Getting Started with Macro
lan Whitlock, Westat

Abstract

The macro language is a powerful tool, but it can be
dangerous in the hands of the naive. This tutorial takes
the first steps in building a strong foundation to

understanding of the SASO macro facility.

Macro variables are introduced as parameters to a SAS
program. Then %INCLUDE is added, and the power of
this combination demonstrated. Macros are introduced as
a better means of packaging code, and the consequences
are explored with examples. Design issues and
understanding are emphasized.

The consequences of adding the DATA step functions
CALL SYMPUT and CALL EXECUTE to the programmer's
repertoire are considered. As an extension, very simple
PROC SQL code is introduced to make macro variables
holding lists. The power of this new tool is demonstrated
with examples.

If you restrict the use of macro to the above tools you have
a dramatically more powerful language than SAS alone
provides, and debugging is no harder than without these
tools. In this way you are prepared to step into the world
of SAS macro with the appropriate confidence that you are
the master of the language and not vice versa.

Introduction

This beginning tutorial is designed to help you get started
with using the macro facility and learning how to design
programs.

In the first section macro variables are introduced and it is
shown how to use them as parameters to a program.
Then %INCLUDE is used to turn this into a powerful
design technique which can save much time in coding and
debugging.

The next section extends the idea to using macros as
better method of packaging code than shown in the
previous section. The second example illustrates the use
of the DATA step subroutine CALL SYMPUT to
communicate between two steps of the macro.

The third section introduces the DATA step subroutine
CALL EXECUTE as method of repeatedly invoking a
macro with different parameter values.

At this point none of the traditional complexity of the macro
language has been used, hence debugging is still as
simple as it is in plain SAS. The fourth section explains
how to make macro decisions with %IF an introuduces
simple statements like %PUT, %GLOBAL and %LOCAL.
After some simple uses, a relatively hard problem is

discussed and solved while still keeping the macro code to
a minimum.

By the end you should have better ideas about designing
programs and how to use the macro facility without harm.
After some experience, you should be ready to tackle the
macro facility with a sound understanding of the basic
principles introduced in this tutorial.

Macro Variables

Let's begin with macro variables. A macro variable holds
some text as its value. It is often created with a %LET
statement. For example,

%let state = FL ;

Note that there are no quotes around the value, FL, since
all values are always text. The text is not SAS data, but
rather part of a SAS program. The variable is referenced
with an ampersand (&) in front of the name.

If text is to be recognized as part of a SAS program, then
the macro instructions must be distinguished with special
symbols. The %-sign is used to start macro instructions
and some macro objects such as macro functions. The &-
sign is used to indicate the value of a macro variable. For
example:

title "Data from &state" ;
proc print data = mstr ;

where state = "'&state" ;
run ;

Double quotes are required around the reference,
&STATE, in the WHERE statement because this is used
as a SAS literal, and so it must be quoted. The quoted
material in single quotes is treated as a single entity and
sent directly to the SAS compiler, hence that quoted
material is never seen by the macro facility and any macro
references are not resolved. Double quotes are treated
differently. They are tokens, so they go to the macro
facility along with the material inside. It is the SAS
compiler that sees double quotes as making a literal value,
not the macro facility.

Two important ideas are present in the little piece of code
shown above.

The common code problem

How can you guarantee the title reflects the
subsetting WHERE statement?

Make a macro variable to hold the text and then
reference it in each appropriate place.

The parameter problem

How can you pass control information to a block
of code so that one can change the code and the
way in which the block acts by merely changing
one value?

Make a macro variable to hold the parameter
value and then reference it in each appropriate
place.

Usually the ideas go together as two views of the same
thing.

To see the significance of the second idea, let's extend the
example a little. Suppose you have to write a program to
update a master file with survey data that is collected state
by state. You have just finished the code for Florida.

