AN INTRODUCTION TO THE SQL PROCEDURE
ChrisYindra, C. Y. Associates

Abstract

Thistutoria will introduce the SQL (Structured Query
Language) procedure through a series of simple examples.
We will initially discuss choosing variables (SELECT)
from SAS® data sets (FROM) where a specificcriteriais
met (WHERE). Wewill then discuss calculating and
formatting values. Once the basic SQL syntax has been
covered we will discuss more advanced features of SQL
such as grouping and ordering data, selecting based on
summary values, applying CASE logic and simplejoins.
Finally we will make a comparison of simple SQL queries
to base SAS. Thistutoria will provide attendees with all
the tools necessary to write simple SQL queries. Itis
intended for SAS programmers who have no prior
exposure to the SQL procedure as well asthose new to
SAS.

Introduction

The Structured Query Language (SQL) is astandardized
language used to retrieve and update data stored in
relational tables (or databases). When coding in SQL, the
user is not required to know the physical attributes of the
table such as datalocation and type. SQL isnon-
procedural. The purposeisto alow the programmer to
focus on what data should be selected and not how to
select the data. The method of retrieval is determined by
the SQL optimizer, not by the user.

What isatable?

A tableisatwo dimensional representation of data
consisting of columns and rows. Inthe SQL procedure a
table can be a SAS data set, SAS data view, or table from
aRDBMS. Tablesarelogically related by values such as
akey column.

There are several implementations (versions) of SQL
depending on theRDBMS being used. The SQL
procedure supports most of the standard SQL. It also has
many features that go beyond the standard SQL.

Terminology

The terminology used in SQL can be related to standard
dataprocessing terminology. A tablein SQL issimply
another term for a SAS data set or data view.

Data Processing SAS SOL equivalent
File SASdataset Table
Record Observation Row

Field Variable Column

Thetableiswherethe datais stored. A row representsa
particular entry. An employee may be represented asa
row inatable. A column represents the particular values
for dl rows. Salary may beacolumnon atable. All
employeeswill have avalue for salary.

Relational Tables

In SQL tables are logically related by akey column or
columns.

Tablel ROW
Dept Name Salary A~
MCE SMITH 23000
MCE JONES 34000
INA LEE 28000
INA RAY 21000
|]
COLUMN
Table2
Dptcode Location M anager
MCE WINDSOR HICKS
INA HARTFORD ROYCE

"_A

Dept isthe key columnin Table 1 to join to the Dptcode
key columnin Table 2. Either Location or Manager in
Table 2 could also act as akey into athird table.

Simple Queries

A query ismerely arequest for information from atable
or tables. The query resultistypically areport but can
also be another table. For instance:

| would like toselect last name, department, and salary
fromthe employee tablewhere the employee'ssalary is
greater than 35,000.

How would this query (request) look in SQL?

SELECT LASTNAME, DEPARTMENT, SALARY
FROM CLASS.EMPLOY
WHERE SALARY GT 35000

Herein liesthe simplicity of SQL. The programmer can
focus on what they want and SQL will determine how to
getit. Thefundamental approachis

SELECT ...
FROM...
WHERE...

In SAS, queries are submitted with PROC SQL

Basic Syntax
PROC SQL;

SELECT column, column ...
FROM tablename|viewname. . .

| would liketo select al the information (columns) for al
employee's (rows) on the employeetable.

PROC SQL;
SELECT *
FROM CLASS.EMPLOYEE;

Selecting Rowswith aWHERE Clause

The WHERE clause specifies rowsto be selected for the
query.

PROC SQL;

Statements (clauses) in the SQL procedure are not
separated by semicolons, the entire query is
terminated with a semicolon.

Itemsin an SQL statement are separated by a comma.
Thereisarequired order of statementsin aquery.
One SQL procedure can contain many queriesand a
query can reference the results from previous
queries.

The SQL procedure can be terminated with aQUIT
statement, RUN statements have no effect.

SELECT

Toretrieve and display dataa SELECT statement is
used.

The datawill be displayed in the order you list the
columnsin the SELECT statement.

A column can be avariable, caculated value or
formatted value.

An asterisk (*) can be used to select all columns.

