Mplus Short Courses Day 5B

Multilevel Modeling With Latent Variables Using Mplus

Linda K. Muthén Bengt Muthén

Copyright © 2007 Muthén & Muthén www.statmodel.com

1

Table Of Contents

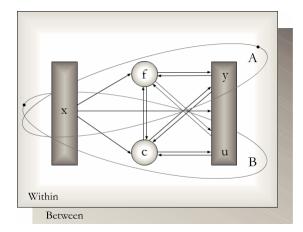
General Latent Variable Modeling Framework	4
Regression Mixture Analysis	8
NELS Data	10
Cluster-Randomized Trials And NonCompliance	21
Latent Class Analysis	25
Latent Transition Analysis	30
Multilevel Growth Mixture Modeling	36
Between-Level Latent Classes	53
Regression Analysis	54
Latent Class Analysis	58
Latent Transition Analysis	62
Growth Modeling	66
Growth Mixture Modeling	70
Forthcoming in Mplus Version 5	74
Deferences	90

Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics, psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics
 - Powerful: General modeling capabilities
- · Mplus versions
 - V1: November 1998
 V2: February 2001
 V3: March 2004
 V4: February 2006
- Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir Asparouhov, Michelle Conn

3

General Latent Variable Modeling Framework



Mplus

Several programs in one

- Structural equation modeling
- Item response theory analysis
- Latent class analysis
- Latent transition analysis
- Survival analysis
- Multilevel analysis
- Complex survey data analysis
- Monte Carlo simulation

Fully integrated in the general latent variable framework

Overview				
Single-Level Analysis				
	Cross-Sectional	Longitudinal		
Continuous Observed And Latent Variables	Day 1 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	Day 2 Growth Analysis		
Adding Categorical Observed And Latent Variables	Day 3 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling Latent Class Analysis Factor Mixture Analysis Structural Equation Mixture Modeling	Day 4 Latent Transition Analysis Latent Class Growth Analysis Growth Analysis Growth Mixture Modeling Discrete-Time Survival Mixture Analysis Missing Data Analysis		

Overview (Continued)

Multilevel Analysis

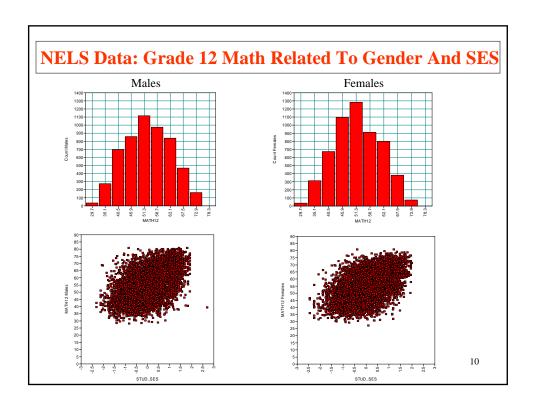
	Cross-Sectional	Longitudinal
Continuous Observed And Latent Variables	Day 5 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	Day 5 Growth Analysis
Adding Categorical Observed And Latent Variables	Day 5 Latent Class Analysis Factor Mixture Analysis	Day 5 Growth Mixture Modeling

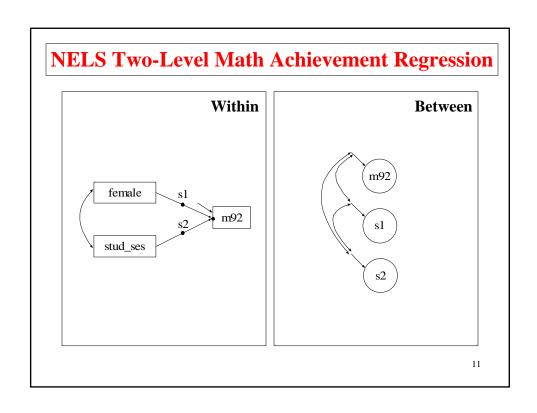
7

Regression Mixture Analysis

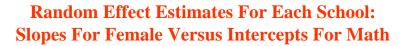
Two-Level Data

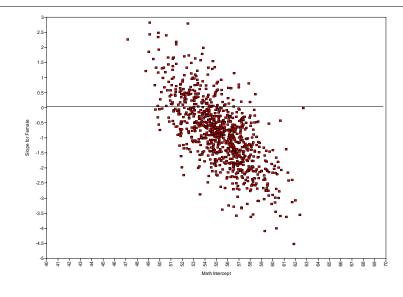
- Education studies of students within schools
 - LSAY (3,000 students in 54 schools, grades 7-12)
 - NELS (14,000 students in 900 schools, grades 8-12),
 - ECLS (22,000 students in 1,000 schools, K- grade 8)
- Public health studies of patients within hospitals, individuals within counties





	Estimates	S.E.	Est./S.E.
Between Level			
Means			
M92	55.279	0.174	317.706
S_FEMALE	-0.850	0.188	-4.507
S_SES	5.450	0.132	41.228
Variances			
M92	11.814	1.197	9.870
S FEMALE	5.762	1.426	4.041
S_SES	0.905	0.538	1.682
S_FEMALE WITH			
	-4.936	1.071	-4.610
S_SES	0.068	0.635	0.107
S_SES WITH			
 M92	1.314	0.541	2.431



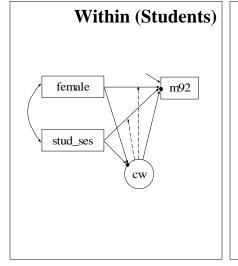


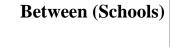
13

Is The Conventional Two-Level Regression Model Sufficient?

- Conventional Two-Level Regression of Math Score Related to Gender and Student SES
 - Loglikelihood = -39,512, number of parameters = 10, BIC = 79,117
- New Model
 - Loglikelihood = -39,368, number of parameters = 12, BIC = 78,848
 - Which model would you choose?