/* Update program for FL */

filename fl "c:\survey\fl.dat" ;
libname lib "c\survey" ;

data fl ;
infile fl ;
input ;
run ;

proc sort data = fl ;
by id ;
run ;

data lib.mstr ;
update lib.mstr fl ;
by id ;

run ;

title "Updated Surveys for FL™ ;

proc print data = lib.mstr ;
where state = "FL" ;

run ;

The boss approves your code, and now you are ready to
duplicate it 49 times, changing "FL" to each of the other
state abbreviations. Wait, you ask yourself, "What about
parameters? Can that idea help here?" So you try:

/* Survey state update program */
filename &st "c:\surv\&st..dat" ;
libname lib "c\surv" ;

data &st ;
infile &st
input
run ;

proc sort data = &st ;
by id ;
run ;

data lib.mstr ;
update lib.mstr &st ;
by id ;

run ;

title "Updated Surveys for &st" ;

proc print data = lib.mstr ;
where state = "'&st" ;

run ;

Now you have one parameterized program instead of 50.
But how are you going to run it? What about %INCLUDE?
Suddenly the light hits. Write a driver, i.e. a program to
manage the whole process using a %LET to control the
state and a %INCLUDE to execute the code. So you
write:

/* Survey update driver */

filename progs "c:\programs" ;
let st = AL ;

%inc progs (stateupd) ;

let st = AK ;

%inc progs (stateupd) ;

Wlet st = AZ ;

%inc progs (stateupd) ;

%let st = AR ;

%inc progs (stateupd) ;

One detail we slid over - what is that second dot in the
FILENAME statement in the state update program?

Ffilename &st "c:\surv\é&st..dat" ;

The question is - how does a reference to a macro
variable end? In the first instance a space ends the
reference since a space cannot be part of the name of the
variable. But we don't want a space in the filename. SAS
uses the dot as an optional ender to the reference and the
macro facility eats the dot as an ender. Using the dot to
end a macro variable reference is optional, but when
present, the first dot is always an ender. Thus we need
two dots, one to end the reference, &ST, and one to
separate the filename from the extension.

Using the dot as an ender means that a parameter doesn't
have to refer to a complete object. For example suppose
we have a Florida edits data set LIB.FLEDITS. We can
reference the data as

lib.&st.edits

The first dot is not an ender, because there is no
preceding reference to a macro variable, so it is in the final
value for the compiler and separates the libref from the
member name. In contrast, the second dot ends the
reference, &ST; hence it is not part of the final value for
the compiler. Consequently the compiler sees FLEDITS
as the member name.

Having seen the power of parameterization in a toy
example, let's consider a large scale real life problem. A
survey was conducted asking young people and their
parents how they perceived certain problems and how
they placed a value on those problems.

The variables are indicated in Table 1 below. A
programmer was asked to write the program for the
following cross tabs:

1. Parental evaluation versus Youth evaluation
Parental perception versus Youth perception
Parental evaluation versus Parental perception
Youth evaluation versus Youth perception
Demographic versus all of the others

a s

And correlations:
1. Parental evaluation versus Youth evaluation

2. Parental perception versus Youth perception

Parental Parental Youth Youth
Peception Evaluation JPeception Evaluation

PACASHED |PICASHED | YACASHED [YICASHED
PACIVCAR PICIVCAR |YACIVCAR |YICIVCAR
PAHIQUAL PICNTRY |YAHIQUAL |YICNTRY
PAHITECH PIHIQUAL |YAHITECH |YIHIQUAL
PALEADER PIHITECH |YALEADER |YIHITECH
PAMATURE |PIHOME YAMATURE | YIHOME
PAMENTAL PIINNOV | YAMENTAL [YIINNOV
PAPHYS PILEADER | YAPHYS YILEADER
PAPOTEN PIMATURE | YAPOTEN |YIMATURE
PAPROUD PIMENTAL |YAPROUD |YIMENTAL
PASELCON |PIPHYS YARMBOSS | YIPHYS

PASTEP PIPOTEN |YARMCOUN]YIPOTEN
PATRAIN PIPROUD |YARMCOW |YIPROUD
PAWIDE PISELCON | YARMDAD |YISELCON

YARMFARM | YISERCOM
YARMFMIL |YISERPAR
YARMFNO |YISTEP
YARMMOM | YITRAIN
YARMSTUD |YIWEEKEN
YARMTEAC |YIWIDE

YASELCON
Demographics YASTEP
YPESIM YATRAIN
E13TO24 YAWIDE
EAGE YDMARITL
ECALCAGE YEDLEV

Table 1 - Survey variables.

