467
MEMORY WITH				
SPATIAL	0.371	0.171 2.173	0.371 0.	371
VERBAL	0.459	0.144 3.181	0.459 0.	459
Variances				
SPATIAL	1.000	0.000 0.000	1.000 1.	000
VERBAL	1.000	0.000 0.000	1.000 1.	000
MEMORY	1.000	0.000 0.000	1.000 1.	000
				141 *

utput Excer Framewo	pts Holzing ork Using 1	er-Swi 3 Varia	neford E ibles (Co	FA In . ontinue	A CFA d)
	Estimates	S.E.	Est./S.E.	Std	StdYX
Residual Varia	nces				
VISUAL	28.758	4.325	6.649	28.758	0.606
CUBES	13.795	2.049	6.732	13.795	0.703
PAPER	5.801	0.761	7.619	5.801	0.734
LOZENGES	30.640	7.063	4.338	30.640	0.446
GENERAL	47.239	6.824	6.923	47.239	0.350
PARAGRAP	3.637	0.544	6.684	3.637	0.321
SENTENCE	5.831	1.042	5.598	5.831	0.272
WORDC	14.547	1.864	7.803	14.547	0.510
WORDM	18.122	2.878	6.298	18.122	0.289
WORDR	73.589	12.422	5.924	73.589	0.632
NUMBERR	37.595	5.998	6.268	37.595	0.665
OBJECT	11.939	2.377	5.022	11.939	0.576
FIGUREW	10.368	1.319	7.860	10.368	0.807

Output Excerpts Holzinger-Swineford EFA In A CFA Framework Using 13 Variables (Continued)

R-Square

-1 -1		
Observed	R-Square	! R-Square =
Variable		! 1 - STDYX (residual) = Reliability
		! when no covariates are in the model
VISUAL	0.394	
CUBES	0.297	
PAPER	0.266	
LOZENGES	0.554	
GENERAL	0.650	
PARAGRAP	0.679	
SENTENCE	0.728	
WORDC	0.490	
WORDM	0.711	
WORDR	0.368	
NUMBERR	0.335	
OBJECT	0.424	
FIGUREW	0.193	
		1.42*
		143 •

Output Excerpts Holzinger-Swineford EFA In A CFA
Framework Using 13 Variables (Continued)MODE Modification IndicesM.I. E.P.C. Std E.P.C. StdYX E.P.C.WITH StatementsWORDCWITH SENTENCE6.5862.6572.6570.107WORDMWITH GENERAL7.1219.5559.5550.104WORDMWITH SENTENCE6.557-4.238-4.238-0.116

<section-header><text><text><text><text>

Output Excerpts Holzinger-Swineford Simple Structure CFA Using 13 Variables					
Tests Of Model Fit					
Chi-Square Test of Model Fit					
Value	56.254				
Degrees of Freedom	62				
P-Value	0.6817				
CFI/TLI					
CFI	1.000				
TLI	1.012				
RMSEA (Root Mean Square Error Of Approxi	imation)				
Estimate	0.000				
90 Percent C.I.	0.000	0.041			
Probability RMSEA <= .05	0.983				
SRMR (Standardized Root Mean Square Resi	idual)				
Value	0.046				

Outp Struct	out Excerpts Holzinger-Swineford Simp ture CFA Using 13 Variables (Continue	ole ed)
Note: Mo (p= .6 zero w resulte	odel fit is better than with the EFA in a CFA fran 5022). This is because the parameters that were f were not significant. Thus the gain in degrees of ed in a higher p-value.	nework ixed to freedor
The cl frame signifi freedo	hi-square difference test between the EFA in a C work and the Simple Structure CFA models is n icant: Chi-square value of 17.23 with 20 degrees om.	CFA ot s of
ractor De		
SPATIAL	0.867	
MEMORY	0.835	
VERBAL	0.954	

Г

Output Excerpts Holzinger-Swineford Simple Structure CFA Using 13 Variables (Continued)					
Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdYX
SPATIAL BY					
VISUAL	1.000	.000	.000	4.539	.659
CUBES	.481	.102	4.691	2.182	.492
PAPER	.329	.066	4.975	1.491	.530
LOZENGES	1.303	.219	5.941	5.915	.714
MEMORY BY					
WORDR	1.000	.000	.000	6.527	.605
NUMBERR	.642	.142	4.534	4.191	.557
OBJECT	.435	.091	4.776	2.840	.624
FIGUREW	.247	.063	3.937	1.613	.450
VERBAL BY					
GENERAL	1.000	.000	.000	9.363	.806
PARAGRAP	.295	.027	11.077	2.766	.822
SENTENCE	.413	.037	11.294	3.866	.834
WORDC	.394	.044	8.857	3.688	.691
WORDM	.716	.062	11.513	6.707	.847

Output Excerpts Holzinger-Swineford Simple Structure CFA Using 13 Variables (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX	
VERBAL WITH						
SPATIAL	25.118	5.700	4.407	.591	.591	
MEMORY WITH						
SPATIAL	13.323	4.329	3.077	.450	.450	
VERBAL	31.883	8.340	3.823	.522	.522	
Variances						
SPATIAL	20.597	5.450	3.779	1.000	1.000	
VERBAL	87.646	15.363	5.705	1.000	1.000	
MEMORY	42.606	13.205	3.226	1.000	1.000	
					151	