FROM

The FROM statement specifies the input table or
tables.

Examples:

I would like to select the socia security number, salary
and bonus (columns) for al employees (rows) from the
employeetable.

LIBNAME CLASS 'C:\CYDATA,
PROC SQL;
SELECT SSN, SALARY, BONUS
FROM CLASS.EMPLOYEE;

WHERE expressionl [AND/OR] expression2

Example:

| would like to select the social security number, salary
and bonus (columns) from the empl oyee table where the
employeeisin department GIO and has a salary lessthat
35,000.

PROC SQL;
SELECT SSN, SALARY, BONUS
FROM CLASS.EMPLOYEE
WHERE DEPT = 'GIO' AND SALARY LT 35000;
QUIT,

WHERE Clause Operators

The WHERE clause supports many comparison operators.
It also supports logical NOTs and AND/OR to create
compound expressions.

Standard comparison operators

EQor= Equal to

NE 7= Not Equa To

GT > Greater Than

GE »>= Greater Than or Equa To
LT < Less Than

LE <= Less Than or Equd To

Specid operators

BETWEEN .. AND Compareto arange

IN Compareto aseries of values
ISMISSING (NULL) Vaueismissing

LIKE Compare towildcards (% or)
CONTAINS Compare to a substring

=* Sounds like

EXISTS Compare to a subquery

Logical operators

AND Compound WHERE clause
OR Compound WHERE clause
NOT Logica NOT

AND isresolved before OR. Use parenthesisto override
this.

Example:

| would like to select the last name and social security
number from the empl oyee table where the employeeis
earning between 20,000 and 30,000 dollarsin salary.
Include atitle stating that these employeesarein amiddie
salary range.

TITLE ' EMPLOYEE'S IN THE MIIDDLE SALARY
RANGE

PROC SQL;
SELECT LASTNAME, DEPT, SALARY, BONUS
FROM CLASS.EMPLOYEE
WHERE SALARY BETWEEN 20000 AND 30000;

QUIT;

Some additional examples of WHERE clauses:

Show the peoplein job grades 10, 11 and 12
WHERE GRADE IN (10','11','12"

Show the peoplein all departments beginning with G
WHERE DEPT LIKE 'G%'

Selects GIO, GPO, GPD etc.
Show the people with amissing hire date

WHERE HIREDT IS MISSING

ANDs and Ors can be used to create compound WHERE
clauses.

Who is selected by the following query?

PROC SQL;
SELECT LASTNAME, DEPT, SALARY
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO' OR DEPT EQ 'GIO'

AND SALARY GT 30000;

Outpuit:

LASTNAME ~ DEPT SALARY
FEEFFFFFerffffffffffffffre

GLYNN GPO 32500
SILVER GIO 31500
SILVAY GPO 18600
BARBER GPO 20800
CARPENTER GPO 24500
RYAN GPO 23500
BROWN GIO 30500
GLYNN GIO 39500

Why are there people with salaries less than 30,000 in this
output?

Remember ANDs are resolved before ORs so we evaluate
the AND expression first.

Isthe person in department GIO AND have asaary
greater than 30,000

We sdlect all of those people and then evaluate the OR
expression.

OR isthis person in department GPO.

So the previous query selects everyone in GPO and only
those peoplein GIO with salaries greater than 30,000.
We could use parenthesisto override.

WHERE (DEPT EQ 'GIO' OR DEPT EQ 'GPO’) AND
SALARY GT 30000

Because whatever isin parenthesisis evaluated first, this
WHERE clause would select people from either
department, however everyone selected will have asalary
greater than 30,000.

Calculating and Formatting Values

New values can be caculated in the SELECT clause.
Example:

| would like to select an employee's|ast name, salary,
bonus and also show the percent of the employee's bonus
to their salary from the employee table where the
employeeisin department GPO.

PROC SQL;
SELECT LASTNAME, SALARY, BONUS,
BONUS / SALARY
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO;,

Outpuit:

LASTNAME ~ SALARY BONUS
FEEEFFEffrffffffffffffffrffrefffifrefffe

GLYNN 32500 1512 0.046532
SILVAY 18600 0 0
BARBER 20800 1000 0.048077
CARPENTER 24500 1100 0.044898
RYAN 23500 2300 0.097872

The new calculated column can be given a name with AS.