In this example, lists play an important role. Let's make
each list a macro variable and see how the program might

go.

%let pp =
PACASHED
PALEADER
PAPOTEN
PATRAIN

%let pi =
PICASHED
PIHITECH
PIMATURE
P1PROUD

%let yp =
YACASHED
YALEADER
YAPOTEN
YARMCOW
YARMFNO
YASELCON
YDMARITL

%let yi =
Y ICASHED
YIHITECH
Y IMATURE
Y IPROUD
YISTEP

%let dem =

PACIVCAR
PAMATURE
PAPROUD
PAWIDE ;

PICIVCAR
PIHOME

PIMENTAL
P1SELCON

YACIVCAR
YAMATURE
YAPROUD
YARMDAD
YARMMOM
YASTEP
YEDLEV ;

YICIVCAR
Y IHOME

YIMENTAL
YISELCON
YITRAIN

PAHIQUAL
PAMENTAL
PASELCON

PICNTRY
P1INNOV
PIPHYS

YAHIQUAL
YAMENTAL
YARMBOSS
YARMFARM
YARMSTUD

YATRAIN

YICNTRY
YT1INNOV
YIPHYS

Y1SERCOM
Y IWEEKEN

PAHITECH
PAPHYS
PASTEP

PIHIQUAL
PILEADER
PIPOTEN

YAHITECH
YAPHYS
YARMCOUN
YARMFMIL
YARMTEAC
YAWIDE

YIHIQUAL
YILEADER
YIPOTEN
YISERPAR
YIWIDE ;

YPESIM E13T024 EAGE ECALCAGE ;
in.survdata ;

%let data =

title2

"Parent Eval vs Youth Eval';
proc freq data = &data ;
table (&pi) * (&yi) ;

run ;

proc corr data = &data ;

var &pi

with &yi
run ;
title2

""Parent Percep
proc freq data = &data

table (&pp) * (&yp)

run ;

proc corr data = &data ;

var &pp

with &yp
run ;
title2

"Parent Eval

vs Parent

vs Youth Percep

Percep";

proc freq data = &data

table (&pi) * (&pp)
run ;

title2
"Youth Eval vs Youth Percep" ;
proc freq data = &data ;
table (&yi) * (&yp) ;
run ;

title2 "Demo vs all of the others" ;
proc freq data = &data ;

table (&dem) * (&pi &pp &yi &yp) ;
run ;

Now why was the data set name made a parameter?
Before the job could be run, the specifications changed.
Do all of the above for three data sets:

Black and Hispanic

Other
All

Here is the driving program:

/* pgml.sas - see revised memo 1 */
libname in "c:\surv\dat® ;
filename pgm "c:\surv\pgm';

*** Jist macro variables as above ***

data blckhisp othr ;
set In.survdata ;
if race in (1 2) then
output blckhisp ;
else output othr
run ;

title "Survey - all” ;
%let data = in.survdata ;

%inc pgm (pgm2) ;

title "Survey - Black/Hispanic" ;
%let data = blckhisp ;

%inc pgm (pgm2) ;

title "Survey - Other" ;
%let data = othr ;

%inc pgm (pgm2) ;

When the code above is executed, the log does not show
the resolved value of the macro variables. To see these
values, use the system option SYMBOLGEN. Later on,
the option may generate too much information, but for
SAS programs with just a few macro variable references, it
is appropriate.

