
Alternatives to Merging SAS Data Sets … But Be Careful

Michael J. Wieczkowski, IMS HEALTH, Plymouth Meeting, PA

Abstract

The MERGE statement in the SAS
programming language is a very useful tool in
combining or bridging information from
multiple SAS data sets. If you work with large
data sets the MERGE statement can become
cumbersome because it requires all input
data sets to be sorted prior to the execution of
the data step. This paper looks at two simple
alternative methods in SAS that can be used
to bridge information together. It also
highlights caveats to each approach to help
you avoid unwanted results.

PROC SQL can be very powerful but if you
are not familiar with SQL or if you do not
understand the dynamics of SQL “joins” it
can seem intimidating. The first part of this
paper explains to the non-SQL expert, the
advantages of using PROC SQL in place of
MERGE. It also highlights areas where
PROC SQL novices can get into trouble and
how they can recognize areas of concern.

The second section shows another
technique for bridging information together
with the help of PROC FORMAT. It uses
the CNTLIN option in conjunction with the
PUT function to replicate a merge. Caveats
to this method are listed as well.

What’s wrong with MERGE?

Nothing is wrong with using MERGE to
bridge information together from multiple
files. It is usually one of the first options that
come to mind. The general technique is to
read in the data sets, sort them by the
variable you would like to merge on then
execute the merge. Example 1A below
shows a match merge between two data
sets. One contains zip codes and states, the
other contains zip codes and cities. The
goal is to attach a city to each zip code and
state.

Example 1A:
/* Read data set #1 – zip/state file */
DATA STATES;
 LENGTH STATE $ 2 ZIP $ 5;
 INPUT ZIP $ STATE $;
CARDS;
08000 NJ
10000 NY
19000 PA
RUN;

/* Sort by variable of choice */
PROC SORT DATA=STATES;
 BY ZIP;
RUN;

/* Read data set #2 – zip/city file */
DATA CITYS;
 LENGTH ZIP $ 5 CITY $ 15;
 INPUT ZIP $ CITY $;
 CARDS;
10000 NEWYORK
19000 PHILADELPHIA
90000 LOSANGELES
RUN;

/* Sort by variable of choice */
PROC SORT DATA=CITYS;
 BY ZIP;
RUN;

/* Merge by variable of choice */
DATA CITY_ST;
 MERGE STATES CITYS;
 BY ZIP;
RUN;

PROC PRINT DATA= CITY_ST;
RUN;

The following output is produced:

OBS STATE ZIP CITY
1 NJ 08000
2 NY 10000 NEWYORK
3 PA 19000 PHILADELPHIA
4 90000 LOSANGELES

Notice above that the merged data set
shows four observations with observation 1
having no city value and observation 4

having no state value. This is because not
all of the records from the state file had a zip
code in the city file and not every zip code in
the city file had a matching zip code in the
state file. The way the merge was defined in
the data step allowed for these non-matches
to be included in the output data set.

To only keep matched observations between
the two files, the merge step can be altered
using the IN= data set option where a
variable is set to the value of 1 if the data set
contains data for the current observation,
i.e., a match in the BY variables. This is
shown in the example below.

Example 1B:
DATA CITY_ST2;
 MERGE STATES (IN=A) CITYS (IN=B);
 BY ZIP;
 IF A AND B;
RUN;

PROC PRINT DATA= CITY_ST2;
RUN;

The following output is produced:
OBS STATE ZIP CITY

1 NY 10000 NEWYORK
2 PA 19000 PHILADELPHIA

The two observations above were the only
two situations where each data set in the
MERGE statement contained common BY
variables, ZIP=10000 and ZIP=19000.
Specifying IF A AND B is telling SAS to keep
observations that have by variables in both
the STATES (a.k.a. A) and CITYS (a.k.a. B)
files. Similarly you could include
observations with ZIPs in one file but not in
the other by saying either

IF A AND NOT B; or
IF B AND NOT A;

Introduction to PROC SQL

A similar result is possible using PROC
SQL. Before showing an example of how
this is done, a brief description of SQL and
how it works is necessary. SQL (Structured
Query Language) is a very popular language
used to create, update and retrieve data in
relational databases. Although this is a
standardized language, there are many
different flavors of SQL. While most of the

different versions are nearly identical, each
contains its own “dialect” which may not
work the same from one platform to another.
These intricacies are not an issue when
using PROC SQL in SAS.