Output Excerpts Holzinger-Swineford Simple Structure CFA Using 13 Variables (Continued)

Model Modification Indices

WITH Stat	ements	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
PARAGRAP	WITH GENERAL	4.170	-3.108	-3.108	-0.080
WORDC	WITH SENTENCE	4.586	2.207	2.207	0.089
WORDM	WITH GENERAL	4.552	7.582	7.582	0.082

	Input For Second-Order	
	Factor Analysis Model	
TITLE:	Second-order factor analysis model	
DATA:	FILE IS asvab.dat;	
	! Armed services vocational aptitude battery	
	NOBSERVATIONS = 20422;	
	TYPE=COVARIANCE;	
VARIABLE:	NAMES ARE ar wk pc mk gs no cs as mc ei;	
	USEV = wk gs pc as ei mc cs no mk ar;	
	!WK Word Knowledge	
	!GS General Science	
	PC Paragraph Comprehension	
	!AS Auto and Shop Information	
	!EI Electronics information	
	!MC Mechanical Comprehension	
	!CS Coding Speed	
	!NO Numerical Operations	
	!MK Mathematical Knowledge	
	!AR Arithmetic Reasoning	
ANALYSTS:	ESTIMATOR = ML;	
		160

Models To Study Measurement Invariance And Population Heterogeneity

To further study a set of factors or latent variables established by an EFA/CFA, questions can be asked about the invariance of the measures and the heterogeneity of populations.

Measurement Invariance – Does the factor model hold in other populations or at other time points?

- Same number of factors
- Zero loadings in the same positions
- Equality of factor loadings
- Equality of intercepts
 - Test difficulty

Population Heterogeneity – Are the factor means, variances, and covariances the same for different populations?

	Input For NELS CFA	
TITLE:	CFA using NELS data	
DATA:	FILE IS ft21.dat;	
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit hhist gender schoolid minorc;	
	USEVARIABLES ARE rlit-mprob;	
MODEL:	reading BY rlit-rhist; math BY malg-mprob;	
OUTPUT:	STANDARDIZED MODINDICES;	
		17

Output Excerpts NELS CFA						
Tests Of Model Fit						
Chi-Square Test of Model Fit						
Value	128.872					
Degrees of Freedom	26					
P-Value	0.0000					
CFI/TLI						
CFI	0.993					
TLI	0.990					
RMSEA (Root Mean Square Error Of Approximation)					
Estimate	0.031					
90 Percent C.I.	0.026	0.036				
Probability RMSEA <= .05	1.000					
SRMR (Standardized Root Mean Square Residual)						
Value	0.016					
		1				

Model Re	esults					
		Estimates	S.E.	Est./S.E.	Std	StdY
READING	BY					
RLIT		1.000	.000	.000	.845	.65
RSCI		1.383	.038	36.451	1.168	.672
RPOE	Т	1.130	.030	37.558	.955	.698
RBIO	G	1.300	.034	37.791	1.098	.703
RHIS	Т	1.287	.037	34.436	1.087	.627
MATH	BY					
MALG		1.000	.000	.000	1.018	.868
MARI	TH	1.026	.015	69.297	1.045	.890
MGEO	М	.655	.020	32.637	.667	.494
MPRO	В	1.066	.028	38.300	1.086	.565
MATH	WITH					
READ	ING	.723	.024	30.067	.840	.840

Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdY
Residual Vari	ances				
RLIT	.939	.024	39.516	.939	.568
RSCI	1.657	.042	39.000	1.657	.548
RPOET	.962	.025	37.986	.962	.513
RBIOG	1.234	.033	37.745	1.234	.506
RHIST	1.822	.045	40.416	1.822	.600
MALG	.339	.012	27.759	.339	.246
MARITH	.285	.012	24.067	.285	.207
MGEOM	1.379	.031	43.922	1.379	.756
MPROB	2.518	.058	43.165	2.518	.681
Variances					
READING	.714	.032	22.231	1.000	1.000
MATH	1.037	.031	33.659	1.000	1.000
MATH	1.037	.031	33.659	1.000	1.00

TITLE:	CFA with covariates using NELS data
DATA:	<pre>FILE IS ft21.dat;</pre>
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit hhist gender schoolid minorc;
	USEVARIABLES ARE rlit-mprob ses gender ;
MODEL:	reading BY rlit-rhist; math BY malg-mprob;
	reading math ON ses gender; ! female = 0, male = 1
OUTPUT:	STANDARDIZED MODINDICES (3.84);

With Covariates			
Tests Of Model Fit			
Chi-Square Test of Model Fit			
Value	202.935		
Degrees of Freedom	40		
P-Value	0.0000		
CFI/TLI			
CFI	0.990		
TLI	0.986		
RMSEA (Root Mean Square Error Of Approximat	ion)		
Estimate	0.031		
90 Percent C.I.	0.027	0.036	
Probability RMSEA <= .05	1.000		
SRMR (Standardized Root Mean Square Residua	1)		
Value	0.018		
			18