Two-Level Regression With Latent Classes For Students

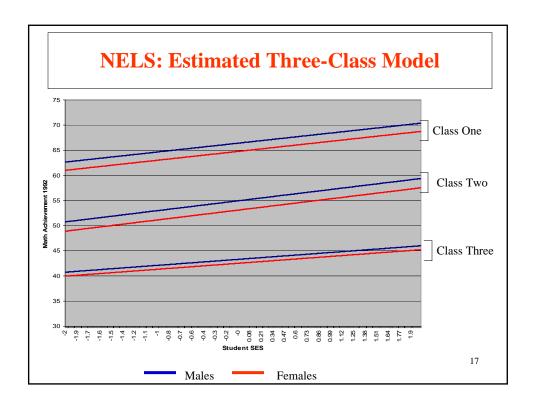




m92

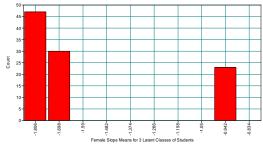
Model Results For NELS Two-Level Regression Of Math Score Related To Gender And Student SES

Model	Loglikelihood	# parameters	BIC
(1) Conventional 2-level regression			
with random intercepts			
and random slopes	-39,512	10	79,117
(2) Two-level regression mixture,			
2 latent classes for students	-39,368	12	78,848
(3) Two-level regression mixture,			
3 latent classes for students	-39,280	19	78,736



Estimated Two-Level Regression Mixture With 3 Latent Classes For Students

- Estimated Female slope means for the 3 latent classes for students do not include positive values.
- The class with the least Female disadvantage (right-most bar) has the lowest math mean



• Significant between-level variation in cw (the random mean of the latent class variable for students): Schools have a significant effect on latent class membership for students

Input For Two-Level Regression With Latent Classes For Students

```
TITLE:
          NELS 2-level regression
DATA:
          FILE = comp.dat;
          FORMAT = 2f7.0 f11.4 13f5.2 79f8.2 f11.7;
VARIABLE:
          NAMES = school m92 female stud_ses;
          CLUSTER = school;
          USEV = m92 female stud_ses;
          WITHIN = female stud_ses;
          CENTERING = GRANDMEAN(stud_ses);
          CLASSES = cw(3);
ANALYSIS:
          TYPE = TWOLEVEL MIXTURE MISSING;
          PROCESS = 2;
          INTERACTIVE = control.dat;
          !STARTS = 1000 100;
          STARTS = 0;
```

19

Input For Two-Level Regression With Latent Classes For Students (Continued)

```
MODEL:

%WITHIN%
%OVERALL%
m92 ON female stud_ses;
cw#1-cw#2 ON female stud_ses;
! [m92] class-varying by default
%cw#1%
m92 ON female stud_ses;
%cw#2%
m92 ON female stud_ses;
%cw#3%
m92 ON female stud_ses;
%cw#3%
m92 ON female stud_ses;
%CW#3%
f BY cw#1 cw#2;
```

Cluster-Randomized Trials And NonCompliance

21

Randomized Trials With NonCompliance

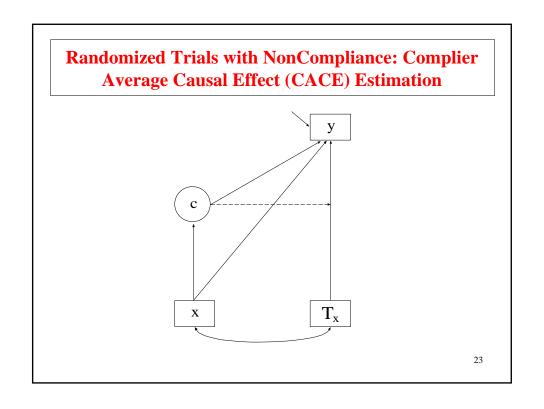
- Tx group (compliance status observed)
 - Compliers
 - Noncompliers
- Control group (compliance status unobserved)
 - Compliers
 - NonCompliers

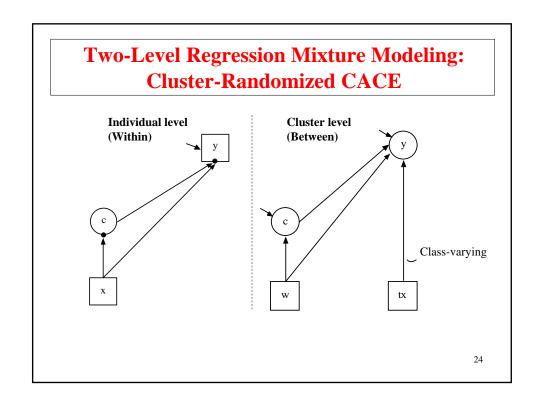
Compliers and Noncompliers are typically not randomly equivalent subgroups.

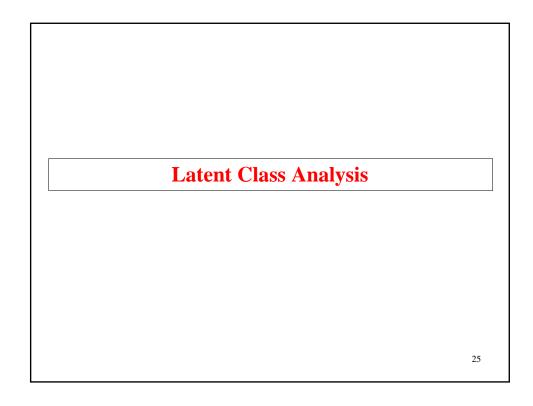
Four approaches to estimating treatment effects:

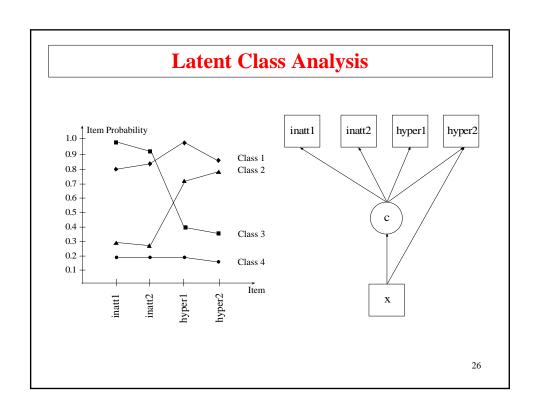
- 1. Tx versus Control (Intent-To-Treat; ITT)
- 2. Tx Compliers versus Control (Per Protocol)
- 3. Tx Compliers versus Tx NonCompliers + Control (As-Treated)
- 4. Mixture analysis (Complier Average Causal Effect; CACE):
 - Tx Compliers versus Control Compliers
 - Tx NonCompliers versus Control NonCompliers

