
How MERGE Really Works

Bob Virgile
Robert Virgile Associates, Inc.

Overview 3. Length

Do your MERGEs produce unexpected results? Three
basic DATA step concepts resolve the complexities of
MERGE: compile and execute, the Program Data
Vector, and data movement among various storage
locations. These concepts apply to all DATA steps, not
just those using MERGE. This paper examines these
key issues in general and then applies them specifically
to the MERGE process. Examples illustrate trickier
aspects of MERGE as well as techniques to code
around the pitfalls.

Three Key Concepts

All SAS® DATA steps employ three key concepts:

 1. Compile and execute.¹ The SAS software
compiles the statements within the DATA step,
and performs any required set-up work for
each statement. Then, the software executes
the programming statements for each
observation.

 2. The Program Data Vector (PDV). As part of
the compilation process, the software sets up
storage locations in memory to hold the current
values of all variables.

 3. Data movement. As the DATA step executes,
values are placed into the PDV and later
copied from the PDV to output SAS data sets.

The details of the internal workings of the DATA step
are well documented in the literature.² The key
concepts are reviewed here, with special emphasis on
topics related to MERGE.

Compile and Execute

All DATA steps are compiled in their entirety before
being executed. The compilation process defines all
variable attributes, including:

 1. Name

 2. Type

 4. Label

 5. RETAIN vs. reinitialize

 6. KEEP/DROP

 7. Initial value

 8. Format/Informat

For example, this program sets up storage space for
the new variable TYPE during the compilation process:

 DATA PROBLEM;
 SET OLD;
 IF SEX=’M’ THEN TYPE=’MALE’;
 ELSE TYPE=’FEMALE’;

A problem arises because TYPE's length is determined
by the first DATA step statement capable of defining the
length:

 IF SEX=’M’ THEN TYPE=’MALE’;

Thus TYPE receives a length of 4 before any data has
been read from OLD. The order of the data in OLD is
irrelevant to the length of TYPE. The first observation
in OLD (in fact, all observations) may contain SEX='F',
but TYPE will always have a length of 4.

On the other hand, programs can take advantage of the
distinct compilation phase in many ways. For example,
the following program might be useful when entering
data via SAS/FSP®:

 DATA YOUR.DATA;
 STOP;
 SET MY.DATA;

In compiling the SET statement, the program reads the
header information from MY.DATA, defining all
variables. Next, the program executes, and hits the
STOP statement. The DATA step is therefore over,
and YOUR.DATA contains zero observations, with all
variables defined exactly as they exist in MY.DATA.
Therefore, data entry via SAS/FSP can begin on
YOUR.DATA using the same screens used for
MY.DATA. The actual program or programs which
created MY.DATA are not needed to create
YOUR.DATA.

Here is another example which takes advantage of the
distinct compilation phase:³

 DATA _NULL_;
 PUT ’TOTAL OBS IS ’ TOTOBS;
 STOP;
 SET DISK.SASDATA NOBS=TOTOBS;

When compiling the SET statement the software can
access the header information for DISK.DATASET,
including the total number of observations in the data
set. The software creates TOTOBS and initializes it
with that total number of observations. That value is
available to the PUT statement without reading any 2ND: _N_=1 X=110
data values.

Next, consider the execution phase of the DATA step.
Some of the important concepts are:

 1. Statements which read data (INPUT, SET,
MERGE, UPDATE) are executable. They are
not merely labels that identify the source of the
data. For example, the SET statement means
"go out to this data set and read in an
observation." Executable statements may
appear anywhere in the DATA step, and do not
have to be placed right after the DATA
statement.

 2. The DATA step continually loops through all its
statements. The typical way out of this loop
(i.e., the typical ending to a DATA step) is for a
SET or INPUT statement to fail because there
are no more observations left to read.

 3. Variables read with a SET, MERGE, or
UPDATE statement are retained. That is, their
values are not reinitialized to missing just
because the program passes through the
DATA statement and outputs an observation.