With Covariates						
Model Res	ults					
		Estimates	S.E.	Est./S.E.	Std	StdYX
READING	BY					
RLIT		1.000	.000	.000	.846	.658
RSCI		1.370	.038	36.437	1.159	.667
RPOET		1.133	.030	37.907	.959	.700
RBIOG		1.296	.034	37.998	1.097	.702
RHIST		1.291	.037	34.758	1.092	.630
MATH	BY					
MALG		1.000	.000	.000	1.015	.866
MARITH	Н	1.031	.015	70.136	1.047	.892
MGEOM		.659	.020	32.794	.669	.495
MPROB		1.071	.028	38.435	1.088	.566

Output Excerpts NELS CFA With Covariates (Continued)						
Model Resu	lts	Fatimatoa	C F	Fat /S F	8+4	e+dvv
DENDING	011	Estimates	ъ.E.	LDL./D.L.	stu	SLUIA
SES	ON	.344	.014	24.858	.407	. 438
GENDER		186	.027	-6.901	220	110
MATH	ON					
SES		.418	.015	28.790	.412	.444
GENDER		.044	.030	1.457	.044	022
MATH W	VITH					
READING	3	.558	.019	29.142	.649	.649
						1

Output Excerpts NELS CFA With Covariates (Continued)					
Residual Variar	ices				
RLIT	.937	.024	39.695	.937	.567
RSCI	1.679	.043	39.407	1.679	.555
RPOET	.955	.025	38.136	.955	.510
RBIOG	1.237	.033	38.046	1.237	.507
RHIST	1.812	.045	40.521	1.812	.603
MALG	.345	.012	28.752	.345	.251
MARITH	.281	.012	24.388	.281	.204
MGEOM	1.377	.031	43.946	1.377	.754
MPROB	2.513	.058	43.207	2.513	.680
READING	.572	.026	21.920	.799	.799
млтц	.826	.025	32.943	.801	.801

Output Excerpts NELS CFA With Covariates (Continued)				
R-Square				
RLIT	.433			
RSCI	.445			
RPOET	.490			
RBIOG	.493			
RHIST	.397			
MALG	.749			
MARITH	.796			
MGEOM	.246			
MPROB	.320			
Latent				
Variable R-Squa	re			
READING	.201			
MATH	.199			
		185		

Inp]	ut For Modification Indices For Direct Effects NELS CFA With Covariates
TITLE:	Modification indices for direct effects CFA with covariates using NELS data
DATA:	FILE IS ft21.dat;
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit hhist gender schoolid minorc;
	USEVARIABLES ARE rlit-mprob ses gender;
MODEL:	reading BY rlit-rhist; math BY malg-mprob;
	reading math ON ses gender; !female = 0, male = 1
	rlit-mprob ON ses-gender@0;
OUTPUT:	STANDARDIZED MODINDICES(3.84);

For I	Output Ex Direct Effe	cerpts Mo cts NELS	dificatio CFA W	on Indices ith Covai	s riates
Modifica	tion Indices				
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.
RSCI	ON GENDER	31.730	0.253	0.253	0.07
RPOET	ON GENDER	12.715	-0.124	-0.124	-0.04
RHIST	ON SES	6.579	0.062	0.062	0.03
MALG	ON GENDER	26.616	-0.120	-0.120	-0.05
MARITH	ON GENDER	10.083	0.075	0.075	0.03
MGEON	ON SES	4.201	0.040	0.040	0.03
MPROB	ON GENDER	7.922	0.143	0.143	0.03
					187

Summary Of Analysis Results For NELS CFA With Covariates And Direct Effects

Model	Chi-square (d.f.)	Difference (d.f. diff.)
No direct effects	202.935 (40)	
rsci ON gender	171.006 (39)	31.929* (1)
rsci ON gender and malg ON gender	144.728 (38)	26.728* (1)
		189

Input For NELS CFA With Covariates			
	And Two Direct Effects		
TITLE:	CFA with covariates and two direct effects using NELS data		
DATA:	<pre>FILE IS ft21.dat;</pre>		
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit hhist gender schoolid minorc;		
	USEVARIABLES ARE rlit-mprob ses gender;		
MODEL:	reading BY rlit-rhist; math BY malg-mprob;		
	reading math ON ses gender; !female = 0, male = 1		
	rsci ON gender; malg ON gender;		
OUTPUT:	STANDARDIZED MODINDICES(3.84);		
	1		

Output Excerpts NELS CFA With Covariates And Two Direct Effects

Tests Of Model Fit

Chi-Square Test of Model Fit			
Value	144.278		
Degrees of Freedom	38		
P-Value	0.0000		
CFI/TLI			
CFI	0.993		
TLI	0.991		
RMSEA (Root Mean Square Error Of Approximation)			
Estimate	0.026		
90 Percent C.I.	0.022	0.031	
Probability RMSEA <= .05	1.000		
SRMR (Standardized Root Mean Square Residual)			
Value	0.014		
			191

