
AN INTRODUCTION TO THE SQL PROCEDURE
Chris Yindra, C. Y. Associates

Abstract

This tutorial will introduce the SQL (Structured Query
Language) procedure through a series of simple examples.
We will initially discuss choosing variables (SELECT)
from SAS® data sets (FROM) where a specific criteria is
met (WHERE). We will then discuss calculating and
formatting values. Once the basic SQL syntax has been
covered we will discuss more advanced features of SQL
such as grouping and ordering data, selecting based on
summary values, applying CASE logic and simple joins.
Finally we will make a comparison of simple SQL queries
to base SAS. This tutorial will provide attendees with all
the tools necessary to write simple SQL queries. It is
intended for SAS programmers who have no prior
exposure to the SQL procedure as well as those new to
SAS.

Introduction

The Structured Query Language (SQL) is a standardized
language used to retrieve and update data stored in
relational tables (or databases). When coding in SQL, the
user is not required to know the physical attributes of the
table such as data location and type. SQL is non-
procedural. The purpose is to allow the programmer to
focus on what data should be selected and not how to
select the data. The method of retrieval is determined by
the SQL optimizer, not by the user.

What is a table?
A table is a two dimensional representation of data
consisting of columns and rows. In the SQL procedure a
table can be a SAS data set, SAS data view, or table from
a RDBMS. Tables are logically related by values such as
a key column.

There are several implementations (versions) of SQL
depending on the RDBMS being used. The SQL
procedure supports most of the standard SQL. It also has
many features that go beyond the standard SQL.

Terminology

The terminology used in SQL can be related to standard
data processing terminology. A table in SQL is simply
another term for a SAS data set or data view.

Data Processing SAS SQL equivalent

File SAS dataset Table

Record Observation Row

Field Variable Column

The table is where the data is stored. A row represents a
particular entry. An employee may be represented as a
row in a table. A column represents the particular values
for all rows. Salary may be a column on a table. All
employees will have a value for salary.

Relational Tables

In SQL tables are logically related by a key column or

columns.
 Table 1 ROW
Dept Name Salary

MCE SMITH 23000
MCE JONES 34000
INA LEE 28000
INA RAY 21000

COLUMN

Table 2
 Dptcode Location Manager

MCE WINDSOR HICKS
INA HARTFORD ROYCE

Dept is the key column in Table 1 to join to the Dptcode
key column in Table 2. Either Location or Manager in
Table 2 could also act as a key into a third table.

Simple Queries

A query is merely a request for information from a table
or tables. The query result is typically a report but can
also be another table. For instance:

I would like to select last name, department, and salary
from the employee table where the employee's salary is
greater than 35,000.

How would this query (request) look in SQL?

SELECT LASTNAME, DEPARTMENT, SALARY
FROM CLASS.EMPLOY
WHERE SALARY GT 35000

Herein lies the simplicity of SQL. The programmer can
focus on what they want and SQL will determine how to
get it. The fundamental approach is

SELECT …
FROM…
WHERE…

In SAS, queries are submitted with PROC SQL

Basic Syntax

PROC SQL;

 SELECT column, column . . .

 FROM tablename|viewname. . .

PROC SQL;

• Statements (clauses) in the SQL procedure are not
separated by semicolons, the entire query is
terminated with a semicolon.

• Items in an SQL statement are separated by a comma.
• There is a required order of statements in a query.
• One SQL procedure can contain many queries and a

query can reference the results from previous
queries.

• The SQL procedure can be terminated with a QUIT
statement, RUN statements have no effect.

SELECT

• To retrieve and display data a SELECT statement is
used.

• The data will be displayed in the order you list the
columns in the SELECT statement.

• A column can be a variable, calculated value or
formatted value.

• An asterisk (*) can be used to select all columns.

FROM

• The FROM statement specifies the input table or
tables.

Examples:

I would like to select the social security number, salary
and bonus (columns) for all employees (rows) from the
employee table.