PROC SQL;
SELECT LASTNAME, SALARY, BONUS,
BONUS / SALARY AS BONUSPR
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO;,

Output:

LASTNAME ~ SALARY BONUS BONUSPR
FEEEFFErffffffffffffffffrfrffffifrefeesf

GLYNN 32500 1512 0.046532
SILVAY 18600 0 0
BARBER 20800 1000 0.048077
CARPENTER 24500 1100 0.044898
RYAN 23500 2300 0.097872

Columns may aso be calculated with SAS functions. SAS
SQL supportsthe use of most data step functionsin the
select statement (LAG, DIF, SOUND are not supported).
Summary functions using more than one variable

operate on each row.

Example:

I would like to select an employee's last name, social
security number and also show the employee's total
compensation which is the sum of their salary and bonus
from the employee table where the employeeisin
department GPO.

PROC SQL;
SELECT LASTNAME, SSN,
SUM(SALARY,BONUS) AS TOTCOMP
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO'

QUIT:

Outpuit:

LASTNAME ~ SSN TOTCOMP
FEEEFFFrfrfrffffffffffffrfrfrfref

GLYNN 010101010 34012
SILVAY 111111117 18600
BARBER 111111120 21800
CARPENTER 222222226 25600
RYAN 222222227 25800
Example:

| would like to select an employee'slast name and
determine the whole number of years that they have been
employed from the empl oyee table where the employeeis
in department GPO. The years employed can be
calculated as the current date minus the employee's hire
date (days the employee has been employed) divided by
365.

PROC SQL;
SELECT LASTNAME,
INT((TODAY() - HIREDT) / 365) AS YRSEMPL
FROM CLASS.EMPLOY

WHERE DEPT EQ 'GPO'

QUIT,

LASTNAME ~ YRSEMPL
FEFFFEFFAfrfrrerrrees
GLYNN 19
SILVAY 5
BARBER 3
CARPENTER 12
RYAN 7

Selecting on a Calculated Column

When selecting on a calculated column, the
CALCULATED keyword must be used in the WHERE
clause.

Example:

Modify the previous query to select only those emplyees
with over ten years of service.

PROC SQL;
SELECT LASTNAME,
INT((TODAY() - HIREDT) / 365) AS YRSEMPL
FROM CLASS.EMPLOY

WHERE DEPT EQ 'GPO' AND YRSEMPL GT 10
QUIT,
This query resultsin the following error message:

ERROR: The following columns were not
found in the contributing tables:
YRSEMPL .

Instead, use the CALCULATED keyword:

PROC SQL;
SELECT LASTNAME,
INT((TODAY() - HIREDT) / 365) AS YRSEMPL
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO' AND
CALCULATED YRSEMPL GT 10

QUIT,

Output:

LASTNAME YRSEMPL
FEEFFFFFFFFfFfffffrfef
GLYNN 18
CARPENTER 11

Formatting Vaues

Formats can be used for any variable or calculated
column in the select statement to format values on the
output. Formats allow the programmer to definethe
number of decimalsto display, insert dollar signsand
commas, decode vaues, etc.. Any valid SAS or user-
defined format can be used.

Example:

Display an employee'stotal compensationin DOLLAR
format.
PROC SQL;

SELECT LASTNAME, SSN,

SUM(SALARY,BONUS) AS TOTCOMP
FORMAT = DOLLARS.
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO'

QUIT,

LASTNAME ~ SSN TOTCOMP
FEEFFFFFfrfrffffffffffffrfrfrfref
GLYNN 010101010 $34,012
SILVAY 111111117 $18,600
BARBER 111111120 $21,800
CARPENTER 222222226 $25,600
RYAN 222222227 $25,800

User written formats can also be used in the select
statement.

Example:

| would like to select last name and show whether or not
an employeeiseligiblefor benefits from the employee
table where the employeeisin department GPO. An
employeeiséligible for benefitsif their insurance
eligibility statusis equa to E and they have been
employed for more that sixty days. Becausethisisa
yes/no or true/fal se condition, a Boolean expression can
be used. A Boolean expressionreturnsalif whatisin
parenthesisistrue. Otherwise the expression will return a
0.