Model Res	sults					
		Estimates	S.E.	Est./S.E.	Std	StdY
READING	BY					
RLIT		1.000	.000	.000	.846	.658
RSCI		1.389	.038	36.609	1.175	.676
RPOET		1.133	.030	37.958	.959	.70
RBIOG		1.294	.034	37.991	1.095	.70
RHIST		1.290	.037	34.760	1.091	.63
MATH	BY					
MALG		1.000	.000	.000	1.019	.86
MARIT	Н	1.027	.015	70.300	1.047	.89
MGEOM		.657	.020	32.833	.670	.49
MPROB		1.068	.028	38.524	1.089	.560

Output Excerpts NELS CFA With Covariates And Two Direct Effects (Continued)

Model Results	5					
	Estimates	S.E.	Est./S.E.	Std	StdYX	
READING ON	I					
SES	.343	.014	24.854	.406	.437	
GENDER	222	.028	-7.983	262	131	
MATH ON	I					
SES	.419	.015	28.807	.411	.444	
GENDER	.092	.032	2.873	.090	.045	
RSCI ON	r					
GENDER	.254	.045	5.649	.254	.073	
MALG ON	r					
GENDER	121	.023	-5.171	121	051	
					193	

	Measurement Invariance
Single Gro	oup Analyses
TITLE:	Single group CFA for males using NELS data
DATA:	FILE IS ft21.dat;
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit gender schoolid minorc;
	USEVARIABLES ARE rlit-mprob;
	USEOBSERVATIONS ARE (gender EQ 1); ! change 1 to ! 0 for females
MODEL:	reading BY rlit-rhist; math BY malg-mprob;

Input For NELS Multiple Group Analysis Without Measurement Invariance		
TITLE:	Multiple group CFA for males and females using NEL data with no measurement invariance	ıS
DATA:	FILE IS ft21.dat;	
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit gender schoolid minorc;	
	GROUPING IS gender (0=female 1=male);	
	USEVARIABLES ARE rlit-mprob;	
MODEL:	reading BY rlit-rhist; math BY malg-mprob;	
MODEL male:	reading BY rsci-rhist; math BY marith-mprob;	
		2

Chi-square RMSEA Males (n=2048) 72.555 (26) .0000 .030 Females (n=2106) 86.274 (26) .0000 .033 Fogether (n=4154) 158.829 (52) .0000 .031	Summary Of Single And Without N	Analysis Results Fo Multiple Group An Jeasurement Invari	r NELS alyses ance
Males (n=2048)72.555 (26) .0000.030Females (n=2106)86.274 (26) .0000.033Fogether (n=4154)158.829 (52) .0000.031		Chi-square	RMSEA
Females (n=2106)86.274 (26) .0000.033Fogether (n=4154)158.829 (52) .0000.031	Males (n=2048)	72.555 (26) .0000	.030
Fogether (n=4154) 158.829 (52) .0000 .031	Females (n=2106)	86.274 (26) .0000	.033
	Together (n=4154)	158.829 (52) .0000	.031

Input For NELS Multiple Group Analyses With Measurement Invariance		
Invarianc	e Of Factor Loadings	
TITLE:	Multiple group CFA for males and females using NELS data with measurement invariance of factor loadings	
DATA:	FILE IS ft21.dat;	
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit gender schoolid minorc; GROUPING IS gender (0=female 1=male); USEVARIABLES ARE rlit-mprob;	
ANALYSIS:	MODEL = NOMEANSTRUCTURE;	
MODEL:	reading BY rlit-rhist; math BY malg-mprob;	
OUTPUT:	<pre>STANDARDIZED MODINDICES(3.84);</pre>	

Input For NELS Multiple Group Analyses With Measurement Invariance (Continued)		
Invariance	Of Factor Loadings And Intercepts	
TITLE:	Multiple group CFA for males and females using NELS data with measurement invariance of factor loadings and intercepts	
DATA:	FILE IS ft21.dat;	
VARIABLE:	NAMES ARE ses rlit rsci rpoet rbiog rhist malg marith mgeom mprob searth schem slife smeth hgeog hcit gender schoolid minorc; GROUPING IS gender (0=female 1=male); USEVARIABLES ARE rlit-mprob;	
MODEL:	reading BY rlit-rhist; math BY malg-mprob;	
OUTPUT:	<pre>STANDARDIZED MODINDICES(3.84);</pre>	

Summary Of Analysis Results For NELS Single And Multiple Group Analyses With Measurement Invariance

Mod	el	Chi-square	Difference	
Measurem	ent non-	158.829 (52)		
Factor load	ling invariance	170.386 (59)	11.557 (7)	
Factor load intercept in	ling and avariance	238.847 (66)	68.461* (7)	
				209

Summary Of Analysis Results For NELS Single And Multiple Group Analyses With Measurement Invariance (Continued)

Group MAL	E				
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
Means/Inte	ercepts/T	hresholds			
[RSCI	1	31.794	.154	.154	.089
[RPOET]	12.856	081	081	058
[MALG]	26.574	085	085	071
[MARITH]	10.084	.056	.056	.047
[MPROB]	7.903	.075	.075	.039

Input Excerpts For NELS Multiple Group Analysis With Partial Measurement Invariance		
MODEL:	reading BY rlit-rhist; math BY malg-mprob;	
MODEL male:	[rsci malg];	
OUTPUT:	STANDARDIZED MODINDICES (3.84);	

Summary Of Analysis Results For NELS Multiple Group Analysis With Partial Measurement Invariance