The DATA steps below illustrate these concepts in
action.

 DATA TEMP1;
 PUT ’1ST: ’ _N_= X=;
 INPUT X;
 PUT ’2ND: ’ _N_= X=;
 X=X*10;
 PUT ’3rd: ’ _N_= X=;
 CARDS;
 11
 22
 ;

 DATA TEMP2;
 PUT ’1ST: ’ _N_= X=;
 SET TEMP1;
 PUT ’2ND: ’ _N_= X=;
 X=X*10;

 PUT ’3rd: ’ _N_= X=;

In comparing the messages generated, notice how SET
statement variables are retained.

 1ST: _N_=1 X=.
 2ND: _N_=1 X=11
 3RD: _N_=1 X=110
 1ST: _N_=2 X=.
 2ND: _N_=2 X=22
 3RD: _N_=2 X=220
 1ST: _N_=3 X=.

 1ST: _N_=1 X=.

 3RD: _N_=1 X=1100
 1ST: _N_=2 X=1100
 2ND: _N_=2 X=220
 3RD: _N_=2 X=2200
 1ST: _N_=3 X=2200

Both DATA steps generate seven messages, not six.
Neither step ends until a read statement fails because
there are no more incoming data.

Program Data Vector

The PDV is a set of storage locations set up in memory,
holding the current value of all variables. Programming
statements modify values stored in the PDV, not values
stored in SAS data sets. For example, the assignment
statement below operates on values stored in the PDV
(as opposed to values stored in OLD):

 DATA TOTALS;
 SET OLD;
 CUPS=2*PINTS + 4*QUARTS;

The program uses the PDV by:

 1. Copying observations from OLD into the PDV.

 2. Computing CUPS based on the PDV's values
for PINTS and QUARTS.

 3. Returning to the DATA statement and
outputting the current record. This means
copying the contents of the PDV (including the
computed value for CUPS) to the output data
set TOTALS.

For the moment, the key concepts are that the PDV
holds the current values for all variables, and that data
modification statements affect only values stored in the
PDV.

Understanding the PDV clears up otherwise mysterious
areas of the SAS software. Consider, for example, the
position of these LENGTH statements:

 DATA NEW;
 LENGTH CITY $ 20;
 SET OLD;
 LENGTH ZIPCODE 4;

To change lengths in NEW, the LENGTH statement for
the character variable must come before the SET
statement but the LENGTH statement for the numeric
variable may appear anywhere in the DATA step. The
difference is due to the fact that the PDV stores all
numerics with a length of 8, regardless of the length in
the input or output data sets. DATA step compilation
gives CITY a length of 20 in the PDV, and ZIPCODE a
length of 8. Only when observations are output, during
the subsequent execution phase, does the length of
ZIPCODE get truncated to 4. The length of character
variables is the same in the PDV and any output data
sets.

The role of the PDV clears up confusing combinations
of KEEPs, DROPs, and RENAMEs. All KEEPs,
DROPs, and RENAMEs on a DATA statement refer to
variable names in the PDV. All KEEPs, DROPs, and
RENAMEs on a SET, MERGE, or UPDATE statement
refer to variable names in the source data set. So
when will the following program work?

 DATA TOTALS (RENAME=(QUARTS=QTS));
 SET ALL (DROP=CUPS
 RENAME=(VAR3=VAR4));
 CUPS=2*PINTS + 4*QUARTS;

These situations would create errors:

 * ALL contains QTS or VAR4.

 * ALL does not contain VAR3.

 * ALL does not contain CUPS.

(The DKRICOND option can control whether the last
two items return errors, warnings, or no message at
all.) These are not problems:

 * CUPS is dropped, and later assigned a value.

 * QUARTS is used to compute CUPS, but is
later renamed.

All three concepts -- compile and execute, the PDV,
and data movement -- are interrelated. Figure 1 shows
the use of the PDV in the previous program, and
introduces the third key concept: data movement.