PROC FORMAT:
VALUE ANS 1="YES'
0='NO";
PROC SQL;
SELECT LASTNAME, (INS_ELIG = 'E' AND
TODAY() - HIREDT GT 60) AS
BENELIG FORMAT=ANS.
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO";

QUIT
LASTNAME ~ BENELIG
FEEFFFEfFffffrFffqrfferef
GLYNN YES
SILVAY NO
BARBER NO
CARPENTER YES
RYAN YES

Note: We could have also used CASE logic.

Orderingthe Qutput

The ORDER clause is used to sequence data for output.

ORDER BY columnl [DESC], column2 [DESC] ,..

The column referenced in the SELECT statement can be
an integer (referencing the position of acolumnin the
SELECT statement), acolumn, or an SQL expression.

Example:

| would like to select an employee's last name, job grade,
and salary from the employee table where the employeeis
injob grades 10 or 12 and | would like to order the
employee's on the report by descending salary.

PROC SQL;
SELECT LASTNAME, GRADE, SALARY
FROM CLASS.EMPLOY
WHERE GRADE IN('10','12))

ORDER BY SALARY DESC:;

QUIT;

LASTNAME ~ GRADE SALARY
FEEFFFFFerrffffffffffffrffff

GLYNN 10 32500
SILVER 10 31500
BARBER 12 20800
JONES 12 18500
DAVIDSON 12 18300
BARNHART 12 18300
GLADSTONE 10 9500
Casel ogic

Caselogic is used when you would like to assign specific
values based on some criteria. It isused in place of
conditional IF statementsin SQL. The case statement can
compareto asingle value or an expression and returnsa
single value for each condition met.

CASE [operand]
WHEN [condition] THEN [result]
[WHEN condition THEN result] ...
[ELSE result]

END [AS column]

If a CASE operand is specified, the WHEN condition
must be an equality. If a CASE operand is hot specified,
the WHEN condition must be avalid Boolean expression.
The result can be asingle value or another CASE
statement (nested CASE).

If we wanted to assign a va ue based upon the fact that an
employee wasin department GIO we would use:

CASE DEPT
WHEN GIO THEN assigned value

END AS new column

Instead of comparing to asingle value, we could also
compare to an expression. For instance suppose we
wanted to assign a value based upon the fact that that an
employee was in department GIO and in job grade 10 we
would use:

CASE
WHEN DEPT = GIO AND GRADE ="10'
THEN assigned value

E.ND AS new column
Example:

I would like to select an employee's last name and
department. | would also like to assign a Christmas bonus
based upon an employee's department. | would also like
to order the output by last name.

PROC SQL;
SELECT LASTNAME, DEPT,
CASE DEPT
WHEN 'GIO' THEN 100
WHEN 'GPO' THEN 200
WHEN 'lI0' THEN 300
ELSEO
END AS XMASBON
FROM CLASS.EMPLOY
ORDER BY LASTNAME;
QUIT,

Output (partial):

LASTNAME ~ DEPT XMASBON
FEEEFFFFerffffffffffffffre

BARBER GPO 200
BARNHART GIO 100
BROWN GIO 100
CARPENTER GPO 200
CROWLEY GIO 100
CROWLEY GIO 100
DAVIDSON 110 300
FERRIO GIO 100

Example:

I would like to select an employee's last name, department
and job grade. 1 would also like to assign a Christmas
bonus. The Christmas bonusis based upon an employee's
department and job grade. | would liketo include
employee's where their department is equa to GIO or
GPO.