Chi-square	Difference
170.386 (59)	
180.110 (64)	9.724 (5)
	Chi-square 170.386 (59) 180.110 (64)

Summary Of Analysis Results For NELS Multiple Group Analysis With Partial Measurement Invariance And Invariant Residual Variances

Model	Chi-square	Difference
Partial invariance	180.110 (64)	
Item residual invariance	197.513 (73)	17.403 (9)*

Input Excerpts For NELS Multiple Group Analysis With Partial Measurement Invariance And Invariant Factor Variances And Covariance: A Test Of Population Heterogeneity		
MODEL:	<pre>reading BY rlit-rhist; math BY malg-mprob; reading (1); math (2); reading WITH math (3);</pre>	
MODEL male:	[rsci malg];	
OUTPUT:	STANDARDIZED MODINDICES (3.84);	
	11	
Summary Of Analysis Results For NELS Multiple Group Analysis With Partial Measurement Invariance And Invariant Factor Variances And Covariance: A Test Of Population Heterogeneity

Model	Chi-square	Difference
Partial invariance	180.110 (64)	
Invariant factor variances and covariance	183.442 (67)	3.312 (3)

217

<section-header><text><text><text><text>

Summary Of Analysis Results For NELS Multiple Group Analysis With Partial Measurement Invariance And Invariant Factor Variances, Covariance, And Means: A Test Of Population Heterogeneity

Model	Chi-square	Difference	
Partial invariance	180.110 (64)		
Invariant factor variances and covariance	183.422 (67)	3.312 (3)	
Invariant factor variances, covariance, and means	340.498 (69)	157.076 (2)*	
			219

Technical Aspects Of Multiple-Group Factor Analysis Modeling (Continued)

Two main cases:

- No mean structure
 - Assume Λ invariance
 - Study ($\boldsymbol{\Theta}_g$ and) $\boldsymbol{\Psi}_g$ differences
 - $(v_g \text{ free}, \alpha = 0, \text{ so that } \widehat{\mu}_g = \overline{y}_g)$

Mean structure

- Assume v and Λ invariance
- Study ($\boldsymbol{\Theta}_{g}$ and) $\boldsymbol{\alpha}_{g}$ and $\boldsymbol{\Psi}_{g}$ differences ($\boldsymbol{\alpha}_{1} = \mathbf{0}$)

Further Readings On MIMIC And Multiple-Group Analysis Joreskog, K.G. (1971). Simultaneous factor analysis in several populations. <u>Psychometrika</u>, 36, 409-426.

- Meredith, W. (1964). Notes on factorial invariance. <u>Psychometrika</u>, 29, 177-185.
- Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. <u>Psychometrika</u>, 58, 525-543.
- Muthen, B. (1989a). Latent variable modeling in heterogeneous populations. <u>Psychometrika</u>, 54, 557-585. (#24)

Sorbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. <u>British Journal</u> of Mathematical and Statistical Psychology, 27, 229-239.

Inpu	it For Classic Wheaton Et Al. SEM
FITLE:	Classic structural equation model with multiple indicators used in a study of the stability of alienation.
DATA:	FILE IS wheacov.dat TYPE IS COVARIANCE; NOBS ARE 932;
VARIABLE:	NAMES ARE anomia67 power67 anomia71 power71 educ sei;
MODEL:	ses BY educ sei; alien67 BY anomia67 power67; alien71 BY anomia71 power71;
	alien71 ON alien67 ses; alien67 ON ses;
	anomia67 WITH anomia71; power67 WITH power71;
OUTPUT:	SAMPSTAT STANDARDIZED MODINDICES (0);

Classic Wheaton Et Al.	. SEM	
Fests Of Model Fit		
Chi-Square Test of Model Fit		
Value	4.771	
Degrees of Freedom	4	
P-Value	.3111	
RMSEA (Root Mean Square Error Of Approximati	.on)	
Estimate	.014	
90 Percent C.I.	.000	.053
Probability RMSEA <= .05	.928	

Output Excerpts Classic Wheaton Et Al. SEM (Continued)								
Model Results								
	Estimates	S.E.	Est./S.E.	Std	StdYX			
SES BY								
EDUC	1.000	.000	.000	2.607	.841			
SEI	5.221	.422	12.367	13.612	.642			
ALIEN67 BY								
ANOMIA67	1.000	.000	.000	2.663	.775			
POWER67	.979	.062	15.896	2.606	.852			
ALIEN71 BY								
ANOMIA71	1.000	.000	.000	2.850	.805			
POWER71	.922	.059	15.500	2.627	.832			
					2			

Output Excerpts							
Classic Wh	eaton Et	Al. S	EM (Co	ontinu	ed)		
ALIEN71 ON							
ALIEN67	.607	.051	11.895	.567	.567		
SES	227	.052	-4.337	208	208		
ALIEN67 ON							
SES	575	.056	-10.197	563	563		
ANOMIA67 WITH							
ANOMIA71	1.622	.314	5.173	1.622	.133		
POWER67 WITH							
POWER71	.340	.261	1.302	.340	.035		
					2		