By now you should begin to see the power of combining
two simple ideas - macro variables with %INCUDE to

package a program in parts so that some of the parts may
be reused.

Macros

The combination of %INCLUDE and macro variables is
powerful, but there are problems:

The interface between parts is not absolutely
clear.

The macro variables are known throughout the
entire program and may be changed incorrectly
in any part.

The system soon becomes cumber-some when
there are many parts, or the nesting of
%INCLUDES exceeds one level.

All of the above tend to limit the size and complexity of
programs that can be built with these tools. What we need
is a better method of packaging code than the %INCLUDE
statement can provide.

The macro concept provides that better tool. A macro is a
unit of code with parameters. A macro begins with the
%MACRO statement, and ends with a %MEND statement.
For example, let's take our first problem of insuring that a
print from PROC PRINT includes a title naming the DATA
set. The macro is called TESTPRNT because the
problem is particularly important for printing data when
testing a program. Imagine trying to study five unlabeled
or incorrectly labeled prints of critical data sets in some
large program. The macro has three parameters DATA
naming the data set, OBS specifying how many records to
print, and TL specifying the title line for the print.

%macro testprnt
(data = é&syslast ,

obs = 90 ,
tl =3
) s
title&tl

"Data = &data (obs=&obs)" ;
proc print
data = &data (obs=&obs) ;
run ;
title&tl ;

%mend testprnt ;

The values to the right of each parameter provide default
values that need not be specified when the macro is
invoked, if they are acceptable.

As the code is read, everything is stored away for future
use. SYSLAST is an automatic macro variable created by
the SAS system whose value is the last created SAS data
set. Note that the value of SYSLAST is not stored at this

time, it is the reference to SYSLAST that is stored. In the
same way any references, &DATA and &OBS, within the
macro are not resolved at this time. The time of storing a
macro is known as macro compile time. It is the time the
code is read from the %MACRO statement down to the
corresponding %MEND statement. No SAS code is
executed at this time. The code is simply stored for future
reference or invocation.

In general it is a mistake to put one macro definition inside
another. Remember the inner macro is not compiled
when the outer macro is compiled, since resolution does
not take place at this time. Instead, it is compiled each
time the outer macro is executed.

The macro can then be invoked by placing a %-sign in
front of the macro name and following it with parentheses
plus any parameters that will not take their default values.
For example,

%testprnt ()

Y%testprnt (data = mydata)
Y%testprnt (data = final ,
obs = 500 ,
tl =5)

are all legitimate invocations of TESTPRNT. Note that
there are no semi-colons at the end of a macro invocation.
If there were a semi-colon, it would be sent to the SAS
compiler as a semi-colon. If there were no preceding SAS
statement without a semi-colon, then it would be treated
as a null statement, which might be harmful (for example
when it splits an IF statement from and ELSE statement).

At the time of invocation, all references are resolved, and
the PROC PRINT code is generated and sent to the SAS
supervisor for execution. This time is known as macro
execution time. It is exceedingly important to understand
the difference between macro compile time, when the
code is simply stored away for future use, and macro
execution time, when SAS code is generated.

There are several features of the design of this simple
macro that should be noted. The parameter names DATA
and OBS are carefully chosen to match the SAS use of
these terms. The default value for DATA is chosen to
match the SAS defaults. These two features make it
much easier to use the macro. You can already guess at
the parameter names and their default values. In the case
of OBS, | did not choose MAX for the default because
typically test prints are limited. Hence it was more
important find a default natural to the purpose of the
macro than to dogmatically choose the SAS default, MAX.
For the same reason TL=1 was not chosen. Typically a
program has at least one title line used throughout the
program and possibly more used for each section of the
program. It would be most annoying to have to reinstate
these titles every time the macro is called; hence TL=1 is a

poor choice. TL = 3 is a good choice because an extra
blank line is not too bad, and TITLE3 is far enough down
that there should be few occasions when it is not
acceptable. Another important point is the line after the
PROC PRINT clearing the extra title line. (With the use of
SCL functions in the macro facility, it is possible to
eliminate the TL parameter by determining the first
available title line; but this technique is beyond a
beginning tutorial on the macro facility.)