CACE: Little & Yau (1998) in Psychological Methods

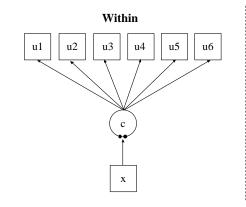


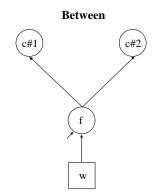






Two-Level Latent Class Analysis





2

Input For Two-Level Latent Class Analysis

TITLE: this is an example of a two-level LCA with

categorical latent class indicators

DATA: FILE IS ex10.3.dat;

VARIABLE: NAMES ARE u1-u6 x w c clus;

USEVARIABLES = u1-u6 x w;

CATEGORICAL = u1-u6;

CLASSES = c(3);

WITHIN = x;

BETWEEN = w;

CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;

Input For Two-Level Latent Class Analysis (Continued)

MODEL: %WITHIN%

%OVERALL% c#1 c#2 ON x;

%BETWEEN%
%OVERALL%
f BY c#1 c#2;
f ON w;

OUTPUT: TECH1 TECH8;

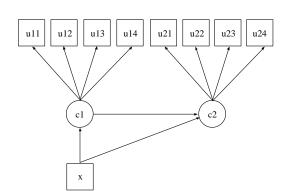
29

Latent Transition Analysis

Transition Probabilities

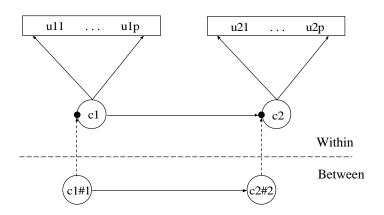
Time Point 1

Time Point 2



31

Two-Level Latent Transition Analysis



Asparouhov, T. & Muthen, B. (2006). Multilevel mixture models. Forthcoming in Hancock, G. R., & Samuelsen, K. M. (Eds.). (2007). Advances in latent variable mixture models. Charlotte, NC: Information Age Publishing, Inc.

Input For Two-Level LTA

```
CLUSTER = classrm;
        USEVAR = stub1f bkrule1f bkthin1f-tease1f athort1f
                  stubls bkrulels bkthin1s-teasels athort1s;
        CATEGORICAL = stub1f-athort1s;
        MISSING = all (999);
        CLASSES = cf(2) cs(2);
DEFINE:
        CUT stub1f-athort1s(1.5);
ANALYSIS:
        TYPE = TWOLEVEL MIXTURE MISSING;
        PROCESS = 2;
MODEL:
        %WITHIN%
        %OVERALL%
        cs#1 ON cf#1;
        %BETWEEN%
        OVERALL%
        cs#1 ON cf#1;
        cs#1*1 cf#1*1;
                                                                 33
```

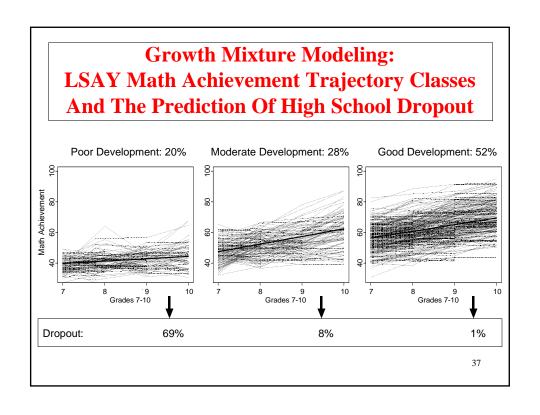
Input For Two-Level LTA (Continued)

```
MODEL cf:
  %BETWEEN%
        %cf#1%
        [stub1f$1-athort1f$1] (1-9);
        [stub1f$1-athort1f$1] (11-19);
MODEL cs:
  %BETWEEN%
        %cs#1%
        [stub1s$1-athort1s$1] (1-9);
        %cs#2%
        [stub1s$1-athort1s$1] (11-19);
OUTPUT:
        TECH1 TECH8;
PLOT:
        TYPE = PLOT3;
        SERIES = stub1f-athort1f(*);
```

Output Excerpts Two-Level LTA

Categorical Latent Variables Within Level CS#1 ON 3.938 CF#1 0.407 9.669 Means -0.126 -1.514 CF#1 0.189 -0.664 CS#1 0.221 -6.838 Between Level CF#1 0.411 0.15 2.735 Variances 2.062 0.672 3.067 Residual Variances CS#1 0.469 0.237 1.984

Multilevel Growth Mixture Modeling





Input For A Multilevel Growth Mixture Model For LSAY Math Achievement

TITLE: multilevel growth mixture model for LSAY math

achievement

DATA: FILE = lsayfull_Dropout.dat;

VARIABLE: NAMES = female mothed homeres math7 math8 math9 math10

expel arrest hisp black hsdrop expect lunch mstrat

droptht7 schcode;

!lunch = % of students eligible for full lunch

!assistance (9th)

!mstrat = ratio of students to full time math

!teachers (9th)
MISSING = ALL (9999);
CATEGORICAL = hsdrop;
CLASSES = c (3);
CLUSTER = schcode;

WITHIN = female mothed homeres expect droptht7 expel

arrest hisp black;

BETWEEN = lunch mstrat;

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

DEFINE: lunch = lunch/100;

mstrat = mstrat/1000;

ANALYSIS: TYPE = MIXTURE TWOLEVEL MISSING;

ALGORITHM = INTEGRATION;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8;

PLOT: TYPE = PLOT3;

SERIES = math7-math10 (s);

MODEL: %WITHIN%

%OVERALL%

i s | math7@0 math8@1 math9@2 math10@3;

i s ON female hisp black mothed homeres expect
droptht7 expel arrest;

c#1 c#2 ON female hisp black mothed homeres expect droptht7 expel arrest;

hsdrop ON female hisp black mothed homeres expect droptht7 expel arrest;

41

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

```
%c#1%
[i*40 s*1];
math7-math10*20;
i*13 s*3;

%c#2%
[i*40 s*5];
math7-math10*30;
i*8 s*3;
i s ON female hisp black mothed homeres expect droptht7 expel arrest;

%c#3%
[i*45 s*3];
math7-math10*10;
i*34 s*2;
i s ON female hisp black mothed homeres expect droptht7 expel arrest;
```

```
%BETWEEN%
%OVERALL%
ib | math7-math10@1; [ib@0];
ib*1; hsdrop*1; ib WITH hsdrop;
math7-math10@0;
ib ON lunch mstrat;
c#1 c#2 ON lunch mstrat;
hsdrop ON lunch mstrat;
%c#1%
[hsdrop$1*-.3];
%c#2%
[hsdrop$1*.9];
%c#3%
[hsdrop$1*1.2];
```