For the purpose of this paper using PROC
SQL does not require being an expert in
SQL or relational theory. The more you
know about these topics the more powerful
things you can do with PROC SQL. In my
examples it is only required that you learn a
few basic things about the SQL language
and database concepts.

In SQL/database jargon we think of columns
and tables where in SAS we refer to them as
variables and data sets. Extracting data
from a SAS data set is analogous, in SQL
talk, to querying a table and instead of
merging in SAS we perform “joins” in SQL.

The key to replicating a MERGE in PROC
SQL lies in the SELECT statement. The
SELECT statement defines the actual query.
It tells which columns (variables) you wish to
select and from which tables (data sets) you
want them selected under certain satisfied
conditions. The basic PROC SQL syntax is
as follows:

PROC SQL NOPRINT;
 CREATE TABLE newtable AS
 SELECT col1, col2, col3
 FROM table1, table2
 WHERE some condition is satisfied;

The first line executes PROC SQL. The
default for PROC SQL is to automatically
print the entire query result. Use the
NOPRINT option to suppress the printing. If
you need the data from the query result in a
data set for future processing you should
use the CREATE TABLE option as shown
on line 2 and specify the name of the new
data set. Otherwise, the CREATE TABLE
statement is not necessary as long as you
want the output to print automatically.

Lines 2 through 5 are all considered part of
the SELECT statement. Notice that the
semicolon only appears at the very end. In
the SELECT statement we define the
variables we wish to extract separated by
commas. If all variables are desired simply
put an asterisk (*) after SELECT. Be careful

if the data sets you are joining contain the
same variable name. This will be explained
more in the example to follow. The FROM
clause tells which data sets to use in your
query. The WHERE clause contains the
conditions that determine which records are
kept. The WHERE clause is not necessary
for PROC SQL to work in general but as we
are using PROC SQL to replicate a merge it
will always be necessary. Also note that the
RUN statement is not needed for PROC
SQL.

The results from the merge in example 1B
can be replicated with PROC SQL by
eliminating the two PROC SORT steps, the
MERGE data set step the PROC PRINT
step and replacing it with the following code:

Example 2A:
PROC SQL;
 SELECT A.ZIP, A.STATE, B.CITY
 FROM STATES AS A, CITYS AS B
 WHERE A.ZIP=B.ZIP;

This results in:
STATE ZIP CITY

NY 10000 NEWYORK
PA 19000 PHILADELPHIA

Notice that no CREATE TABLE line was
used since all we did in our example was
print the data set. If that’s all that is needed
then there is no use in creating a new data
set just to print it if PROC SQL can do it. If
desired, titles can be defined on the output
the same as any other SAS procedure.

Also notice in the SELECT statement that
each variable is preceded by A or B and a
period. All variables in the SELECT
statement can be expressed as a two-level
name separated by a period. The first level,
which is optional if the variable name
selected is unique between tables, refers to
the table or data set name. The second is
the variable name itself. In the example,
instead of using the table name in the first
level I used a table alias. The table aliases
get defined in the FROM clause in line 3. So
the FROM clause not only defines which
data sets to use in the query but in example
2A we also use it to define an alias for each
data set. We are calling the STATES data
set “A” and the CITYS data set “B” (the AS

keyword is optional). Aliases are useful as a
shorthand way of selecting variables in your
query when several data sets contain the
same variable name. In our example both
data sets contain the variable ZIP. If we
simply asked for the variable ZIP without
specifying which data set to use, the print
out would show both ZIP variables with no
indication of which data set either one came
from. If we used a CREATE clause without
specifying which ZIP to use, an error would
occur because SAS will not allow duplicate
variable names on the same data set.

We could also code the SELECT statement
several different ways, with and without two
level names and aliases as shown below.