PROC SQL;
SELECT LASTNAME, DEPT, GRADE,
CASE DEPT
WHEN 'GIO' THEN
CASE
WHEN GRADE IN('10',/11',12") THEN 100
ELSE 300
END
WHEN 'GPO' THEN
CASE GRADE
WHEN '10' THEN 400
WHEN '11' THEN 500
ELSE 600
END
END AS XMASBON
FROM CLASS.EMPLOY
WHERE DEPT IN (GIO',/GPO);

QUIT,

Output (partial):

LASTNAME DEPT GRADE XMASBON
FEEffffrfrfrffrffffeerrfeerrrfees
GLADSTONE GIO 10 100
GLYNN GPO 10 400
SILVER GIO 10 100
BARNHART GIO 12 100
SILVAY GPO 12 600
BARBER GPO 12 600
FERRIO GIO 13 300
LOUDEN GIO 13 300
SMITH GIO 13 300
VERNLUND GIO 13 300
CARPENTER GPO 14 600

Summary Functions

Summary functions summarize column valuesfor al
rowsin atable producing an aggregate value. Rowswill
be summarized to the lowestlogical summary. If all
columns on the SELECT statement are summary
functions then the summary will be based upon al rowsin
the table.

Some common statistics that the SQL procedure supports
are:

AVG, MEAN mean of values

COUNT, FREQ, N number of nonmissing values
NMISS number of missing values
MAX maximum value

MIN minimum value

RANGE range from MIN to MAX
SUM sum of values

Example:

I would like to show the average salary, the total salary,
the minimum salary and maximum salary for the entire
employeetable.

PROC SQL;
SELECT AVG(SALARY) AS AVSAL,
SUM(SALARY) AS SUMSAL,
MIN(SALARY) AS MINSAL,
MAX(SALARY) AS MAXSAL
FROM CLASS.EMPLOY;
QUIT,

Outpuit:

AVSAL SUMSAL MINSAL MAXSAL

FEEEFFEffrffffffffffffffrffrefffifreffes
23273.91 535300 9500 41600

What is produced by the following query?

PROC SQL;
SELECT DEPT, SUM(SALARY), SUM(BONUS)
FROM CLASS.EMPLOY
WHERE DEPT = 'GIO";

Output: (partial):

DEPT
FEEFFFFfFrrfrffffffffreef
GI0 315600 23854
GI0 315600 23854
GI0 315600 23854

When summary functions and detail values are used in the
SELECT statement without a GROUP BY , the summary
will be for the entire table although each detail row will

be displayed. In this case we are seeing arow for each
employee in department GIO with the total salary and

total bonus for the entire department displayed.

Grouping Data

To summarize and display datain groups, use a GROUP
BY clause with column functions.

GROUPBY columnl[,column, ...]

To arrangeresultsin a particular order (ascending or
descending) usean ORDER BY statement.

Example:

| would like to select the department and summarize the
average salary, total salary, minimum salary and
maximum salary from the employeetable. | would liketo
group the summary values by department and order the
results by descending average salary.

PROC SQL;

SELECT DEPT, AVG(SALARY) AS AVSAL,
SUM(SALARY) AS SUMSAL,
MIN(SALARY) AS MINSAL,
MAX(SALARY) AS MAXSAL

FROM CLASS.EMPLOY

GROUP BY DEPT

ORDER BY AVSAL DESC;

QUIT;

Outpuit:

DEPT AVSAL SUMSAL MINSAL MAXSAL
FEEEFFEfffffffffffffffffrffrefffifreffesf

GIO 24276 315600 9500 41600
GPO 23980 119900 18600 32500
RIO 21050 42100 18600 23500
FIN 20900 20900 20900 20900
110 18400 36800 18300 18500

With SQL we can also easily calculate values using
subtotals. Thisrequiresthat the summary valuesare
remerged back into the detail table. Fortunately SQL
handlesall of thison itsown.

Example:

| would like to select an employee's department and last
name and cal cul ate the employee's percent of salary
against the department subtotal from the employeetable.
| would like to order the output by descending salary
percent.

PROC SQL;
SELECT DEPT, LASTNAME,
SALARY / SUM(SALARY) AS PERCSAL
FORMAT = PERCENT®6.
FROM CLASS.EMPLOY
GROUP BY DEPT
ORDER BY PERCSAL DESC;

QUIT;
Output (partial):

DEPT LASTNAME PERCSAL
FEEFFFEFfrrrfffffffffffffef

FIN JACKSON 100%
R1I0 RYAN 56%
110 JONES 50%
110 DAVIDSON 50%
R10 WOOD 44%
GPO GLYNN 27%
GPO CARPENTER 20%
GPO RYAN 20%

We can a so choose to display rows by selecting on
summary values. Thisrequiresthe use of the HAVING
expression. The HAVING expression follows the
GROUP BY clause. The HAVING expression selects
summary rows based on summary functions.