LIBNAME CLASS 'C:\CYDATA';
 PROC SQL;
 SELECT SSN, SALARY, BONUS
 FROM CLASS.EMPLOYEE;

I would like to select all the information (columns) for all
employee's (rows) on the employee table.

PROC SQL;
 SELECT *
 FROM CLASS.EMPLOYEE;

Selecting Rows with a WHERE Clause

The WHERE clause specifies rows to be selected for the
query.

 WHERE expression1 [AND/OR] expression2

Example:

I would like to select the social security number, salary
and bonus (columns) from the employee table where the
employee is in department GIO and has a salary less that
35,000.

 PROC SQL;
 SELECT SSN, SALARY, BONUS
 FROM CLASS.EMPLOYEE
 WHERE DEPT = 'GIO' AND SALARY LT 35000;
QUIT;

WHERE Clause Operators

The WHERE clause supports many comparison operators.
It also supports logical NOTs and AND/OR to create
compound expressions.

Standard comparison operators

 EQ or = Equal to
 NE ^= Not Equal To
 GT > Greater Than
 GE >= Greater Than or Equal To
 LT < Less Than
 LE <= Less Than or Equal To

Special operators

 BETWEEN .. AND Compare to a range
 IN Compare to a series of values
 IS MISSING (NULL) Value is missing
 LIKE Compare to wildcards (% or _)
 CONTAINS Compare to a substring
 =* Sounds like
 EXISTS Compare to a subquery

Logical operators

 AND Compound WHERE clause
 OR Compound WHERE clause
 NOT Logical NOT

AND is resolved before OR. Use parenthesis to override
this.

Example:

I would like to select the last name and social security
number from the employee table where the employee is
earning between 20,000 and 30,000 dollars in salary.
Include a title stating that these employees are in a middle
salary range.

TITLE ' EMPLOYEE'S IN THE MIIDDLE SALARY
 RANGE';
PROC SQL;

 SELECT LASTNAME, DEPT, SALARY, BONUS

 FROM CLASS.EMPLOYEE

 WHERE SALARY BETWEEN 20000 AND 30000;

QUIT;

Some additional examples of WHERE clauses:

Show the people in job grades 10, 11 and 12

WHERE GRADE IN ('10','11','12')

Show the people in all departments beginning with G

WHERE DEPT LIKE 'G%'

Selects GIO, GPO, GPD etc.
Show the people with a missing hire date

WHERE HIREDT IS MISSING

ANDs and Ors can be used to create compound WHERE
clauses.

Who is selected by the following query?

PROC SQL;
 SELECT LASTNAME, DEPT, SALARY
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO' OR DEPT EQ 'GIO'
 AND SALARY GT 30000;

Output:

LASTNAME DEPT SALARY
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN GPO 32500
SILVER GIO 31500
SILVAY GPO 18600
BARBER GPO 20800
CARPENTER GPO 24500
RYAN GPO 23500
BROWN GIO 30500
GLYNN GIO 39500

Why are there people with salaries less than 30,000 in this
output?

Remember ANDs are resolved before ORs so we evaluate
the AND expression first.

Is the person in department GIO AND have a salary
greater than 30,000

We select all of those people and then evaluate the OR
expression.

OR is this person in department GPO.

So the previous query selects everyone in GPO and only
those people in GIO with salaries greater than 30,000.
We could use parenthesis to override.

WHERE (DEPT EQ 'GIO' OR DEPT EQ 'GPO') AND
SALARY GT 30000

Because whatever is in parenthesis is evaluated first, this
WHERE clause would select people from either
department, however everyone selected will have a salary
greater than 30,000.

Calculating and Formatting Values

New values can be calculated in the SELECT clause.

Example:

I would like to select an employee's last name, salary,
bonus and also show the percent of the employee's bonus
to their salary from the employee table where the
employee is in department GPO.

PROC SQL;
 SELECT LASTNAME, SALARY, BONUS,
 BONUS / SALARY
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO';

Output:

LASTNAME SALARY BONUS
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 32500 1512 0.046532
SILVAY 18600 0 0
BARBER 20800 1000 0.048077
CARPENTER 24500 1100 0.044898
RYAN 23500 2300 0.097872

The new calculated column can be given a name with AS.