• Two-level without aliases
SELECT STATES.ZIP,STATES.STATE,
CITYS.CITY

• Two-level where necessary:
SELECT STATES.ZIP, STATE, CITY

• Two-level with alias where necessary:
SELECT A.ZIP, STATE, CITY

All accomplish the same result. It’s a matter
of preference for the programmer.

Joins versus Merges

In the last example (1B) we used a type of
join called an inner join. Inner joins retrieve
all matching rows from the WHERE clause.
You may specify up to 16 data sets in your
FROM clause in an inner join. Graphically
(using only two data sets) the inner join

looks like this:

There are also joins called outer joins which
can only be performed on two tables at a
time. They retrieve all matching rows plus
any non-matching rows from one or both of
the tables depending on how the join is
defined. There are three common types of

BA

outer joins: Left joins, right joins and full
joins. Each type of join is illustrated below:

In the merge step from example 1A, the
result was equivalent to performing a full join
in PROC SQL where we ended up with not
only matching records but also all non-
matching records from each data set. The
PROC SQL code would look as follows:

PROC SQL;
 SELECT A.ZIP, A.STATE, B.CITY
 FROM STATES A FULL JOIN CITYS B
 ON A.ZIP=B.ZIP;

Outer joins use a slightly different syntax.
An ON clause replaces the WHERE clause
but both serve the same purpose in a query.
On the FROM clause, the words FULL JOIN
replace a comma to separate the tables.
Similarly for left and right joins, the word
FULL would be replaced by LEFT and
RIGHT respectively.

Comparing SQL joins with merging, the
following IF statements used in the merge
example would be equivalent to these types
of outer joins:

IF A; Left Join
IF B; Right Join

How Joins Work

In theory, when a join is executed, SAS
builds an internal list of all combinations of
all rows in the query data sets. This is
known as a Cartesian product. So for the
STATES and CITYS data sets in our
examples, a Cartesian product of these two
data sets would contain 9 observations (3 in
STATES x 3 in CITYS) and would look
conceptually like the table below.

STATE A.ZIP B.ZIP CITY
NJ 08000 10000 NEWYORK
NJ 08000 19000 PHILADELPHIA
NJ 08000 90000 LOSANGELES
�� ����� ����� ������	

NY 10000 19000 PHILADELPHIA
NY 10000 90000 LOSANGELES
PA 19000 10000 NEWYORK

� ����� �����
������
��

PA 19000 90000 LOSANGELES

The italicized rows would be the ones
actually selected in our inner join example
because the WHERE clause specified that
the zips be equal. Conceptually, SAS would
evaluate this pseudo-table row by row
selecting only the rows that satisfy the join
condition. This seems to be a highly
inefficient way of evaluation but in reality
SAS uses some internal optimizations to
make this process more efficient.

Advantages to Using PROC SQL instead
of MERGE.

There are several worthwhile advantages to
using PROC SQL instead of data step
merging. Using PROC SQL requires fewer
lines to code. In example 1B we eliminated
two PROC SORTS (6 lines of code), an
entire data step (5 lines) and a PROC
PRINT (2 lines). We replaced it with 4 lines
of PROC SQL code for a net loss of 9 lines
of code. It doesn’t sound like much but if
you normally use MERGE a lot it can add up
to something significant. Also, the fewer
lines of code the better chance of error free
code.

You also don’t need to have a common
variable name between the data sets you
are joining. This can come in handy if you

A B

Right Join

BA

Full Join

BA

Left Join

are dealing with SAS data sets created by
someone who is not aware of how you are
using them. If you were merging these data
sets you may need to rename one of the
variables on one of the data sets. The
WHERE/ON clause in PROC SQL lets you
specify each different variable name from
each data set in the join.

Another benefit is that you do not need to
sort each input data set prior to executing
your join. Since sorting can be a rather
resource intensive operation when involving
very large data sets, replacing a merge with
a PROC SQL join can potentially save you
processing time. Note that factors such as
data set indexes and the size of the data
sets can also have effects on performance.
Analysis of these different factors was not
performed because it is not within the scope
of this paper. Any references to potential
efficiency improvements are qualitative, not
quantitative.