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement

13

Summary of Data

```
Number of patterns
   Number of y patterns
                            13
   Number of u patterns
                            1
   Number of clusters
Size (s) Cluster ID with Size s
  12
             304
             305
  13
  38
             112
  39
             109
  40
             138
  42
             120
  43
             307
             303
  45
             143
                       146
```

	46	101					
	48	144	106				
	51	102	308				
	52	136	118	133	111		
	53	140	142	108	131	122	124
	54	301	117	127	137	126	
	55	103	141	123			
	56	110					
	57	147					
	58	121	105	145	135		
	59	119					
	73	104					
	89	302					
	94	309					
1	18	115					

45

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

MAXIMUM LOG-LIKELIHOOD VALUE FOR THE UNRESTRICTED (H1) MODEL IS -36393.088

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE CONDITION NUMBER IS -0.758D-16. PROBLEM INVOLVING PARAMETER 54.

THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE NUMBER OF CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.

THE MODEL ESTIMATION TERMINATED NORMALLY

Tests Of Model Fit

Loglikelihood	
---------------	--

H0 Value	-26247.205
Information Criteria	
Number of Free Parameters	122
Akaike (AIC)	52738.409
Bayesian (BIC)	53441.082
Sample-Size Adjusted BIC $(n* = (n + 2) / 24)$	53053.464
Entropy	0.632

FINAL CLASS COUNTS AND PROPORTIONS OF TOTAL SAMPLE SIZE BASED ON ESTIMATED POSTERIOR PROBABILITIES

Class 1	686.43905	0.29285
Class 2	430.83877	0.18380
Class 3	1226.72218	0.52335

47

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

Model Results

		Estimates	S.E.	Est./S.E.	Std	StdYX
Between Lev CLASS 1	/el					
IB	ON					
LUNCH		-1.805	1.310	-1.378	-0.851	-0.176
MSTRAT		-13.365	3.086	-4.331	-6.299	-0.448
HSDROP	ON					
LUNCH		1.087	0.543	2.004	1.087	0.290
MSTRAT		-0.178	1.478	-0.120	-0.178	-0.016
IB	WITH					
HSDROP		-0.416	0.328	-1.267	-0.196	-0.253

Intercepts					
MATH7	0.000	0.000	0.000	0.000	0.000
MATH8	0.000	0.000	0.000	0.000	0.000
MATH9	0.000	0.000	0.000	0.000	0.000
MATH10	0.000	0.000	0.000	0.000	0.000
IB	0.000	0.000	0.000	0.000	0.000
Residual Variances	3				
Residual Variances HSDROP	0.550	0.216	2.542	0.550	0.915
		0.216 0.000	2.542	0.550	0.915 0.000
HSDROP	0.550				
HSDROP MATH7	0.550	0.000	0.000	0.000	0.000
HSDROP MATH7 MATH8	0.550 0.000 0.000	0.000	0.000	0.000	0.000
HSDROP MATH7 MATH8 MATH9	0.550 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

49

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

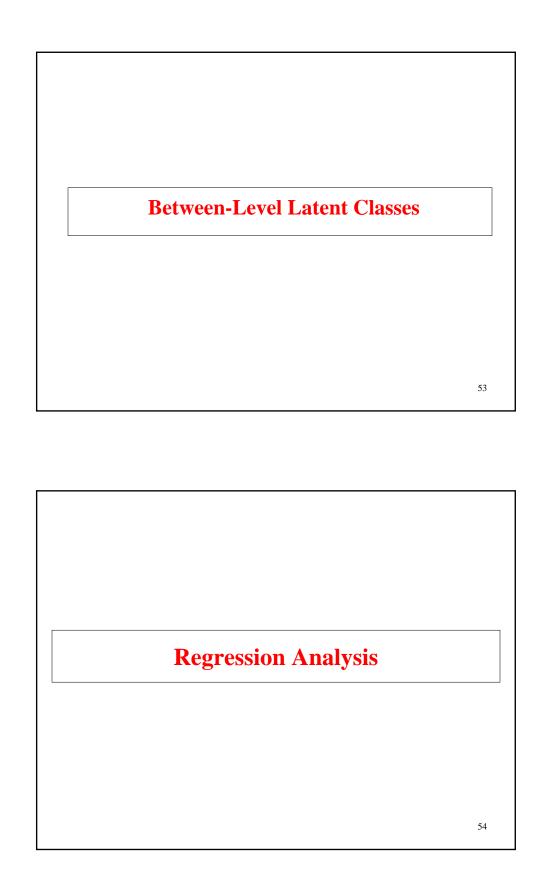
	Estimates	S.E.	Est./S.E.
Within Level			
C#1 ON			
FEMALE	-0.751	0.188	-3.998
HISP	0.094	0.705	0.133
BLACK	0.900	0.385	2.339
MOTHED	-0.003	0.106	-0.028
HOMERES	-0.060	0.069	0.864
EXPECT	-0.251	0.074	-3.406
DROPTHT7	1.616	0.451	3.583
EXPEL	0.698	0.337	2.068
ARREST	1.093	0.384	2.842

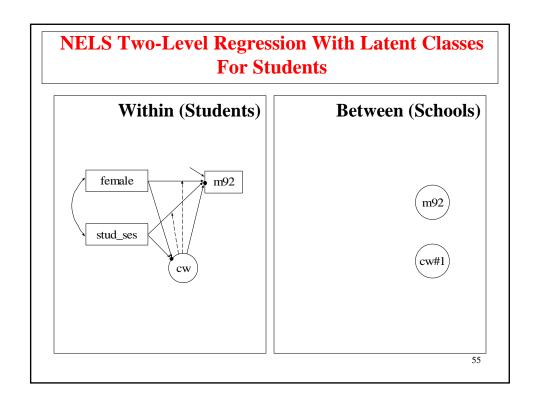
		Estimates	S.E.	Est./S.E.
C#2	ON			
FEMA	ALE	-1.610	0.450	-3.577
HISI	P	1.144	0.466	2.458
BLAC	CK	-0.961	0.656	-1.465
MOTH	HED	-0.234	0.139	-1.684
HOME	ERES	0.102	0.094	1.085
EXP	ECT	0.056	0.089	0.628
DRO	PTHT7	0.570	0.657	0.869
EXP	EL	1.217	0.397	3.068
ARRI	EST	1.133	0.580	1.951
Interce	ots			
C#1		0.492	0.535	0.921
C#2		-0.533	0.627	-0.849