PROC SQL;
 SELECT LASTNAME, SALARY, BONUS,
 BONUS / SALARY AS BONUSPR
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO';

Output:

LASTNAME SALARY BONUS BONUSPR
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 32500 1512 0.046532
SILVAY 18600 0 0
BARBER 20800 1000 0.048077
CARPENTER 24500 1100 0.044898
RYAN 23500 2300 0.097872

Columns may also be calculated with SAS functions. SAS
SQL supports the use of most data step functions in the
select statement (LAG, DIF, SOUND are not supported).
Summary functions using more than one variable
operate on each row.

Example:

I would like to select an employee's last name, social
security number and also show the employee's total
compensation which is the sum of their salary and bonus
from the employee table where the employee is in
department GPO.

PROC SQL;
 SELECT LASTNAME, SSN,
 SUM(SALARY,BONUS) AS TOTCOMP
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO'
 ;
QUIT;

Output:

LASTNAME SSN TOTCOMP
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 010101010 34012
SILVAY 111111117 18600
BARBER 111111120 21800
CARPENTER 222222226 25600
RYAN 222222227 25800

Example:

I would like to select an employee's last name and
determine the whole number of years that they have been
employed from the employee table where the employee is
in department GPO. The years employed can be
calculated as the current date minus the employee's hire
date (days the employee has been employed) divided by
365.

PROC SQL;

 SELECT LASTNAME,

 INT((TODAY() - HIREDT) / 365) AS YRSEMPL

 FROM CLASS.EMPLOY

 WHERE DEPT EQ 'GPO'

 ;

QUIT;

LASTNAME YRSEMPL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 19
SILVAY 5
BARBER 3
CARPENTER 12
RYAN 7

Selecting on a Calculated Column

When selecting on a calculated column, the
CALCULATED keyword must be used in the WHERE
clause.

Example:

Modify the previous query to select only those emplyees
with over ten years of service.

PROC SQL;
 SELECT LASTNAME,
 INT((TODAY() - HIREDT) / 365) AS YRSEMPL
 FROM CLASS.EMPLOY

 WHERE DEPT EQ 'GPO' AND YRSEMPL GT 10
 ;
QUIT;

This query results in the following error message:

ERROR: The following columns were notERROR: The following columns were not
found in the contributing tables:found in the contributing tables:
YRSEMPL.YRSEMPL.

Instead, use the CALCULATED keyword:

PROC SQL;
 SELECT LASTNAME,
 INT((TODAY() - HIREDT) / 365) AS YRSEMPL
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO' AND
 CALCULATED YRSEMPL GT 10
 ;
QUIT;

Output:

LASTNAME YRSEMPL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 18
CARPENTER 11

Formatting Values

Formats can be used for any variable or calculated
column in the select statement to format values on the
output. Formats allow the programmer to define the
number of decimals to display, insert dollar signs and
commas, decode values, etc.. Any valid SAS or user-
defined format can be used.

Example:

Display an employee's total compensation in DOLLAR
format.
PROC SQL;
 SELECT LASTNAME, SSN,
 SUM(SALARY,BONUS) AS TOTCOMP
 FORMAT = DOLLAR8.
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO'
 ;
QUIT;

LASTNAME SSN TOTCOMP
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 010101010 $34,012
SILVAY 111111117 $18,600
BARBER 111111120 $21,800
CARPENTER 222222226 $25,600
RYAN 222222227 $25,800

User written formats can also be used in the select
statement.

Example:

I would like to select last name and show whether or not
an employee is eligible for benefits from the employee
table where the employee is in department GPO. An
employee is eligible for benefits if their insurance
eligibility status is equal to E and they have been
employed for more that sixty days. Because this is a
yes/no or true/false condition, a Boolean expression can
be used. A Boolean expression returns a 1 if what is in
parenthesis is true. Otherwise the expression will return a
0.