PROC SQL also forces you to be more
diligent with variable maintenance. If you
MERGE two or more data sets and these
data sets have common variable names (not
including the BY variable), the variable on
the output data set will contain the values
from the right most data set listed on the
MERGE statement. This may not be what
you wanted and is a common oversight
when using MERGE. There is a tendency in
data step merging to carry all variables and
to not specify only the necessary variables.
In a PROC SQL join, if you are creating a
new table from two or more data sets and
those data sets have common variable
names, SAS will give an error because it will
not allow more than one variable with the
same name on the output data set. It forces
the programmer to either include only the
necessary variables in the SELECT
statement or rename them in the SELECT
statement using the following syntax:

SELECT var1 as newvar1, var2 as newvar2

You can rename the variables as they are
input to a MERGE but if you don’t do this
and variable overlaying occurs, there are no
error or warning messages.

Another advantage is that once you become
accustomed to using PROC SQL as a

novice it will give you the confidence to
explore many more of its uses. You can use
PROC SQL to perform summaries, sorts
and to query external databases. It’s a very
powerful procedure.

Things to be careful with in PROC SQL

If you are used to using MERGE and never
had any SQL experience there are a few
things you must be aware of so that you fully
understand what happens in SQL joins. The
entire Cartesian product concept is usually a
new one for most veterans of the merge.
Match merging in SAS does not work in the
same manner.

Match merging is best used in situations
where you are matching one observation to
many, many observations to one, or one
observation to one. If your input data sets
contain repeated BY variables, i.e., many to
many, the MERGE can produce unexpected
results. SAS prints a warning message in
the SASLOG if that situation exists in your
data. This is a helpful message because we
sometimes think our data is clean but
duplication of by variables can exist in each
data set without our knowledge.

PROC SQL, on the other hand, will always
build a virtual Cartesian product between the
data sets in the join. Analogously, situations
of duplicate where-clause variables will not
be identified in any way. It’s important to
understand the data.

Introduction to PROC FORMAT

We can also use PROC FORMAT along with
some help from the PUT function to replicate
a merge but first a review of PROC
FORMAT.

PROC FORMAT is often used to transform
output values of variables into a different
form. We use the VALUE statement to
create user-defined formats. For example,
let’s say we have survey response data
consisting of three questions and all of the
answers to our questions are coded as 1 for
“yes”, 2 for “no” and 3 for “maybe”. Running
a frequency on these values would show
how many people answered 1,2 or 3 but it

would be much nicer if we could actually see
what these values meant. We could code a
PROC FORMAT step like the following:

PROC FORMAT;
 VALUE ANSWER
 1='YES'
 2='NO'
 3='MAYBE';
RUN;

This creates a format called ANSWER. You
could now run a frequency on the answers to
Q1, Q2 and Q3 as follows:

PROC FREQ DATA=ANSWERS;
 FORMAT Q1 Q2 Q3 ANSWER.;
 TABLES Q1 Q2 Q3;
RUN;

We used the FORMAT statement here to
apply the conversion in the PROC step. The
output would show frequencies of “YES”,
“NO” and “MAYBE” as opposed to their
corresponding values of 1,2 and 3.

Using PROC FORMAT in this manner is fine
if you are using a static definition for your
conversion. Imagine now that you have data
from another survey but this time the answer
codes are totally different where 1 is
“Excellent”, 2 is “Good”, 3 is “Fair” and 4 is
“Poor”. You would have to re-code your
PROC FORMAT statement to reflect the
new conversion. Although it is not a lot of
work to do here, it can become cumbersome
if you have to do it every day. There is a
convenient way to lessen the maintenance.