Classic V	Output Excerpts Classic Wheaton Et Al. SEM (Continued)							
Estimates SE Est /SE Std Stdvy								
Regidual Varia	angeg	0.2.	2001/0121	bou	bour			
ANOMIA67	4.730	.453	10.438	4.730	.40			
POWER67	2.564	.403	6.362	2.564	.27			
ANOMIA71	4.397	.515	8.537	4.397	.35			
POWER71	3.072	.434	7.077	3.072	.30			
EDUC	2.804	.507	5.532	2.804	.29			
SEI	264.532	18.125	14.595	264.532	.58			
ALIEN67	4.842	.467	10.359	.683	.68			
ALIEN71	4.084	.404	10.104	.503	.50			
Variances								
SES	6.796	.649	10.476	1.000	1.00			
					:			

Modeling Issues In SEM

- Model building strategies
 - Bottom up
 - Measurement versus structural parts
 - Number of indicators
 - Identifiability
 - Robustness to misspecification
- Believability

٠

- Measures
- Direction of arrows
- Other models
- Quality of estimates
 - Parameters, s.e.'s, power
 - Monte Carlo study within the substantive study

233

Model Identification

Model Identification Issues (Continued)A non-identified parameter gives a non-invertible information
matrix (no s.e.s.; indeterminacy involving parameter #...).A fixed or constrained parameter with a derivative (MI)
different from zero would be identified if freed and would
improve F.Example (alcohol consumption, dietary fat intake, blood
pressure):Two indicators of a single latent variable that predicts a later
observed outcome (6 parameters; just identified model): $x_{ij} = \lambda_j \eta_i + \varepsilon_{ij} (j = 1, 2),$ $y_i = \beta \eta_i + \zeta_i.$ (28) $y_i = \beta \eta_i + \zeta_i.$

Model Identification Issues (Continued)

Show identification by solving for the parameters in terms of the Σ elements (fixing $\lambda_1 = 1$):

$$V(x_1) = \sigma_{11} = \psi_{11} + \theta_{11}, \qquad (33) \quad V(x_2) = \sigma_{22} = \lambda_2^2 \psi_{11} + \theta_{22}, \qquad (34)$$

$$Cov(x_2, x_1) = \sigma_{21} = \lambda_2 \psi_{11},$$
 (35) $Cov(y, x_1) = \sigma_{31} = \beta \psi_{11},$ (36)

$$Cov(y, x_2) = \sigma_{32} = \lambda_2 \beta \psi_{11}, \quad (37) \quad V(y) = \sigma_{33} = \beta^2 \psi_{11} + \psi_{22}. \quad (38)$$

Solving for β :

$$\frac{Cov(y, x_2)}{Cov(x_2, x_1)} = \frac{\lambda_2 \beta \psi_{11}}{\lambda_2 \psi_{11}} = \beta$$

With correlated error θ_{21} :

$$\frac{Cov(y, x_2)}{Cov(x_2, x_1)} = \frac{\lambda_2 \beta \psi_{11}}{\lambda_2 \psi_{11} + \theta_{21}} \neq \beta$$

Input For Social Status Formative Indicators,
Model 1

TITLE:	Hodge-Treiman social status modeling	
DATA:	<pre>FILE = htmimicnl.dat; TYPE = COVARIANCE; NOBS = 530;</pre>	
VARIABLE:	NAMES = church member friends income occup educ; USEV = friends-educ;	
MODEL:	f BY; ! defining the formative factor f ON income@l occup educ; f@0; friends ON f;	
OUTPUT:	TECH1 STANDARDIZED;	
		241

Output Excerpts Social Status Formative Indicators, Model 1									
Tests Of N	Model]	Fit							
Chi-Square	e Test	of Model Fit							
	Val	ue		0.	.000				
	Deg	grees of Freed	om		0				
	₽-V	Value		0.0	0000				
Model Re	sults								
F	ON	Estimates	S.E.	Est./S.E.	Std	StdYX			
INCOME]	1.000	0.000	0.000	0.427	0.427			
OCCUP		0.380	0.481	0.790	0.162	0.162			
EDUC		1.640	0.877	1.870	0.700	0.699			
FRIENDS	ON								
F		0.109	0.045	2.410	0.255	0.256			
Residual	Varia	nces							
FRIEND	DS	0.933	0.057	16.279	0.933	0.935			
F		0.000	0.000	0.000	0.000	0.000			

Input Excerpts Social Status Formative Indicators, Model 2

VARIABLE:	NAMES ARE church members friends income occup educ; USEV = church-educ;
MODEL:	<pre>fy BY church-friends; f BY; ! defining the formative factor f ON income@l occup educ; f@0; fy ON f;</pre>
	243

Out	put E	xcerpts So Indicato	ocial S rs, Mo	tatus Fo odel 2	ormat	ive
Tests Of	Model I	Fit				
Chi-Squa	re Test	of Model Fit				
	Val	ue		12	.582	
	Deg	rees of Freed	om		6	
	P-V	alue		0.0	0502	
Model R	lesults	Estimates	S.E.	Est./S.E.	Std	StdY
FY	BY					
CHUR	СН	1.000	0.000	0.000	0.466	0.460
MEMB	ER	1.579	0.235	6.732	0.735	0.736
FRIE	NDS	0.862	0.143	6.046	0.402	0.402
FY	ON					
F		0.108	0.028	3.825	0.508	0.508
F	ON					
INCO	ME	1.000	0.000	0.000	0.457	0.45
OCCU	P	0.418	0.276	1.515	0.191	0.193
EDUC		1.438	0.453	3.173	0.658	0.65
						2