PROC FORMAT;
 VALUE ANS 1='YES'
 0='NO';
PROC SQL;
 SELECT LASTNAME, (INS_ELIG = 'E' AND
 TODAY() - HIREDT GT 60) AS
 BENELIG FORMAT=ANS.
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO';
 QUIT;

LASTNAME BENELIG
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN YES
SILVAY NO
BARBER NO
CARPENTER YES
RYAN YES

Note: We could have also used CASE logic.

Ordering the Output

The ORDER clause is used to sequence data for output.

 ORDER BY column1 [DESC], column2 [DESC] ,..

The column referenced in the SELECT statement can be
an integer (referencing the position of a column in the
SELECT statement), a column, or an SQL expression.

Example:

I would like to select an employee's last name, job grade,
and salary from the employee table where the employee is
in job grades 10 or 12 and I would like to order the
employee's on the report by descending salary.

PROC SQL;
 SELECT LASTNAME, GRADE, SALARY
 FROM CLASS.EMPLOY
 WHERE GRADE IN('10','12')
 ORDER BY SALARY DESC;
QUIT;

LASTNAME GRADE SALARY
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLYNN 10 32500
SILVER 10 31500
BARBER 12 20800
JONES 12 18500
DAVIDSON 12 18300
BARNHART 12 18300
GLADSTONE 10 9500

Case Logic

Case logic is used when you would like to assign specific
values based on some criteria. It is used in place of
conditional IF statements in SQL. The case statement can
compare to a single value or an expression and returns a
single value for each condition met.

 CASE [operand]

 WHEN [condition] THEN [result]

 [WHEN condition THEN result] …

 [ELSE result]

 END [AS column]

If a CASE operand is specified, the WHEN condition
must be an equality. If a CASE operand is not specified,
the WHEN condition must be a valid Boolean expression.
The result can be a single value or another CASE
statement (nested CASE).

If we wanted to assign a value based upon the fact that an
employee was in department GIO we would use:

CASE DEPT
 WHEN GIO THEN assigned value
 .
 .
 .
 END AS new column

Instead of comparing to a single value, we could also
compare to an expression. For instance suppose we
wanted to assign a value based upon the fact that that an
employee was in department GIO and in job grade 10 we
would use:

CASE
 WHEN DEPT = GIO AND GRADE = '10'
 THEN assigned value
 .
 .
 .
 END AS new column

Example:

I would like to select an employee's last name and
department. I would also like to assign a Christmas bonus
based upon an employee's department. I would also like
to order the output by last name.

PROC SQL;
 SELECT LASTNAME, DEPT,
 CASE DEPT
 WHEN 'GIO' THEN 100
 WHEN 'GPO' THEN 200
 WHEN 'IIO' THEN 300
 ELSE 0
 END AS XMASBON
 FROM CLASS.EMPLOY
 ORDER BY LASTNAME;
QUIT;

Output (partial):

LASTNAME DEPT XMASBON
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
BARBER GPO 200
BARNHART GIO 100
BROWN GIO 100
CARPENTER GPO 200
CROWLEY GIO 100
CROWLEY GIO 100
DAVIDSON IIO 300
FERRIO GIO 100

Example:

I would like to select an employee's last name, department
and job grade. I would also like to assign a Christmas
bonus. The Christmas bonus is based upon an employee's
department and job grade. I would like to include
employee's where their department is equal to GIO or
GPO.