Data Movement

As the previous program executes, these steps take

place for each observation:

 1. Copy all variables except CUPS from ALL to
the PDV. When copying VAR3, copy it to the
slot labeled VAR4 in the PDV.

 2. Calculate and insert (into the PDV) a value for
CUPS based on the values of PINTS and
QUARTS (in the PDV).

 3. Output the observation by copying variables
from the PDV to the output data set TOTALS.
When copying QUARTS, copy it to the slot
labeled QTS in TOTALS.

 4. Set CUPS to missing. (Steps 3 and 4 take
place at the DATA statement.)

Understanding data movement will let you write more
efficient programs as well. Compare these two DATA
steps:

 DATA TOTALS;
 SET OLD (DROP=VAR5-VAR20);
 CUPS=2*PINTS + 4*QUARTS;

 DATA TOTALS (DROP=VAR5-VAR20);
 SET OLD;
 CUPS=2*PINTS + 4*QUARTS;

Figure 1
The PDV and the Flow of Data

 OLD CPU TOTALS
 ================
 | |
 | PDV |
 ============ ------------ ============
CUPS		CUPS	--->	CUPS
------------		------------		------------
VAR3	--->	VAR4	--->	VAR4
------------		------------		------------
PINTS	--->	PINTS	--->	PINTS
------------		------------		------------
QUARTS	--->	QUARTS	--->	QTS
------------		------------		------------
Other	--->	Other	--->	Other
Variables		Variables		Variables
 ============ |------------| ============
 | Automatic |
 | Variables |
 | ------------ |
 | |
 ================

Figure 2
The PDV in a MERGE

 CPU
 ================
 VACATION | | BOTH
 | PDV |
 ============ ------------ ============
LOCATION	--->	LOCATION	--->	LOCATION
------------		------------		------------
NAME	--->			
============	NAME	--->	NAME	
============				
NAME	--->			
------------		------------		------------
AGE	--->	AGE		
 ============ |------------| | AGE |
 | DUMMY |--->| |
 AGEDATA ------------ ============
 | Automatic |
 | Variables |
 | ------------ |
 | |
 ================

The PDV for the second program contains
VAR5-VAR20, while the PDV for the first program does
not. The second program performs extra work, copying
those 16 variables from ALL into the PDV for each
observation.

At Last, MERGE

The MERGE process employs the concepts above, as
well as containing a few of its own characteristics.
Consider the following data set and program.

AGEDATA contains one observation per name.

NAME AGE

ALICE 38

BOB 49

CAROL 55

TED 40

VACATION contains a varying number of observations
per NAME:

NAME LOCATION

ALICE ARUBA

BOB BERMUDA

BOB BIMINI

TED TAHITI

And the program:

 DATA BOTH;
 LENGTH NAME $ 5 LOCATION $ 8;
 PUT ’BEFORE: ’ _N_= NAME= AGE= /
 @9 LOCATION= COUNT= X=;
 MERGE AGEDATA VACATION;
 BY NAME;
 COUNT + 1;
 X=5;
 PUT ’AFTER: ’ _N_= NAME= AGE= /
 @9 LOCATION= COUNT= X=;

This program generates the following messages:

BEFORE: _N_=1 NAME= AGE=.
 LOCATION= COUNT=0 X=.
AFTER: _N_=1 NAME=ALICE AGE=38
 LOCATION=ARUBA COUNT=1 X=5
BEFORE: _N_=2 NAME=ALICE AGE=38
 LOCATION=ARUBA COUNT=1 X=.
AFTER: _N_=2 NAME=BOB AGE=49
 LOCATION=BERMUDA COUNT=2 X=5
BEFORE: _N_=3 NAME=BOB AGE=49
 LOCATION=BERMUDA COUNT=2 X=.