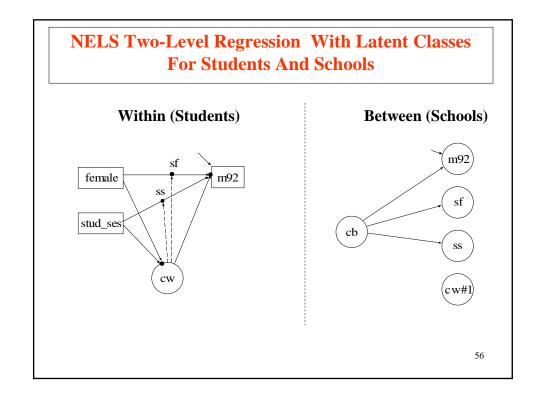
51

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

			Estimates	S.E.	Est./S.E.
Bet	ween Le	vel			
C#1		ON			
LUNCH			2.265	0.706	3.208
	MSTRAT		-2.876	2.909	-0.988
C#2		ON			
	LUNCH		-0.088	1.343	-0.065
	MSTRAT		-0.608	2.324	-0.262



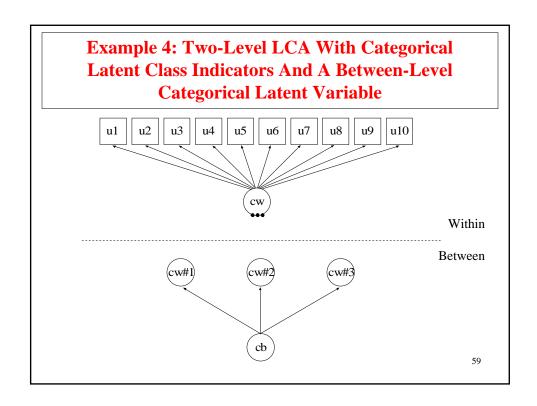




Model Results For NELS Two-Level Regression Of Math Score Related To Gender And Student SES

Model	Loglikelihood	# parameters	BIC
(1) Conventional 2-level regression			
with random intercepts			
and random slopes	-39,512	10	79,117
(2) Two-level regression mixture,			
2 latent classes for students	-39,368	12	78,848
(3) Two-level regression mixture,			
3 latent classes for students	-39,280	19	78,736
(4) Two-level regression mixture,			
2 latent classes for schools,			
2 latent classes for students	-39,348	19	78,873
(5) Two-level regression mixture,			
2 latent classes for schools,			
3 latent classes for students	-39,260	29	78,789
			57

Latent Class Analysis



Input For Two-Level Latent Class Analysis

TITLE: this is an example of a two-level LCA with

categorical latent class indicators and a between-

level categorical latent variable

DATA: FILE = ex4.dat;

VARIABLE: NAMES ARE u1-u10 dumb dumw clus;

USEVARIABLES = ul-ul0; CATEGORICAL = ul-ul0; CLASSES = cb(5) cw(4); WITHIN = ul-ul0;

BETWEEN = cb; CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;

PROCESSORS = 2; STARTS = 100 10;

MODEL:

%WITHIN%
%OVERALL%
%BETWEEN%
%OVERALL%

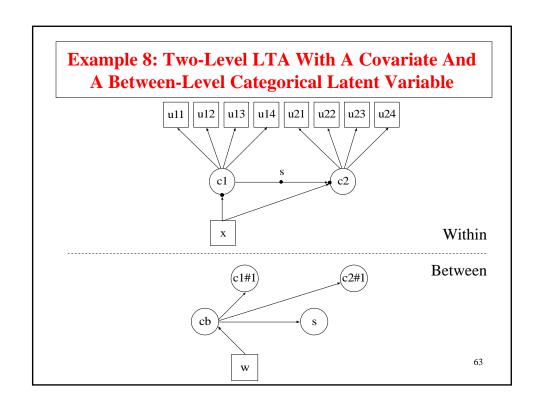
cw#1-cw#3 ON cb#1-cb#4;

Input For Two-Level Latent Class Analysis (Continued)

MODEL cw: ${\tt %WITHIN\$}$ %cw#1% [u1\$1-u10\$1]; [u1\$2-u10\$2]; %cw#2% [u1\$1-u10\$1]; [u1\$2-u10\$2]; %cw#3% [u1\$1-u10\$1]; [u1\$2-u10\$2]; %cw#4% [u1\$1-u10\$1]; [u1\$2-u10\$2]; OUTPUT: TECH1 TECH8;

61

Latent Transition Analysis



Input For Two-Level LTA

TITLE: this is an example of a two-level LTA with a covariate

and a between-level categorical latent variable

DATA: FILE = ex8.dat;

VARIABLE: NAMES ARE ull-ul4 u21-u24 x w dumb duml dum2 clus;

USEVARIABLES = u11-w;

CATEGORICAL = u11-u14 u21-u24; CLASSES = cb(2) c1(2) c2(2);

WITHIN = x; BETWEEN = cb w;

BETWEEN = cb w; CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;

PROCESSORS = 2;

MODEL:

%WITHIN%
%OVERALL%
c2#1 ON c1#1 x;
c1#1 ON x;
%BETWEEN%
%OVERALL%
c1#1 ON cb#1;

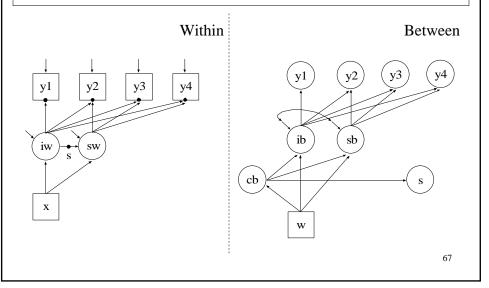
Input For Two-Level LTA (Continued)

```
c2#1 ON cb#1;
           cb#1 ON w;
MODEL cb:
           %WITHIN%
           %cb#1%
           c2#1 ON c1#1;
MODEL c1:
           %BETWEEN%
           %c1#1%
           [u11$1-u14$1] (1-4);
           %c1#2%
           [u11$1-u14$1] (5-8);
MODEL c2:
           %BETWEEN%
           %c2#1%
           [u21$1-u24$1] (1-4);
           %c2#2%
           [u21$1-u24$1] (5-8);
OUTPUT:
           TECH1 TECH8;
```