Output Excerpts Social Status Formative Indicators, Model 2 (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
Residual Varian	ces				
CHURCH	0.781	0.057	13.620	0.781	0.783
MEMBER	0.457	0.075	6.092	0.457	0.458
FRIENDS	0.837	0.058	14.528	0.837	0.838
FY	0.161	0.037	4.361	0.742	0.742
F	0.000	0.000	0.000	0.000	0.000
					245

TITLE: MONTECARLO:	This is an example of a Monte Carlo simulation stud for a CFA with covariates (MIMIC) with continuous
MONTECARLO:	factor indicators and patterns of missing data
	NAMES ARE y1-y4 x1 x2; NOBSERVATIONS = 500; SEED = 4533; CUTPOINTS = x2(1); PATMISS = y1(.1) y2(.2) y3(.3) y4(1) y1(1) y2(.1) y3(.2) y4(.3); PATPROBS = .4 .6;
MODEL POPULA	TION:
	<pre>[x1-x2@0]; x1-x2@1; f BY y1@1 y2-y4*1; f*.5; y1-y4*.5; f ON x1*1 x2*.3;</pre>

Output Excerpts Monte Carlo Simulation Study For A CFA With Covariates

Number of Free Parameters	14
Chi-Square Test of Model Fit	
Degrees of Freedom	8
Mean	8.297

Std Dev4.122Number of successful computations500

251

Output Excerpts Monte Carlo Simulation Study For A CFA With Covariates (Continued)

I	Proportions	Per	centiles	
Expect	ed Observed	Expected	Observed	
0.9 0.9 0.9 0.9 0.8 0.7 0.5 0.3 0.2 0.1	90 0.996 80 0.990 50 0.940 00 0.896 00 0.814 00 0.542 00 0.326 00 0.238 00 0.120 00 0.2542	1.646 2.032 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362	2.008 2.597 2.592 3.441 4.711 5.605 7.663 9.993 11.726 14.313	
0.0 0.0 0.0	50 0.052 20 0.016 10 0.006	15.507 18.168 20.090	15.575 17.986 19.268	252

Output Excerpts Monte Carlo Simulation Study For A CFA With Covariates (Continued)

Model Results

		ESTIMATES	5	S.E.	M. S. E.	95%	%Sig
	Population	Average	Std. Dev.	Average		Cover	Coeff
F	ВҮ						
Y1	1.000	1.0000	0.0000	0.0000	0.0000	1.000	0.000
Y2	1.000	1.0083	0.0878	0.0847	0.0078	0.932	1.000
¥3	1.000	1.0035	0.0859	0.0801	0.0074	0.938	1.000
¥4	1.000	1.0032	0.0637	0.0654	0.0041	0.954	1.000
F	ON						
X1	1.000	0.9990	0.0630	0.0593	0.0040	0.936	1.000
X2	0.300	0.3029	0.1083	0.1056	0.0117	0.954	0.806
							253

	Further Readings On SEM			
Bo	llen, K.A. (1989). <u>Structural equations with latent variables</u> . New York: John Wiley.			
Bro	owne, M.W. & Arminger, G. (1995). Specification and estimation of mean- and covariance-structure models. In G. Arminger, C.C. Clogg & M.E. Sobel (Eds.), <u>Handbook of statistical modeling for</u> <u>the social and behavioral sciences</u> (pp. 311-359). New York: Plenum Press.			
Jor	eskog, K.G., & Sorbom, D. (1979). <u>Advances in factor analysis and</u> structural equation models. Cambridge, MA: Abt Books.			
Мı	then, B. & Muthen, L. (2002). How to use a Monte Carlo study to decide on sample size and determine power. <u>Structural Equation</u> <u>Modeling</u> , 4, 599-620.			

259

References (To request a Muthén paper, please email bmuthen@ucla.edu and refer to the number in parenthesis.) **Regression Analysis** Agresti, A. & Finlay, B. (1997). Statistical methods for the social sciences. Third edition. New Jersey: Prentice Hall. Amemiya, T. (1985). Advanced econometrics. Cambridge, Mass.: Harvard University Press. Hamilton, L.C. (1992). Regression with graphics. Belmont, CA: Wadsworth. Johnston, J. (1984). Econometric methods. Third edition. New York: McGraw-Hill. Lewis-Beck, M.S. (1980). Applied regression: An introduction. Newbury Park, CA: Sage Publications. Moore, D.S. & McCabe, G.P. (1999). Introduction to the practice of statistics. Third edition. New York: W.H. Freeman and Company. Pedhazur, E.J. (1997). Multiple regression in behavioral research. Third Edition. New York: Harcourt Brace College Publishers. 260

Deferences (Continued) Dath Analysis MacKinnon, D.P., Lockwood, C.M., Hoffman, J.M., West, S.G. & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. <u>Psychological Methods</u>, 7, 83-104. MacKinnon, D.P., Lockwood, C.M. & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. <u>Multivariate Behavioral Research</u>, 39, 99-128. Shrout, P.E. & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. <u>Psychological Methods</u>, 7, 422-445. Bartholomew, D.J. (1987). <u>Latent variable models and factor analysis</u>. New York: Oxford University Press. Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. <u>Multivariate Behavioral Research</u>, 36, 111-150.