The choice of parameters is important for flexibility and
ease of use, but it should also document the interface
between the macro and the rest of the program. In other
words, it is a contract - if the program invoking the macro
provides the required parameter values, then the macro
will generate the code to complete the assigned task. A
big mistake, made by many programmers, is to leave
secret understandings not spelled out in the parameter list.
Some programmers even use no parameters leaving all
communication to global macro variables.

For debugging macro execution, it is important to use the
system option, MPRINT. This option will show the SAS
code generated by the macro. Now there is no need for
the option SYMBOLGEN because the generated resolved
code is shown by MPRINT.

Since we have used nothing but SAS code and
parameters, debugging is not any harder than debugging
SAS code. If there is a syntax error, it is because we
wrote the wrong SAS code or because we have the wrong
value for a parameter, and that value is showing in the
code.

Parameters should be carefully chosen to provide useful
flexibility with good defaults for simple use. The macro
itself should be chosen to handle an important task.
Typically the task occurs repeatedly in a project or large
program.

As a second example, consider the common problem of
making a stratified random sample from a frame; i.e.,
given a SAS data set with a stratum variable, make a
random subset so that each value of the stratum variable
is equally represented in the sample.

What should the parameters be? First, we need DATA to
name the input DATA set. Second, we need to know the
name of the stratum variable. Third, we need a means of
conveying the sample size. Fourth, we need to know the
name of the output data set. What about the sampling
process? Should it be repeatable? Perhaps we should
also provide a seed parameter for RANUNI. What should
the seed be? Zero is the default for RANUNI, so it should
be our default.

The process consists of sorting by the stratum variable,
counting each value, and then merging these counts with
the sorted file to randomly choose the subsets. The

sampling step consists of the process for each stratum
value:

Start with a count, _FREQ_ of the available
records for a stratum and a count, RNDWANT, of
the subsample for this stratum.

Generate a uniformly random number between 0
and 1 for each record and choosing the record
whenever the number generated is smaller than
the ratio, RNDWANT/_FREQ_

Reduce _FREQ_ by one and if the record is
chosen, then also reduce RNDWANT by one.

Here is an implementation of the plan with an extra step to
provide a random seed when the default SEED = 0 is
used.

%macro rndsamp
(data = &syslast ,
out = _DATA_ ,
stratum = stratum ,
rate = 0.1 ,
seed = 0) ;

proc sort data=&data
out=rndtemp;
by &stratum ;
run ;

proc summary data=rndtemp nway;
class é&stratum ;
output out = rndcnt ;

run ;

data _null_ ;
if &seed = 0 then
do ;
seed = int (1000000000000
* ranuni (&seed))

seed

mod (seed,
1000000000) ;
call symput ("seed” ,
put (seed, 9.));
end ;
else
seed = &seed ;
put "NOTE: Sampling based on™
seed = ;
run ;

data &out (drop=rndwant
freq);
merge rndtemp
rndcnt (keep=&stratum
_freq))

by &stratum ;
if first_&stratum then
do ;
rndwant =
ceil (&rate * _freq)) ;
end ;
if ranuni (&seed) <
rndwant/_freq_ then
do ;
output &out ;
rndwant +(-1) ;
end ;
freq + (-1) ;
run ;

%mend rndsamp ;

A new technique for assigning a value to a macro variable
is required here because we wish to allow the user to be
able to repeat a run made with SEED = 0. First we
generate a seed based on 0, write a message on the log
so the user can use this seed again, and then we have to
communicate the seed value to the main DATA step
creating the sample.

CALL SYMPUT is a DATA step subroutine that interacts
with the macro facility. Given a macro variable name, and
a value, the subroutine causes the macro variable to be
assigned the value. Note that %LET is not good enough
because a %LET would act during the compilation of the
DATA step and not during its execution the way CALL
SYMPUT does. In our case the new seed value is not
known at compile time.