65

Growth Modeling

Example 5: Two-Level Growth Model For A Continuous Outcome (Three-Level Analysis) With A Between-Level Categorical Latent Variable



Input For Two-Level Growth Model

```
TITLE: this is an example of a two-level growth model for a
```

continuous outcome (three-level analysis) with a

between-level categorical latent variable

DATA: FILE = ex5.dat;

VARIABLE: NAMES ARE y1-y4 x w dummy clus;

USEVARIABLES = y1-w;

CLASSES = cb(2);

WITHIN = x;

BETWEEN = cb w;

CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM;

PROCESSORS = 2;

MODEL:

%WITHIN% %OVERALL%

iw sw | y1@0 y2@1 y3@2 y4@3;

y1-y4 (1); iw sw ON x;

s | sw ON iw;

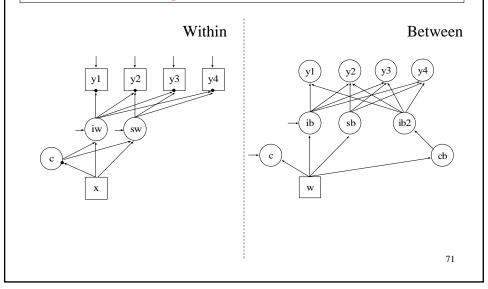
Input For Two-Level Growth Model (Continued)

%BETWEEN%
%OVERALL%
ib sb | y1@0 y2@1 y3@2 y4@3;
y1-y4@0;
ib sb ON w;
cb#1 ON w;
s@0;
%cb#1%
[ib sb s];
%cb#2%
[ib sb s];
OUTPUT: TECH1 TECH8;

69

Growth Mixture Modeling

Example 6: Two-Level GMM (Three-Level Analysis) For A Continuous Outcome With A Between-Level Categorical Latent Variable



Input For Two-Level GMM (Three-Level Analysis)

TITLE: this is an example of a two-level GMM (three-level

analysis) for a continuous outcome with a between-

level categorical latent variable

DATA: FILE = ex6.dat;

VARIABLE: NAMES ARE y1-y4 x w dummyb dummy clus;

USEVARIABLES = y1-w;

CLASSES = cb(2) c(2);
WITHIN = x;

BETWEEN = cb w; CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;

PROCESSORS = 2;

MODEL:

%WITHIN% %OVERALL%

iw sw | y1@0 y2@1 y3@2 y4@3;

iw sw ON x;
c#1 ON x;
%BETWEEN%
%OVERALL%

Input For Two-Level GMM (Continued)

```
ib sb | y1@0 y2@1 y3@2 y4@3;
  ib2 | y1-y4@1;
  y1-y4@0;
  ib sb ON w;
  c#1 ON w;
  sb@0; c#1;
  ib2@0;
  cb#1 ON w;
MODEL c:
  %BETWEEN%
  %c#1%
  [ib sb];
  %c#2%
  [ib sb];
MODEL cb:
  %BETWEEN%
   %cb#1%
  [ib2@0];
  %cb#2%
   [ib2];
                                                                   73
OUTPUT: TECH1 TECH8;
```

Forthcoming in Mplus Version 5

New, simple WLS estimator for high-dimensional 2-level models with categorical outcomes

Example 1: Grilli & Rampichini (2007)

Five items on job satisfaction of 2,432 graduates (level 1) from 36 degree programs (level 2): "How satisfied are you with..."

5-point scale (1 = very much satisfied, ..., 5 = very unsatisfied)

	Loadings							
	Withi	n (W)	Between (B)		Thresholds			
Item					$\gamma 1, h$	$\gamma 2, h$	γ3,h	γ4,h
1. Earnings		1.09	0.75		-3.96	-1.39	1.24	3.29
2. Career	1 ^a	1 ^a	1a		-3.64	-0.92	1.46	3.37
3. Consistency	2.30		0.32	1 ^a	-1.80	0.19	1.98	3.39
4. Professionalism	2.25	0.41	0.31	0.27	-1.79	1.07	3.36	5.27
5. Interests	2.85		0.09	0.47	-2.34	0.34	2.83	4.62
Factor Variance	0.75	3.09	0.71	0.45				

Estimation by ML using numerical integration in the Mplus program (Muthen & Muthen, 1998-2007) 75

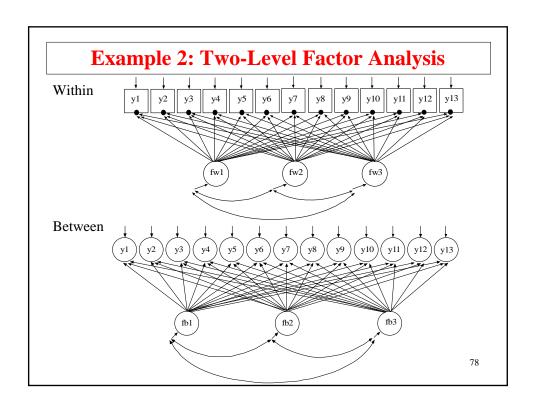
Example 2: 2nd-Generation JHU PIRC Trial Aggression Items

Item Distributions for Cohort 3: Fall 1st Grade (n=362 males in 27 classrooms)

	Almost Never	Rarely	Sometimes	Often	Very Often	Almost Always
	(scored as 1)	(scored as 2)	(scored as 3)	(scored as 4)	(scored as 5)	(scored as 6)
Stubborn	42.5	21.3	18.5	7.2	6.4	4.1
Breaks Rules	37.6	16.0	22.7	7.5	8.3	8.0
Harms Others	69.3	12.4	9.40	3.9	2.5	2.5
Breaks Things	79.8	6.60	5.20	3.9	3.6	0.8
Yells at Others	61.9	14.1	11.9	5.8	4.1	2.2
Takes Others' Property	72.9	9.70	10.8	2.5	2.2	1.9
Fights	60.5	13.8	13.5	5.5	3.0	3.6
Harms Property	74.9	9.90	9.10	2.8	2.8	0.6
Lies	72.4	12.4	8.00	2.8	3.3	1.1
Talks Back to Adults	79.6	9.70	7.80	1.4	0.8	1.4
Teases Classmates	55.0	14.4	17.7	7.2	4.4	1.4
Fights With Classmates	67.4	12.4	10.2	5.0	3.3	1.7
Loses Temper	61.6	15.5	13.8	4.7	3.0	1.4