	References (Continued)
Cu	deck, R. & O'Dell, L.L. (1994). Applications of standard error estimates in
	unrestricted factor analysis: Significance tests for factor loadings and
	correlations. Psychological Bulletin, 115, 475-487.
Fat	brigar, L.R., Wegener, D.T., MacCallum, R.C. & Strahan, E.J. (1999). Evaluating the use of exploratory factor analysis in psychological research. <u>Psychological Methods</u> , 4, 272-299.
Go	rsuch, R.L. (1983). <u>Factor Analysis</u> . 2nd edition. Hillsdale, N.J.: Lawrence Erlbaum.
Ha	rman, H.H. (1976). <u>Modern factor analysis</u> . 3rd edition. Chicago: The University of Chicago Press.
Ho	lzinger, K.J. & Swineford, F. (1939). <u>A study in factor analysis: The</u> stability of a bi-factor solution. Supplementary Educational Monographs. Chicago, Ill.: The University of Chicago.
Kir	n, J.O. & Mueller, C.W. (1978). <u>An introduction to factor analysis: what it</u> <u>is and how to do it.</u> Sage University Paper series on Quantitative Applications in the Social Sciences, No 07-013. Beverly Hills, CA: Sage.
Jör	eskog, K.G. (1977). Factor analysis by least-squares and maximum- likelihood methods. In <u>Statistical methods for digital computers</u> , K. Enslein, A. Ralston, and H.S. Wilf (Eds.). New York: John Wiley & Sonds, pp. 125-
	155.

References (Continued) CFA Bollen, K.A. (1989). Structural equations with latent variables. New York: John Wiley. Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34. Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations. (1971). Simultaneous factor analysis in several populations. <u>Psychometrika</u>, 36, 409-426. Lawley, D.N. & Maxwell, A.E. (1971). Factor analysis as a statistical method. London: Butterworths. Long, S. (1983). Confirmatory factor analysis. Sage University Paper series on Qualitative Applications in the Social Sciences, No. 3. Beverly Hills, CA: Sage. Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177-185.Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525-543. Millsap, R.E. (2001). When trivial constraints are not trivial: the choice of uniqueness constraints in confirmatory factor analysis. Structural Equation <u>Modeling</u>, 8, 1-17. 264

References (Continued)

Mulaik, S. (1972). The foundations of factor analysis. McGraw-Hill.

Muthén, B. (1989b). Factor structure in groups selected on observed scores. British Journal of Mathematical and Statistical Psychology, 42, 81-90.

Muthén, B. (1989c). Multiple-group structural modeling with non-normal continuous variables. <u>British Journal of Mathematical and Statistical</u> <u>Psychology</u>, 42, 55-62.

Muthén, B. & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. <u>British Journal of Mathematical and Statistical Psychology</u>, 38, 171-189.

Muthén, B. & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. <u>British Journal of Mathematical and Statistical Psychology</u>, 45, 19-30.

Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. <u>British Journal of Mathematical and</u> <u>Statistical Psychology</u>, 27, 229-239.

MIMIC and Multiple Group Analysis

Hauser, R.M. & Goldberger, A.S. (1971). The treatment of unobservable variables in path analysis. In H. Costner (Ed.), <u>Sociological Methodology</u> (pp. 81-117). American Sociological Association: Washington, D.C. 265

	References (Continued)	
Jör Jör	eskog, K.G. (1973). A general method for estimating as linear structural equation system. In <u>Structural equation models in the social sciences</u> , A.S Goldberger and O.D. Duncan, Eds.). New York: Seminar Press, pp. 85-12 eskog, K.G., & Sörbom, D. (1979). <u>Advances in factor analysis and</u>	5. 2.
Ka	structural equation models. Cambridge, MA: Abt Books.	9
кa	Thousand Oakes, CA: Sage Publications.	<u>5</u> .
Kle	ein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. <u>Psychometrika</u> , 65, 457-474.	
Ma	acCallum, R.C. & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. <u>Annual Review of Psyhcology</u> , 51, 201-226.	
Ma	CKinnon, D.P., Lockwood, C.M., Hoffman, J.M., West, S.G. & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects <u>Psychological Methods</u> , 7, 83-104.	
Ma	rsh, H.W., Kit-Tai Hau & Z. Wen (2004) In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings <u>Structural Equation Modeling</u> , 11, 3, 320-341.	
		268

Sorbom, D. (1989). Model modifications. Psychometrika, 54, 371-384.

References (continued)

http://www.gsu.edu/~mkteer/bookfaq.html

http://gsm.uci.edu/~joelwest/SEM/SEMBooks.html

http://www2.chass.ncsu.edu/garson/pa765/structur.htm is a fairly complete (15) pages general overview of SEM.

Join SEMNET: http://bama.ua.edu/archives/semnet.html