PROC SQL;
 SELECT LASTNAME, DEPT, GRADE,
 CASE DEPT
 WHEN 'GIO' THEN
 CASE
 WHEN GRADE IN('10','11','12') THEN 100
 ELSE 300
 END
 WHEN 'GPO' THEN
 CASE GRADE
 WHEN '10' THEN 400
 WHEN '11' THEN 500
 ELSE 600
 END
 END AS XMASBON
 FROM CLASS.EMPLOY
 WHERE DEPT IN ('GIO','GPO');
QUIT;

Output (partial):

LASTNAME DEPT GRADE XMASBON
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLADSTONE GIO 10 100
GLYNN GPO 10 400
SILVER GIO 10 100
BARNHART GIO 12 100
SILVAY GPO 12 600
BARBER GPO 12 600
FERRIO GIO 13 300
LOUDEN GIO 13 300
SMITH GIO 13 300
VERNLUND GIO 13 300
CARPENTER GPO 14 600

Summary Functions

Summary functions summarize column values for all
rows in a table producing an aggregate value. Rows will
be summarized to the lowest logical summary. If all
columns on the SELECT statement are summary
functions then the summary will be based upon all rows in
the table.
Some common statistics that the SQL procedure supports
are:

AVG, MEAN mean of values
COUNT, FREQ, N number of nonmissing values
NMISS number of missing values
MAX maximum value
MIN minimum value
RANGE range from MIN to MAX
SUM sum of values

Example:

I would like to show the average salary, the total salary,
the minimum salary and maximum salary for the entire
employee table.

PROC SQL;
 SELECT AVG(SALARY) AS AVSAL,
 SUM(SALARY) AS SUMSAL,
 MIN(SALARY) AS MINSAL,
 MAX(SALARY) AS MAXSAL
 FROM CLASS.EMPLOY;
QUIT;

Output:

AVSAL SUMSAL MINSAL MAXSAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
23273.91 535300 9500 41600

What is produced by the following query?

PROC SQL;
 SELECT DEPT, SUM(SALARY), SUM(BONUS)
 FROM CLASS.EMPLOY
 WHERE DEPT = 'GIO';
Output: (partial):

DEPT
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GIO 315600 23854
GIO 315600 23854
GIO 315600 23854

When summary functions and detail values are used in the
SELECT statement without a GROUP BY, the summary
will be for the entire table although each detail row will
be displayed. In this case we are seeing a row for each
employee in department GIO with the total salary and
total bonus for the entire department displayed.

Grouping Data

To summarize and display data in groups, use a GROUP
BY clause with column functions.

GROUP BY column1 [,column2, …]

To arrange results in a particular order (ascending or
descending) use an ORDER BY statement.

Example:

I would like to select the department and summarize the
average salary, total salary, minimum salary and
maximum salary from the employee table. I would like to
group the summary values by department and order the
results by descending average salary.

PROC SQL;
 SELECT DEPT, AVG(SALARY) AS AVSAL,

 SUM(SALARY) AS SUMSAL,
 MIN(SALARY) AS MINSAL,
 MAX(SALARY) AS MAXSAL

 FROM CLASS.EMPLOY
 GROUP BY DEPT
 ORDER BY AVSAL DESC;
QUIT;

Output:

DEPT AVSAL SUMSAL MINSAL MAXSAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GIO 24276 315600 9500 41600
GPO 23980 119900 18600 32500
RIO 21050 42100 18600 23500
FIN 20900 20900 20900 20900
IIO 18400 36800 18300 18500

With SQL we can also easily calculate values using
subtotals. This requires that the summary values are
remerged back into the detail table. Fortunately SQL
handles all of this on its own.

Example:

I would like to select an employee's department and last
name and calculate the employee's percent of salary
against the department subtotal from the employee table.
I would like to order the output by descending salary
percent.

PROC SQL;
 SELECT DEPT, LASTNAME,
 SALARY / SUM(SALARY) AS PERCSAL
 FORMAT = PERCENT6.
 FROM CLASS.EMPLOY
 GROUP BY DEPT
 ORDER BY PERCSAL DESC;

QUIT;

Output (partial):

DEPT LASTNAME PERCSAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
FIN JACKSON 100%
RIO RYAN 56%
IIO JONES 50%
IIO DAVIDSON 50%
RIO WOOD 44%
GPO GLYNN 27%
GPO CARPENTER 20%
GPO RYAN 20%
We can also choose to display rows by selecting on
summary values. This requires the use of the HAVING
expression. The HAVING expression follows the
GROUP BY clause. The HAVING expression selects
summary rows based on summary functions.