Example 2: Hypothesized Aggressiveness Factors

- Verbal aggression
 - Yells at others
 - Talks back to adults
 - Loses temper
 - Stubborn
- Property aggression
 - Breaks things
 - Harms property
 - Takes others' property
 - Harms others
- Person aggression
 - Fights
 - Fights with classmates
 - Teases classmates



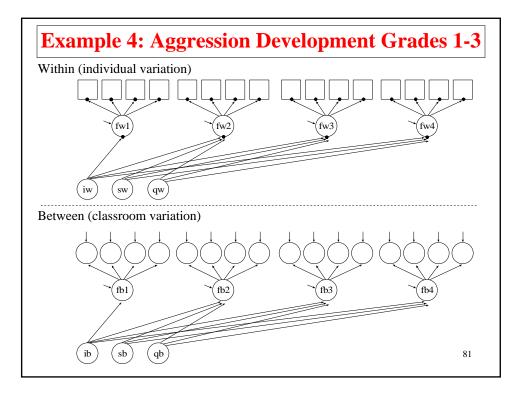
Reasons For Finding Dimensions

Different dimensions may have different

- predictors
- effects on later events
- growth curves
- treatment effects

79

Example 3: Predicting Juvenile Delinquency From First Grade Aggressive Behavior. Two-Level Logistic Regression Within Between



ML Versus Other Estimators

- ML uses numerical integration, which is heavy with many dimensions of integration (many factors and/or random effects).
 - Example 1 has 4 dimensions: 2 factor for level 1 and 2 factors for level 2 (Note: level 2 residuals are zero – otherwise 9 dimensions)
 - Example 2 has potentially 3 + 3 (+13) dimensions
 - Example 3 has 7 dimensions
 - Example 4 has potentially about 30 dimensions
 - Monte Carlo integration possible, but gives only approximate results

MCMC

- challenges include parameterizations to ensure good mixing, "label switching" for factors, difficulties in determining identification status, similar in computational demands to ML with Monte Carlo integration
- Goldstein & Browne (2002, 2005)

ML Versus Other Estimators

Two choices

- Keep ML or MCMC estimation and simplify model (few random effects)
- Keep model and simplify estimator

ML versus Other Estimators

- New simple alternative: two-level, limited information WLS
 - computational demand virtually independent of number of factors/random effects
 - high-dimensional integration replaced by multiple instances of oneand two-dimensional integration
 - possible to explore many different models in a time-efficient manner
 - generalization of the Muthen (1984) single-level WLS
 - variables can be categorical, continuous, censored, combinations
 - residuals can be correlated (no conditional independence assumption)
 - model fit chi-square testing
 - can produce unrestricted level 1 and level 2 correlation matrices for **EFA** 84

Example 1: Using Two-Level WLS Estimation

	Loadings				
Item	Within (W)		Between (B)		
1. Earnings		1.09	0.75		
. Career	1 ^a	1 ^a	1 ^a		
. Consistency	2.30		0.32	1 ^a	
. Professionalism	2.25	0.41	0.31	0.27	
i. Interests	2.85		0.09	0.47	

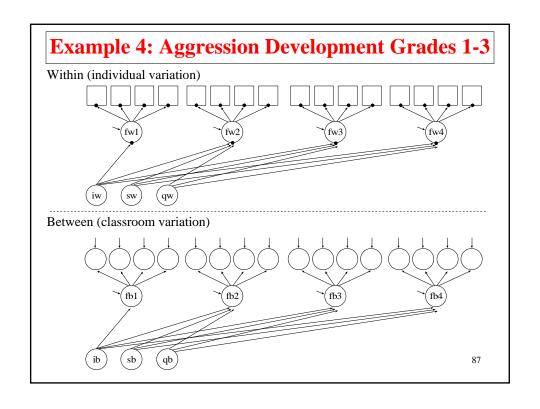
- The Grilli & Rampichini (2007) model has 2 level 1 factors and 2 level 2 factors (35 par.'s). This model is rejected by WLS: Chi-square (10) = 140.6, p = 0.0
- Model exploration using WLS estimated level 1 and level 2 correlation matrices suggests an alternative model with an unrestricted 2-factor model on level 1, a single factor on level 2, AND non-zero level 2 residual variances (39 parameters): Chi-square (6) = 9.8, p = 0.13
- The alternative model would give 8-dimensional integration with ML

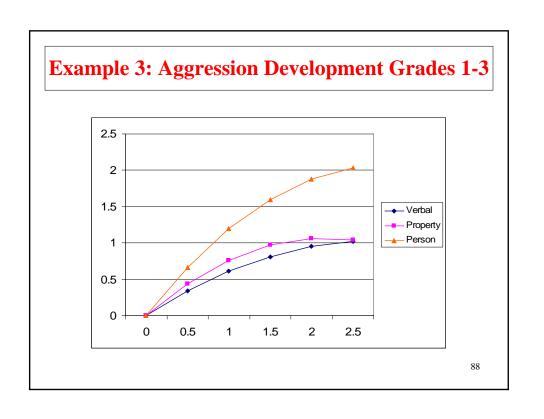
85

Example 2: Aggression EFA On Within-Level Correlation Matrix Estimated With Two-Level WLS

Within-Level Loadings

	1	2	3
Stubborn	0.07	0.70	0.05
Breaks Rules	0.25	0.31	0.37
Harms Others	0.52	0.16	0.27
Breaks Things	0.84	0.16	-0.01
Yells at Others	0.15	0.64	0.13
Takes Others' Property	0.57	0.00	0.37
Fights	0.20	0.21	0.63
Harms Property	0.73	0.21	0.10
Lies	0.48	0.28	0.24
Talks Back to Adults	0.29	0.71	0.23
Teases Classmates	0.11	0.19	0.62
Fights With Classmates	0.10	0.31	0.63
Loses Temper	0.12	0.75	0.04





References

(To request a Muthén paper, please email bmuthen@ucla.edu.)