CALL SYMPUT provides a new way to turn data into code.
Thus it provides an important tool in writing flexible
programs.

Repetition

Often one wants to do something repeatedly. The macro
facility does provide a %DO-loop instruction, but we are
looking for ways to avoid the complexity of the full macro
language. Often these loops are based on the values of a
variable in a SAS data set. Here it is particularly helpful to
use the DATA step/macro interface function, CALL
EXECUTE.

For example, suppose we wish to make test prints of
every SAS data set in a library using the macro,
TESTPRNT, developed above. SASHELP.VTABLE
provides a SAS view with the members of each SAS
library, so we have the looping situation mentioned. For
each MEMNAME value where LIBNAME is restricted to
the given library, we want to call % TESTPRNT. We use a
macro, LOOK, to handle this task. LOOK should have a
parameter, LIB, to specify the library, a parameter OBS, to

specify how many observations should be printed, and a
parameter, TL, to specify where the data set title can be
written. For each given member, we want to call

Y%testprnt (data = &lib._member,
obs = &obs,
tl = &tl)

The parameter OBS is used both in LOOK and
TESTPRNT. The "OBS" on the left side is the TESTPRNT
parameter, and it is assigned the value that &OBS
(reference to the LOOK parameter) has. When
communicating parameter values to a helping macro, it is
often necessary to obtain these values from parameters in
the calling macro, and it is easiest to use the same names
because they refer to the same ideas although they are
different parameters owned by different macros.

CALL EXECUTE passes a character string (limited to 200
bytes in Version 6) to the macro facility for immediate
execution during the DATA step. Typically the macro
facility generates SAS code which is then dumped into the
input stack for SAS execution when the DATA step ends.
In our case the character string is the invocation of
%TESTPRNT and it consists of literal values
concatenated with DATA step variable values. Here is the
code.

%macro look (lib = work ,
obs = 90 ,
tl =3) ;
%let lib = %upcase(&lib) ;

data _null_ ;
set sashelp.vtable ;

where libname = "&lib" ;
call execute
("%testprnt - 11
" (data="]| memname ||
" , Obs=&obs" 11
" , tI=&th)”
)
run ;

%mend look ;

The macro function %UPCASE is used to create a
standard basis of comparison on uppercase letters.
Double quotes are used in the character strings containing
parameters of LOOK so that the macro references, &OBS
and &TL will be evaluated once during the compilation of
the DATA step. Single quotes around the macro
reference, % TESTPRNT, are essential. Without them the
macro would be invoked once during the DATA step
compile. With them, an invocation is passed to the macro
facility via CALL EXECUTE each time an observation
passes the WHERE statement during execution of the
DATA step. From the point of view of the compiler, the
character string is concatenated character literals with the

exception of the variable, MEMBER, coming from
SASHELP.VTABLE.

There are two more important points in the use of CALL
EXECUTE. One, a macro invocation cannot be split
between several calls to EXECUTE. Two, macro variable
values must be available without the execution of SAS
code, since the SAS code does not execute until after the
DATA step is finished. This means one cannot assign
macro variable values via the SYMPUT function or PROC
SQL in a macro invoked by CALL EXECUTE.

Now let's turn to a significant application using CALL
EXECUTE. You have a large survey data base consisting
of about 60 SAS data sets corresponding to the tables of
data base produced with the Blaise system. There are
300 variables spread over these sets, which refer to
"Other Specify" type questions. For example,

For breakfast do you prefer:

1. cereal
2. toast
3. egg

4. other

You are assigned to produce a report giving for each
respondent the non-blank values of these "Other Specify"
variables. The data sets cannot be merged by the
respondent's ID, because many of the tables have
repeating records for a person. When they do, there is a
variable to indicate to which line the "Other Specify" value
applies, but the variable may have different names in
different data sets.