HAVING sql-expression

SQL-expression is any valid SQL expression. It is
evaluated once for each group in the query. The
HAVING expression can compare to detail rows, which
will remerge detail rows with summary rows. If there is
no GROUP BY clause, the comparison is based on a table
summary.

Example:

I would like to select department and subtotal salary and
bonus from the employee table. I would like to include
only those departments with total salaries greater than
$100,000. I would also like to order the output by
descending total salary.

PROC SQL;
 SELECT DEPT, SUM(SALARY) AS TOTSAL

FORMAT=DOLLAR11.2,
 SUM(BONUS) AS TOTBON

FORMAT=DOLLAR11.2
 FROM CLASS.EMPLOY
 GROUP BY DEPT
 HAVING TOTSAL > 100000
 ORDER BY TOTSAL DESC;
QUIT;

Output:

DEPT TOTSAL TOTBON
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GIO $315,600.00 $23,854.30
GPO $119,900.00 $5,912.30

Joining Tables

Joining tables is a way of bringing rows from different
tables together. Rows are usually joined on a key column
or columns. If the value of the key(s) in both tables is
equal, the rows are joined.

Types of Joins

A conceptual view of a join involves combining all rows
from the contributing tables and then eliminating those
that do not meet the WHERE criteria (equality on the
keys).

The actual methodology used by the SQL procedure is not
determined by the user but by the SQL Optimizer. This
allows the user to focus on what they want logically and
not on the internals of how to extract it.

There are two primary types of joins in SQL, an equi-join
and a Cartesian join.

Cartesian joins- Do not use equality in the WHERE
clause or do not use a WHERE clause. This forces each
row of the first table to be combined with all rows from
the second table if they meet the WHERE criteria.

Equi-joins-Use equality in the WHERE clause. Rows
with matching key values are joined. The keys must be of
the same length and data type.

Both types of joins allow columns from multiple tables to
be included in one where clause. All contributing tables
are listed in the FROM clause. Columns with the same
names on one or more tables must be qualified by
preceding the column name with the name of the
contributing table (separated by a period).

Example:

I would like to select an employee's last name, location
and manager from the employee table and the department
table where the department value from the employee table
is equal to the department value on the department table.
Last name comes from the employee table. Location and
manager come from the department table.

PROC SQL;
 SELECT LASTNAME, LOCATION, MANAGER
 FROM CYLIB.EMPLOY, CYLIB.DEPTFILE
 WHERE EMPLOY.DEPT = DEPTFILE.DEPT
 ;
QUIT;

Output (partial):

LASTNAME LOCATION MANAGER
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GLADSTONE WINDSOR GARCIA
GLYNN BOSTON WIER
SILVER WINDSOR GARCIA
BARNHART WINDSOR GARCIA
DAVIDSON NEW YORK LESH

Joining more than two tables:

More than two tables can be joined in a single query. A
different key can be used to join different tables.

Example:

We have three files that we would like to join. The
PURCHASE file contains all invoice numbers and the
department that made the purchase. The APAY (accounts
payable file) contains a vendor code and invoice amount
for each invoice. The VENDFILE contains a vendor code
and relevant vendor information (name, phone).

PURCHASE APAY VENDFILE

DEPT INVNO VENDNUM
INVNUMBR INVAMT VENDNAME
 VENDOR

We would like to total the invoice amounts that each
department owes each vendor. To do this we have to join
the PURCHASE table to the APAY table on the invoice
number and the APAY table to the VENDFILE on vendor
number.