Cross-sectional Data

- Asparouhov, T. (2005). Sampling weights in latent variable modeling. <u>Structural Equation Modeling</u>, 12, 411-434.
- Chambers, R.L. & Skinner, C.J. (2003). <u>Analysis of survey data</u>. Chichester: John Wiley & Sons.
- Goldstein, H. & Browne, W.J. (2005). Multilevel factor analysis model for continuous and discrete data. In A. Maydeu-Olivares & J.J. McArdle (eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp.453-475). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
- Grilli, L. & Rampichini, C. (2007). Multilevel factor models for ordinal variables. <u>Structural Equation Modeling</u>, 14, 1-25.
- Harnqvist, K., Gustafsson, J.E., Muthén, B. & Nelson, G. (1994). Hierarchical models of ability at class and individual levels. <u>Intelligence</u>, 18, 165-187. (#53)
- Heck, R.H. (2001). Multilevel modeling with SEM. In G.A. Marcoulides & R.E. Schumacker (eds.), <u>New developments and techniques in structural equation modeling</u> (pp. 89-127). Lawrence Erlbaum Associates.

89

References (Continued)

- Hox, J. (2002). <u>Multilevel analysis. Techniques and applications</u>. Mahwah, NJ: Lawrence Erlbaum.
- Kaplan, D. & Elliott, P.R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. <u>Structural Equation Modeling: A Multidisciplinary Journal</u>, 4, 1-24.
- Kaplan, D. & Ferguson, A.J (1999). On the utilization of sample weights in latent variable models. <u>Structural Equation Modeling</u>, 6, 305-321.
- Kaplan, D. & Kresiman, M.B. (2000). On the validation of indicators of mathematics education using TIMSS: An application of multilevel covariance structure modeling. <u>International Journal of Educational Policy</u>, <u>Research</u>, and <u>Practice</u>, 1, 217-242.
- Korn, E.L. & Graubard, B.I (1999). <u>Analysis of health surveys</u>. New York: John Wiley & Sons.
- Kreft, I. & de Leeuw, J. (1998). <u>Introducing multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.
- Larsen & Merlo (2005). Appropriate assessment of neighborhood effects on individual health: Integrating random and fixed effects in multilevel logistic regression. <u>American Journal of Epidemiology</u>, 161, 81-88.
- Longford, N.T., & Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581-597. (#41)

References (Continued)

- Ludtke Marsh, Robitzsch, Trautwein, Asparouhov, Muthen (2007). Analysis of group level effects using multilevel modeling: Probing a latent covariate approach. Submitted for publication.
- Muthén, B. (1989). Latent variable modeling in heterogeneous populations. <u>Psychometrika</u>, 54, 557-585. (#24)
- Muthén, B. (1990). Mean and covariance structure analysis of hierarchical data. Paper presented at the Psychometric Society meeting in Princeton, N.J., June 1990. UCLA Statistics Series 62. (#32)
- Muthén, B. (1991). Multilevel factor analysis of class and student achievement components. <u>Journal of Educational Measurement</u>, 28, 338-354. (#37)
- Muthén, B. (1994). Multilevel covariance structure analysis. In J. Hox & I. Kreft (eds.), Multilevel Modeling, a special issue of <u>Sociological Methods & Research</u>, 22, 376-398. (#55)
- Muthén, B., Khoo, S.T. & Gustafsson, J.E. (1997). Multilevel latent variable modeling in multiple populations. (#74)
- Muthén, B. & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (ed.), <u>Sociological Methodology 1995</u>, 216-316. (#59)
- Neale, M.C. & Cardon, L.R. (1992). <u>Methodology for genetic studies of twins and families</u>. Dordrecth, The Netherlands: Kluwer.

q

References (Continued)

- Patterson, B.H., Dayton, C.M. & Graubard, B.I. (2002). Latent class analysis of complex sample survey data: application to dietary data. <u>Journal of the</u> <u>American Statistical Association</u>, 97, 721-741.
- Prescott, C.A. (2004). Using the Mplus computer program to estimate models for continuous and categorical data from twins. <u>Behavior Genetics</u>, 34, 17-40.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models: Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Skinner, C.J., Holt, D. & Smith, T.M.F. (1989). <u>Analysis of complex surveys</u>. West Sussex, England, Wiley.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis. An introduction to basic and advanced multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.
- Stapleton, L. (2002). The incorporation of sample weights into multilevel structural equation models. <u>Structural Equation Modeling</u>, 9, 475-502.
- Vermunt, J.K. (2003). Multilevel latent class models. In Stolzenberg, R.M. (Ed.), <u>Sociological Methodology</u> (pp. 213-239). New York: American Sociological Association.

References (Continued)

Longitudinal Data

- Choi, K.C. (2002). Latent variable regression in a three-level hierarchical modeling framework: A fully Bayesian approach. Doctoral dissertation, University of California, Los Angeles.
- Khoo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. <u>Multivariate applications in substance use research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 43-78. (#79)
- Masyn, K. E. (2003). Discrete-time survival mixture analysis for single and recurrent events using latent variables. Doctoral dissertation, University of California, Los Angeles.
- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed.) <u>Sociological Methodology</u> (pp. 453-480). Boston: Blackwell Publishers.
- Muthén, B. (1997). Latent variable growth modeling with multilevel data. In M. Berkane (ed.), <u>Latent variable modeling with application to causality</u> (149-161), New York: Springer Verlag.
- Muthén, B. & Masyn, K. (in press). Discrete-time survival mixture analysis. Journal of Educational and Behavioral Statistics, Spring 2005.

93

References (Continued)

- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications. Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis</u>. An introduction to basic and advanced multilevel modeling. Thousand Oakes, CA: Sage Publications.
- Seltzer, M., Choi, K., Thum, Y.M. (2002). Examining relationships between where students start and how rapidly they progress: Implications for conducting analyses that help illuminate the distribution of achievement within schools. CSE Technical Report 560. CRESST, University of California, Los Angeles.

General

Mplus Analysis

- Asparouhov, T. & Muthén, B. (2003a). Full-information maximum-likelihood estimation of general two-level latent variable models. In preparation.
- Asparouhov, T. & Muthén, B. (2003b). Maximum-likelihood estimation in general latent variable modeling. In preparation.
- Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81-117.

References (Continued)

Muthén, B. & Asparouhov, T. (2003b). Advances in latent variable modeling, part II: Integrating continuous and categorical latent variable modeling using Mplus. In preparation.

Numerical Integration

Aitkin, M. A general maximum likelihood analysis of variance components in generalized linear models. <u>Biometrics</u>, 1999, 55, 117-128.

Bock, R.D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. <u>Psychometrika</u>, 46, 443-459.