Since the report could be easily produced from a SAS
data set with the variables RESPID, VARIABLE, ROW,
and VALUE; your real job is to produce this data set. For
one data set in the data base the program is simple. You
might use:

data temp
(keep = respid variable
row value) ;
length variable $ 8 value $ 80;
set atable
(keep = respid segno

frstothr secnothr ...);
array othrval (n) frstothr
secnothr ...;

if there is a seqno then
row = seqno ;

else
row = . ;

do i =1 to dim (othrval)
if othrval (1) = " " then
do ;
call vname (othrval (i),
variable) ;

value = othrval (i) ;
output othrspec ;
end ;
end ;
run ;

Conceptually, the problem is now simple:

Add a PROC APPEND statement to the above
code to collect the data into one data set

Put the code in a macro

%GETOTHR (lib =,
mem =,
seq =)

Invoke the macro via CALL EXECUTE in a DATA
step reading a control data set listing the "Other
Specify" variables for each member of the data
base.

There is a technical problem that the list of "Other Specify"
variables can grow to a length of over 200 characters so it
cannot be the value of a parameter in %GETOTHR when
invoked by CALL EXECUTE. We will avoid the problem
by making just one list variable, OTLIST, with the
understanding that %GETOTHR will refer to this macro
variable. (In general it would be better to pass the name,
OTLIST, as a parameter in %GETOTHR, but that requires
the use of indirection and is not a good topic for a
beginning tutorial on macro.) There is, of course, a lot of
hard work making the control data set containing the
member names and their "Other Specify" variable names.

data _null_ ;

set control ;
by memname ;
if first.memname then
do ;

cnt = 0 ;

call execute

("%let otlist = ;7) ;

end ;
cnt + 1 ;
call execute

("%let otlist = &otlist "|]|

name || ;") ;

if last.memname ;

call execute
("%getothr(lib="]|"&lib"|]
" ,mem="]|memname] |
" ,seq="]lseqvar)*

run ;

The last task is to put it all together in a system of two
macros, %DRIVER and %GETOTHR, but first we will take
a quick look at the macro instruction, %IF, and apply it to
our TESTPRNT macro.

Decisions

The macro facility is really a programming language where
one programs, i.e. writes instructions, for writing SAS
programs. So far, the only instructions we have covered
are %LET, %MACRO and %MEND together with the two
DATA step subroutines, CALL SYMPUT and CALL
EXECUTE. The simple instruction, %PUT, is important for
debugging. It writes whatever follows the %PUT up to the
first semicolon to the SAS log. For example, we might
echo the parameters of % TESTPRNT by beginning with:

%put Parameter values ;
%put DATA=&data ;

%put obs=&obs ;

%put tl=&tl ;

In general, | prefer using %PUT statements to
SYMBOLGEN because | can focus their use on a
debugging problem.

So far the macro % TESTPRNT doesn't live up to its name
because the print is always executed, even when we are
finished with debugging. The answer is to make a
decision whether to generate the PROC PRINT or skip it.
Let's make a variable, DEBUG, at the top of every
program using % TESTPRNT having the value YES or NO.
When &DEBUG is YES the print code should be
generated, and when it is NO there should be no code
generated. Here is the new version of % TESTPRNT.

%macro testprnt
(data = é&syslast ,
obs = 90 ,
tl =3
)
%global debug ;

%if %upcase(&debug) = YES
%then %do ;
titleé&tl
"Data = &data (obs=&obs)";
proc print
data = &data (obs=&obs);
run ;
title&tl ;
%end ;

%mend testprnt ;

With this small addition the macro becomes much more
useful. When we want prints, we have them, and when
we don't, they are gone. Moreover, this decision is

controlled by the simple assignment of YES or NO to the
macro variable DEBUG. The macro still does not have all
the features of PROC PRINT, but they could be built in by
adding more parameters and then making decisions on
whether to (or how to) generate the corresponding
feature's code.

A few simple decisions can add greatly to the flexibility
and use of a macro, but they also begin to lead us into
more difficult programming.