PROC SQL;
 SELECT DEPT, VENDNAME,
 SUM(INVAMT) ASTOTAL
 FROM CLASS.PURCHASE AS A,
 CLASS.APAY AS B,
 CLASS.VENDFILE AS C
 WHERE A.INVNUMBR = B.INVNO
 AND B.VENDOR = C.VENDNUM
 GROUP BY DEPT, VENDNAME;

Output (partial):

DEPT VENDNAME TOTAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
GIO CANTON COMPUTER CENTER 825
GIO COUNTRY OFFICE SUPPLIES 475
GIO OTTO PRINT SHOP 500
GIO SAS INSTITUTE 3906
GPO COUNTRY OFFICE SUPPLIES 900

Creating Tables

In all of the previous examples, the result of the query has
been an output report. We could instead create a new
table (SAS data set) The CREATE statement is used to
create SQL tables as a permanent or temporary SAS data
sets with the SELECT clause providing the variable list.

 CREATE TABLE tablename AS

 [SELECT list]

Example:

I would like to create a temporary table SENIORS by
selecting an employee's last name, age and gender from
the employee table where the employee's age is greater
than 65. I would alike to order the table by descending
age.

PROC SQL ;
 CREATE TABLE WORK.SENIORS AS
 SELECT LASTNAME, AGE, GENDER
 FROM CLASS.EMPLOY
 WHERE AGE GT 65
 ORDER BY AGE DESC;

Comparing SQL With Base SAS

Many common programming tasks can be accomplished
with either SQL or base SAS.

Example;

PROC SQL;
 SELECT LASTNAME, SALARY, BONUS,
 BONUS / SALARY AS BONUSPR
 FORMAT=PERCENT6.
 FROM CLASS.EMPLOY
 WHERE DEPT EQ 'GPO';

Is the same as

DATA MYSET;
 SET CLASS.EMPLOY;

 WHERE DEPT EQ 'GPO';
 BONUSPR = BONUS / SALARY;

PROC PRINT DATA=MYSET;
 FORMAT BONUSPR PERCENT6.;
 VAR LASTNAME SALARY BONUS BONUSPR;

Data summarization comparison:

PROC SQL;
 SELECT DEPT, AVG(SALARY) AS AVSAL,

 SUM(SALARY) AS SUMSAL,
 MIN(SALARY) AS MINSAL,
 MAX(SALARY) AS MAXSAL

 FROM CLASS.EMPLOY
 GROUP BY DEPT
 ORDER BY AVSAL DESC;

Is the same as

PROC MEANS DATA=CLASS.EMPLOY NWAY;
 CLASS DEPT;
 VAR SALARY;
 OUTPUT OUT=MYSET MEAN=AVSAL
SUM=SUMSAL
 MIN=MINSAL MAX=MAXSAL;

PROC SORT DATA=MYSET;
 BY AVSAL;

PROC PRINT DATA=MYSET NOOBS;
 VAR DEPT AVSAL SUMSAL MINSAL MAXSAL;

Conclusion

The SQL procedure is a powerful addition to a SAS
programmers information delivery tools. It should not be
viewed as a replacement to standard SAS code but as
another potential solution.

Some explicit reasons for using the SQL procedure:
1. Merging 3 or more data sets without common keys.
2. Merging on ranges.
3. Summarizing on a calculated value.
4. Calculations involving summary values.
5. Selecting detail rows based on summary values.
6. SQL supports identical column names from different

tables.
7. The SQL compiler will figure out the optimum order

or index to use for a query.

Some practical reasons for using the SQL procedure:
1. Less code to understand and maintain by a SAS

programmer.
2. SQL is ‘standard’ therefore non SAS programmers

can ‘read’ SAS programs using the SQL procedure.

3. Task specific SQL code may already exist for another
RDBMS that can easily be ported into SAS.

Some reasons not to use the SQL procedure:
1. Does not replace the wide variety of tools available

with SAS PROCs.
2. No INFILE, INPUT or FILE, PUT.
3. Only one table (SAS data set) created at a time.
4. Append data is easier than SET operators.
5. Sometimes more difficult to handle matched and

unmatched records.

Questions, comments, and suggestions are welcome at:
Chris Yindra
C. Y. Training Associates, Inc
chris@cyassociates.com
www.cyassociates.com

REFERENCES

SAS Institute, Inc, SAS Guide to the SQL Procedure
SAS is a registered trademark or trademark of SAS
Institute, Inc., in the US and other countries