HAVING sgl-expression

SQL-expression isany valid SQL expression. Itis
evaluated once for each group in the query. The
HAVING expression can compare to detail rows, which
will remerge detail rows with summary rows. If thereis
no GROUPBY clause, the comparison is based on atable
summary.

Example:

I would like to select department and subtotal salary and
bonus from the employeetable. | would like to include
only those departments with total salaries greater than
$100,000. | would also like to order the output by
descending total salary.

PROC SQL;
SELECT DEPT, SUM(SALARY) AS TOTSAL
FORMAT=DOLLAR11.2,
SUM(BONUS) AS TOTBON
FORMAT=DOLLAR11.2
FROM CLASS.EMPLOY
GROUP BY DEPT
HAVING TOTSAL > 100000
ORDER BY TOTSAL DESC;
QUIT;

Outpuit:

DEPT TOTSAL TOTBON

FEEFFFFfrrfffffffffffffffrfffef
GIO $315,600.00 $23,854.30

GPO $119,900.00 $5,912.30

Joining Tables

Joining tablesis away of bringing rows from different
tablestogether. Rows are usualy joined on akey column
or columns. If the value of the key(s) in both tablesis
equal, the rows are joined.

Typesof Joins

A conceptud view of ajoin involves combining all rows
from the contributing tables and then eliminating those
that do not meet the WHERE criteria (equality on the

keys).

The actual methodology used by the SQL procedure is hot
determined by the user but by the SQL Optimizer. This
alowsthe user to focus on what they want logically and
not on the internals of how to extract it.

There are two primary types of joinsin SQL, an equi-join
and a Cartesian join.

Cartesianjoins- Do not use equality in the WHERE
clause or do not use aWHERE clause. Thisforceseach
row of thefirst table to be combined with al rows from
the second tableif they meet the WHERE criteria.

Equi-joins-Use equdlity in the WHERE clause. Rows
with matching key values are joined. The keys must be of
the same length and data type.

Both types of joins allow columns from multiple tablesto
be included in one where clause. All contributing tables
arelisted in the FROM clause. Columnswith the same
names on one or more tables must be qualified by
preceding the column name with the name of the
contributing table (separated by a period).

Example:

I would like to select an employee'slast name, location
and manager from the employee table and the department
table where the department value from the employee table
is equal to the department value on the department table.
Last name comes from the employeetable. Location and
manager come from the department table.

PROC SQL;

SELECT LASTNAME, LOCATION, MANAGER
FROM CYLIB.EMPLOY, CYLIB.DEPTFILE
WHERE EMPLOY.DEPT = DEPTFILE.DEPT

QUIT,

Output (partial):

LASTNAME LOCATION MANAGER
FEEEfFFrrfrfrfffrrfefrrrfferrreeereef
GLADSTONE WINDSOR GARCIA
GLYNN BOSTON WIER
SILVER WINDSOR GARCIA
BARNHART WINDSOR GARCIA
DAVIDSON NEW YORK LESH

Joining more than two tables:

More than two tables can be joined in asingle query. A
different key can be used to join different tables.

Example:

We havethreefilesthat we would liketo join. The
PURCHASE file contains al invoice numbers and the
department that made the purchase. The APAY (accounts
payablefile) contains avendor code and invoice amount
for each invoice. The VENDFILE contains avendor code
and relevant vendor information (name, phone).

PURCHASE APAY VENDFILE

DEPT INVNO VENDNUM

INVNUMBR INVAMT VENDNAME
VENDOR

Wewould liketo total the invoice amounts that each
department owes each vendor. To do thiswe havetojoin
the PURCHASE table to the APAY table on theinvoice
number and the APAY table to the VENDFILE on vendor
number.