Using CNTLIN= option
There is an option in PROC FORMAT called
CNTLIN= that allows you to create a format
from an input control data set rather than a
VALUE statement. The data set must
contain three specially named variables that
are recognized by PROC FORMAT: START,
LABEL and FMTNAME. The variable
named START would be the actual data
value you are converting from, e.g., 1, 2 or 3.
The LABEL variable would be the value you
are converting to, e.g., YES, NO, MAYBE.
The FMTNAME variable is a character string
variable that contains the name of the
format, e.g., ‘ANSWER’. You would simply
read in the data set and appropriately assign
the variable names. Then run PROC

FORMAT with the CNTLIN option. See the
following example:

DATA ANSFMT;
 INFILE external filename;
 INPUT @1 START 1.
 @3 LABEL $5;
 FMTNAME='ANSWER';
RUN;

/* The external input data set would look like:
1 YES
2 NO
3 MAYBE
*/

PROC FORMAT CNTLIN=ANSFMT;
RUN;

Both methods create the same format called
ANSWER. In this example we would not
have to go into the SAS code every time we
had a new definition of answer codes. It
allows the programmer more flexibility in
automating their program.

Replicating a MERGE with PROC
FORMAT using the PUT function.

Sometimes it may become necessary to
create an entirely new variable based on the
values in your format. It may not be enough
to simply mask the real answer value with a
temporary value such as showing the word
“YES” whenever the number 1 appears.
You may need to create a new variable
whose permanent value is actually “YES”.
This can be done using the PUT function
along with a FORMAT. Showing how the
PUT function is used, we’ll stay with our
survey example. Our data sets look like
this:

Survey Data: ANSWERS
ID Q1

111 1
222 2
333 3

Format Data: ANSFMT
START LABEL FMTNAME

1 YES ANSWER
2 NO ANSWER
3 MAYBE ANSWER

We will create a new variable using the PUT
function that will be the value of the
transformed Q1 variable. The format of the
PUT function is: PUT(variable name,format).
An example of the program code would look
like:

DATA ANSWERS;
 SET ANSWERS;
 Q1_A = PUT(Q1,ANSWER.);
RUN;

The output data set would look like this:

ID Q1 Q1_A
111 1 YES
222 2 NO
333 3 MAYBE

We have in effect “merged” on the Q1_A
variable. An advantage to using this method
in place of the merge would be in a situation
where we had several variables (Q1, Q2,
etc.) that all required the same
transformation. You could just apply another
PUT statement for each variable rather than
perform multiple merges and renaming of
merge variables.

Limitations and things to be careful with
using the PUT function.

You must be careful that all expected values
of your “before” variables have a
corresponding value in the format list. If a
value in the data exists that has no matching
value in the format data set then the new
variable will retain the value of the “before”
variable as a character string. There are
other options in PROC FORMAT such as
OTHER and _ERROR_ that can be used to
highlight these types of situations. These
options will not be discussed here.

This method is best used when you would
only need to merge on one variable from
another data set. If we had a data set
containing eight different attributes that we
want added to a master file, it would require
creating eight CNTLIN data sets and eight
PROC FORMATS before executing eight
PUT functions. A MERGE or PROC SQL
would be better suited in such a case.

Conclusions

As you can see, there are other alternatives
in SAS to using the traditional MERGE when
combining data set information. It is not too
difficult to learn a few beginner lines of
PROC SQL code to execute what most
merges do. The PROC FORMAT / CNTLIN
/ PUT method is also a quick way to get
limited information from other data sets.
Hopefully you will try out these new methods
and expand you SAS knowledge in the
process.

References

SAS Language Reference, Version 6, First
Edition.

SAS Procedures Guide, Version 6, Third
Edition.

SAS Guide to the SQL Procedure, Version
6, First Edition.
SAS is a registered trademark of the SAS
Institute, Inc., Cary, NC USA.

The Practical SQL Handbook, Third Edition;
Bowman, Emerson, Darnovsky

Acknowledgements

Thanks to Perry Watts, Sr. Statistical
Programmer, IMS Health and John Gerlach,
SAS consultant at IMS Health, for providing
various ideas, suggestions and technical
assistance.

Author Information

Michael Wieczkowski
IMS HEALTH
660 West Germantown Pike
Plymouth Meeting, PA 19462
Email: Mwieczkowski@us.imshealth.com