(The %GLOBAL statement just says that the variable is
defined in the global environment, out side the macro.
Strictly speaking it isn't necessary because we already
agreed to assign a value at the top of the program, i.e. in
the global environment. The advantages are that the
program will work, albeit without test prints, if the
assignment is forgotten; and that it tips off the reader that
the variable DEBUG is assigned outside of the macro. It
is also a good idea to use a %LOCAL statement to
announce any variables that should be restricted to the
macro.)

Let's apply decisions one more time, using the survey task
discussed in the previous section. Suppose we spice up
the task, by requiring that the report be restricted to the list
of respondents specified in a macro variable IDLIST.

There are really two decisions for %GETOTHR:

Should the sequence variable, ROW, be a
constant or defined by a variable?

Should ID be in &IDLIST or is there no
restriction?

Note that in both cases, the decision is about a parameter
and need only be decided once. For simplicity, we
previously made the first decision using the code:

if there is a segno then
row = seqno ;
else
row = . ;

Here, the decision is made over and over on each record,
but in fact, a given DATA set either has a variable to
indicate the sequence or it doesn't. This indicates that the
decision is being made at the wrong time. Itis made
during SAS execution time, when in fact we should decide
whether to generate the code:

row = seqno ;

or the code

row = . ;
Hence we need a macro %IF statement to decide which
code to generate.

%if &seq = %then
%do ;

row -3
%end ;
%else
%do ;

row = &seq ;
%end ;

Note that only one of the two assignment statements will
be in the DATA step, and we are deciding which one to
use during the compiling of the step. This means the
decision is made once at compile time and not once per
iteration of the DATA step loop during execution of the
step. In general it is more efficient to make decisions as
early as possible and more flexible to postpone them as
long as possible.

The second decision can be based on whether the
parameter, IDLIST, is empty or not.

%if &idlist ~= %then
%do ;

if id in (&idlist) ;
%end ;

When IDLIST is not empty, we generate a subsetting IF
statement. Otherwise we don't need a subsetting IF
statement.

With this preparation we have only to package the steps
above with minor changes as macros.

%macro driver (lib = ,
control = ,
idlist =

)

data _null_ ;

set &control ;
by memname ;
if first.memname then

call execute

("%let otlist = ;") ;

call execute

("%let otlist=&otlist ||

name || ";7) ;

if last.memname ;

call execute
("getothr(lib="]|"&lib"]]
" ,mem=""] |memname] |
" ,seq=""]| |seqvar ||
" ,idlist=&idlist)"
)

run ;
%mend driver ;

%macro getothr
C lib =,

mem = ,
seq = ,
idlist =

)

data temp
(keep = respid variable
row value) ;

length variable $ 8
value $ 80 ;

set &lib._&mem

(keep = respid &seq
&otlist) ;

array othrval (*) &otlist ;

%if &idlist ~= %then
%do ;

if id in (&idlist) ;
%end ;

%if &seq = %then

%do ;

row = . ;
%end ;
%else
%do ;

row = &seq ;
%end ;

do i =1 to dim (othrval)
if othrval (1) =" " then
do ;
call vname (othrval (i),
variable) ;
value = othrval (i) ;
output temp ;

end ;
end ;
run ;
proc append base = othrspec
data = temp

run ;
%mend getothr ;

%driver (lib = surv ,
control = surv.cntl ,
idlist = "00123"
"*00890"

Conclusion

By now you should be convinced that some pretty hard
and general programs can be written with relatively little
use of real macro code. So, it is time to stop this tutorial.

Go get some experience, and then you will be able to
introduce still more macro instructions in your macro code
without making the code unreadable and probably with
less macro debugging problems than one who has not
learned to take the first step before trying the full fledged
macro language.

The author may be contacted by e-mail at

whitloil @westat.com

or by mail at

lan Whitlock (RA1356)
1650 Research Boulevard
Rockville, MD 20850

Questions are welcome.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