AFTER: _N_=3 NAME=BOB AGE=49
 LOCATION=BIMINI COUNT=3 X=5
BEFORE: _N_=4 NAME=BOB AGE=49
 LOCATION=BIMINI COUNT=3 X=.
AFTER: _N_=4 NAME=CAROL AGE=55
 LOCATION= COUNT=4 X=5
BEFORE: _N_=5 NAME=CAROL AGE=55
 LOCATION= COUNT=4 X=.
AFTER: _N_=5 NAME=TED AGE=40
 LOCATION=TAHITI COUNT=5 X=5
BEFORE: _N_=6 NAME=TED AGE=40
 LOCATION=TAHITI COUNT=5 X=.

Notice the timing of a few key actions:

 1. _N_ is incremented each the the DATA step
leaves the DATA statement.

 2. COUNT is initially 0, and is always retained

(never reinitialized).

 3. Variables read by the MERGE statement

(NAME, AGE, and LOCATION) are retained.
They are initially missing, and are reinitialized
at the MERGE statement, whenever the
program encounters a new value for the BY
variable(s).

 4. X is reinitialized to missing for each

observation, at the DATA statement.

Both the general DATA step processes described
above, as well as the MERGE concepts, are important
to understanding how MERGE works. However, when
programmers begin to apply these concepts, in practice
MERGE may produce unwanted results. Most of the
time, these results occur in match-merges which either
(1) contain a common variable other than the BY
variable(s), or (2) are many-to-one MERGEs. The rest
of this paper illustrates MERGEs which contain typical
problems and shows programming fixes to overcome
them.

The first problem area involves common variables other
than the BY variable(s). The merged data set contains
the last value read from either source data set. In a
one-to-one MERGE this means the value from the last
data set mentioned in the MERGE statement. But in a
many-to-one MERGE the value may come from either
data set. Let’s once again merge AGEDATA and
VACATION:

 NAME AGE

 ALICE 70

 BOB 70

 CAROL 70

 TED 70

 NAME LOCATION AGE NAME LOCATION

 ALICE ARUBA 38

 BOB BERMUDA 35

 CAROL CANCUN 55

 TED TIMBUKTU 60

 TED TIPPERARY 60

 TED TOLEDO 60

The results depend on the order of the data sets in the
MERGE statement.

 DATA BOTH;
 MERGE AGEDATA VACATION
 /* or VACATION AGEDATA */;
 BY NAME;

produces one of these results:

 NAME LOCATION AGE

 ALICE ARUBA 38

 BOB BERMUDA 35

 CAROL CANCUN 55

 TED TIMBUKTU 60

 TED TIPPERARY 60

 TED TOLEDO 60

 ALICE ARUBA 70

 BOB BERMUDA 70

 CAROL CANCUN 70

 TED TIMBUKTU 70

 TED TIPPERARY 60
 IF NAME=’BOB’ AND
 TED TOLEDO 60

The last two AGEs are 60, not 70, because that was the
last value read from any of the merged SAS data sets.
The AGE of 70 is NOT reread, merely retained in the
PDV. When merging in the last two observations, the
value of AGE (60) replaces the current value in the
PDV.

In many-to-one MERGEs, be careful when modifying
variables which come from the "one" data set.
Consider one more variation for AGEDATA and
VACATION:

 NAME AGE

 ALICE 38

 BOB 49

 CAROL 55

 TED 40

 ALICE ARUBA

 ALICE ARGENTINA

 BOB BAHAMAS

 BOB BERMUDA

 BOB BIMINI

 CAROL CANCUN

 TED TIMBUKTU

The merge BY NAME is straightforward for this
many-to-one situation. But suppose the objective were
a little more complex, involving some data manipulation
to AGE. In particular, suppose BOB’s last vacation was
to BERMUDA, and he turned 50 just before he left.
The desired result would be:

 NAME AGE LOCATION

 ALICE 38 ARUBA

 ALICE 38 ARGENTINA

 BOB 49 BAHAMAS

 BOB 50 BERMUDA

 BOB 49 BIMINI

 CAROL 55 CANCUN

 TED 40 TIMBUKTU

Because AGE is NOT being reread from AGEDATA,
but its value is merely being retained in the PDV, the
following program will not work:

 DATA BOTH;
 MERGE AGEDATA VACATION;
 BY NAME;

 LOCATION=’BERMUDA’ THEN AGE=50;

The result is that AGE remains 50 for BIMINI, not just
for BERMUDA. To get around this problem, it is
necessary to create a new variable:

 DATA BOTH (DROP=AGE
 RENAME=(DUMMY=AGE));
 MERGE AGEDATA VACATION;
 BY NAME;
 IF NAME=’BOB’ AND
 LOCATION=’BERMUDA’ THEN DUMMY=50;
 ELSE DUMMY=AGE;

Figure 2 illustrates the MERGE process for this
program.

Finally, consider a combination example where both
situations exist: a many-to-one MERGE where both
incoming data sets contain a common variable (not the
BY variable).

An existing SAS data set MASTER contains many
records for each STATE, but does not contain the
variable STATE. The objective is to add the STATE
variable, based on either of the existing variables
COUNTY or ZIPCODE.

Two separate SAS data sets may be able to supply the
STATE variable: COUNTIES contains COUNTY and
STATE, while ZIPCODES contains three-digit zipcode
and STATE. Both data sets are incomplete sources of
STATE data, and the information in ZIPCODES is more
reliable than the information in COUNTIES. So the
plan of action is: PROC SORT DATA=ADDSTATE;

 1. Add to MASTER a variable holding the first
three characters of ZIPCODE.

 2. Sort MASTER and ZIPCODES by shortened
ZIP, and MERGE them to get some STATE
values added to MASTER.

 3. If COUNTIES contains multiple occurrences of
a COUNTY, delete all of them. (For example,
Suffolk County would appear for both New
York and Massachusetts.)

 4. MERGE MASTER and COUNTIES by
COUNTY. However, if a legitimate STATE
value had already been retrieved from
ZIPCODES, disregard the STATE from
COUNTIES.

In the program for step 1, notice how the LENGTH
statement eliminates the need to use a SUBSTR
function:

 DATA MASTER;
 SET MASTER;
 LENGTH ZIP3 $ 3;
 ZIP3=ZIPCODE;

Sorting/merging in step 2 is straightforward:

 PROC SORT DATA=MASTER;
 BY ZIP3;

 PROC SORT DATA=ZIPCODES;
 BY ZIP3;
 *CONTAINS ZIP3 + STATE ONLY;

 DATA ADDSTATE;
 MERGE MASTER (IN=INMAST)
 ZIPCODES;
 BY ZIP3;
 IF INMAST;

As is deleting duplicate counties in step 3:

 PROC SORT DATA=COUNTIES;
 BY COUNTY;

 *CONTAINS COUNTY + STATE ONLY;

 DATA UNIQUE;
 SET COUNTIES;
 BY COUNTY;
 IF FIRST.COUNTY AND LAST.COUNTY;

Step 4 becomes tricky. The idea is to MERGE BY
COUNTY and replace only the missing STATE values.
Because of the previous MERGE, both data sets now
contain STATE. It becomes necessary to RENAME
one of the incoming variables:

 BY COUNTY;

 DATA ADDSTATE (DROP=DUMMY);
 MERGE ADDSTATE (IN=INMAST)
 UNIQUE (RENAME=(STATE=DUMMY));
 BY COUNTY;
 IF INMAST;
 IF STATE=’ ’ THEN STATE=DUMMY;

The author welcomes comments and questions about
this paper, as well as suggestions for future
papers. Feel free to call or write:

Bob Virgile
Robert Virgile Associates, Inc.
3 Rock Street
Woburn, MA 01801
(781) 938-0307
virgile@mediaone.net

Notes:

SAS and SAS/FSP are registered trademarks of SAS
Institute Inc., Cary, NC.

¹Version 6 of SAS software permits storage of
compiled DATA step code.

²For more details, see Don Henderson's paper, "The
SAS Supervisor," published in many SUGI
proceedings.

³This is not an original program, but has appeared in
various forms in past SUGI papers.