PROC SQL;
SELECT DEPT, VENDNAME,
SUM(INVAMT) ASTOTAL
FROM CLASS.PURCHASE AS A,
CLASS.APAY AS B,
CLASS.VENDFILEAS C
WHERE A.INVNUMBR = B.INVNO
AND B.VENDOR = C.VENDNUM
GROUP BY DEPT, VENDNAME;

Output (partial):

DEPT VENDNAME TOTAL
frfffffrffrfrfrfrefrfrfrerefrfrerereee
GIO CANTON COMPUTER CENTER 825
GIO COUNTRY OFFICE SUPPLIES 475
GIO OTTO PRINT SHOP 500
GIO SAS INSTITUTE 3906
GPO COUNTRY OFFICE SUPPLIES 900
Creating Tables

In all of the previous examples, the result of the query has
been an output report. We could instead create a new
table (SASdataset) The CREATE statement is used to
create SQL tables as apermanent or temporary SAS data
setswith the SELECT clause providing the variablelist.

CREATE TABLE tablename AS
[SELECT list]

Example:

| would like to create atemporary table SENIORS by
selecting an employee's last name, age and gender from
the empl oyee table where the employee's age is greater
than 65. | would alike to order the table by descending

age.

PROC SQL ;
CREATE TABLE WORK.SENIORS AS
SELECT LASTNAME, AGE, GENDER
FROM CLASS.EMPLOY
WHERE AGE GT 65
ORDER BY AGE DESC;

Comparing SOL With Base SAS

Many common programming tasks can be accomplished
with either SQL or base SAS.

Example;

PROC SQL;
SELECT LASTNAME, SALARY, BONUS,
BONUS / SALARY AS BONUSPR
FORMAT=PERCENTS.
FROM CLASS.EMPLOY
WHERE DEPT EQ 'GPO";

Isthe sameas

DATA MYSET;
SET CLASS.EMPLOY;

WHERE DEPT EQ 'GPO;,
BONUSPR = BONUS / SALARY;

PROC PRINT DATA=MYSET;
FORMAT BONUSPR PERCENT®6.;
VAR LASTNAME SALARY BONUS BONUSPR,;

Data summarization comparison:

PROC SQL;

SELECT DEPT, AVG(SALARY) AS AVSAL,
SUM(SALARY) AS SUMSAL,
MIN(SALARY) AS MINSAL,
MAX(SALARY) AS MAXSAL

FROM CLASS.EMPLOY

GROUP BY DEPT

ORDER BY AVSAL DESC;

Isthe sameas

PROC MEANS DATA=CLASS.EMPLOY NWAY;
CLASS DEPT;
VAR SALARY;
OUTPUT OUT=MYSET MEAN=AVSAL
SUM=SUMSAL
MIN=MINSAL MAX=MAXSAL,

PROC SORT DATA=MYSET,;
BY AVSAL;

PROC PRINT DATA=MYSET NOOBS;
VAR DEPT AVSAL SUMSAL MINSAL MAXSAL;

Conclusion

The SQL procedureis a powerful additionto aSAS
programmers information delivery tools. It should not be
viewed as areplacement to standard SAS code but as
another potential solution.

Some explicit reasons for using the SQL procedure:
Merging 3 or more data sets without common keys.
Merging on ranges.

Summarizing on acalculated value.

Calculations involving summary values.

Selecting detail rows based on summary values.
SQL supportsidentical column names from different
tables.

The SQL compiler will figure out the optimum order
or index to usefor aquery.

ourwWNE

~

Some practical reasonsfor using the SQL procedure:

1. Lesscodeto understand and maintain by aSAS
programmer.

2. SQL is‘standard’ therefore non SAS programmers
can ‘read’ SAS programs using the SQL procedure.

3. Task specific SQL code may already exist for another
RDBMS that can easily be ported into SAS.

Some reasons not to use the SQL procedure:

1. Doesnot replace the wide variety of tools available
with SASPROCs.

No INFILE, INPUT or FILE, PUT.

Only onetable (SAS data set) created at atime.
Append datais easier than SET operators.
Sometimes more difficult to handle matched and
unmatched records.

arown

Questions, comments, and suggestions are welcome at:
ChrisYindra

C. Y. Training Associates, Inc
chris@cyassociates.com

WWW.Cyassociates.com

SR

REFERENCES RRTNER‘

SAS INSTITUTE INC.

SAS Ingtitute, Inc, SAS Guide to the SQL Procedure
SASisaregistered trademark or trademark of SAS
Ingtitute, Inc., in the US and other countries

