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• Inefficient dissemination of statistical methods:
– Many good methods contributions from biostatistics, 

psychometrics, etc are underutilized in practice
• Fragmented presentation of methods:

– Technical descriptions in many different journals
– Many different pieces of limited software

• Mplus: Integration of methods in one framework
– Easy to use: Simple, non-technical language, graphics
– Powerful: General modeling capabilities

Mplus Background

• Mplus versions
– V1: November 1998
– V3: March 2004

– V2: February 2001
– V4: February 2006

• Mplus team: Linda & Bengt Muthén, Thuy Nguyen, 
Tihomir Asparouhov, Michelle Conn
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General Latent Variable Modeling Framework
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Mplus

Several programs in one 

• Structural equation modeling

• Item response theory analysis

• Latent class analysis

• Latent transition analysis

• Survival analysis

• Multilevel analysis

• Complex survey data analysis

• Monte Carlo simulation

Fully integrated in the general latent variable framework
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Overview (Continued)

Multilevel Analysis

8

Used when data have been obtained by cluster sampling
and/or unequal probability sampling to avoid biases in
parameter estimates, standard errors, and tests of model fit
and to learn about both within- and between-cluster
relationships.

Analysis Considerations

• Sampling perspective
• Aggregated modeling – SUDAAN

• TYPE = COMPLEX
– Clustering, sampling weights, stratification 

(Asparouhov, 2005)

Analysis With Multilevel Data
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• Multilevel perspective
• Disaggregated modeling – multilevel modeling

• TYPE = TWOLEVEL
– Clustering, sampling weights, stratification

• Multivariate modeling
• TYPE = GENERAL

– Clustering, sampling weights, stratification
• Combined sampling and multilevel perspective

• TYPE = COMPLEX TWOLEVEL
• Clustering, sampling weights, stratification

Analysis With Multilevel Data (Continued)

10

Analysis Areas

• Multilevel regression analysis
• Multilevel path analysis
• Multilevel factor analysis
• Multilevel SEM
• Multilevel growth modeling 
• Multilevel latent class analysis
• Multilevel latent transition analysis
• Multilevel growth mixture modeling

Analysis With Multilevel Data (Continued)
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Complex Survey Data Analysis
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Consider nested, random-effects ANOVA for unit i in cluster j,

yij = v + ηj + εij ; i = 1, 2,…, nj ; j = 1,2,…, J.       (44)

Random sample of J clusters (e.g. schools).

With timepoint as i and individual as j, this is a repeated
measures model with random intercepts. 

Consider the covariance and variances for cluster members i = k
and i = l,

Coυ(ykj , ylj) = V(η), (45)
V(ykj) = V(ylj) = V(η) + V(ε), (46)

resulting in the intraclass correlation

ρ(ykj , ylj) = V(η)/[V(η) + V(ε)]. (47)

Interpretation: Between-cluster variability relative to total
variation, intra-cluster homogeneity.

Intraclass Correlation
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NLSY Household Clusters
Household                 # of Households* Intraclass Correlations for Siblings 
Type
(# of respondents) Year Heavy Drinking

0.04198832Five
0.091985170Four

5

634
1,985
5,944

Six

Three
Two
Single

0.061989

0.121984
0.181983
0.191982

Total number of households: 8,770

Total number of respondents: 12,686

Average number of respondents per household: 1.4

*Source: NLS User’s Guide, 1994, p.247
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Design Effects

Consider cluster sampling with equal cluster sizes and the
sampling variance of the mean.

VC : correct variance under cluster sampling
VSRS : variance assuming simple random sampling

VC  ≥ VSRS but cluster sampling more convenient, less
expensive.

DEFF = VC / VSRS = 1 + (s – 1) ρ, (47)

where s is the common cluster size and ρ is the intraclass
correlation (common range: 0.00 – 0.50).
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Random Effects ANOVA Example

200 clusters of size 10 with intraclass correlation 0.2 analyzed
as:

• TYPE = TWOLEVEL

• TYPE = COMPLEX

• Regular analysis, ignoring clustering

DEFF = 1 + 9 * 0.2 = 2.8

16

Input For Two-Level 
Random Effects ANOVA Analysis

TYPE = TWOLEVEL;ANALYSIS:

%WITHIN%
y;
%BETWEEN%
y;

MODEL:

FILE = anova.dat;DATA:

NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

VARIABLE:

Random effects ANOVA data
Two-level analysis with balanced data

TITLE:
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Output Excerpts Two-Level 
Random Effects ANOVA Analysis

Model Results

31.2930.0250.779Y
Variances

Within Level
Est./S.E.S.E.Estimates

0.0760.0380.003Y
Means

Between Level

7.4960.0280.212Y
Variances
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Input For Complex 
Random Effects ANOVA Analysis

TYPE = COMPLEX;ANALYSIS:

FILE = anova.dat;DATA:

NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

VARIABLE:

Random effects ANOVA data
Complex analysis with balanced data

TITLE:
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Output Excerpts Complex
Random Effects ANOVA Analysis

Model Results

0.0760.0380.003Y
Means

27.5380.0360.990Y
Variances

Est./S.E.S.E.Estimates

20

TYPE = MEANSTRUCTURE;ANALYSIS:

FILE = anova.dat;DATA:

NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

VARIABLE:

Random effects ANOVA data
Ignoring clustering

TITLE:

Input For Random Effects ANOVA Analysis
Ignoring Clustering

!
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Output Excerpts Random Effects 
ANOVA Analysis Ignoring Clustering

Model Results

0.1310.0220.003Y
Means

31.6230.0310.990Y
Variances

Note: The estimated mean has SE = 0.022 instead of the correct 0.038

Est./S.E.S.E.Estimates
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Further Readings On Complex Survey Data
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Two-Level Regression Analysis

24

Cluster-Specific Regressions

(1) yij = ß0j + ß1j xij + rij (2a) ß0j = γ00 + γ01 wj + u0j

(2b) ß1j = γ10 + γ11 wj + u1j

j = 1

j = 2

j = 3

y

x

β1

w

β0

w

Individual i in cluster j
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Two-level analysis (individual i in cluster j):

yij :  individual-level outcome variable
xij :  individual-level covariate
wj :  cluster-level covariate

Random intercepts, random slopes:

Level 1 (Within) : yij = ß0j + ß1j xij + rij , (1)

Level 2 (Between) :  ß0j = γ00 + γ01 wj + u0j , (2a)

Level 2 (Between) :  ß1j = γ10 + γ11 wj + u1j . (2b)

• Mplus gives the same estimates as HLM/MLwiN ML (not REML): 
• V (r) (residual variance for level 1) 
• γ00 , γ01, γ10 , γ11 , V(u0), V(u1), Cov(u0, u1)

• Centering of x: subtracting grand mean or group (cluster) mean

Two-Level Regression Analysis With Random
Intercepts And Random Slopes In Multilevel Terms
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• The data—National Education Longitudinal Study 
(NELS:88)

• Base year Grade 8—followed up in Grades 10 and 12

• Students sampled within 1,035 schools—approximately 
26 students per school, n = 14,217

• Variables—reading, math, science, history-citizenship-
geography, and background variables

NELS Data
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BetweenWithin

m92

s1

s2

mean_ses

catholic

per_adva

private
s1

s2

stud_ses

female

m92

NELS Math Achievement Regression

28

TITLE: NELS math achievement regression

DATA: FILE IS completev2.dat;
! National Education Longitudinal Study (NELS)
FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2
f18.2 f8.0 4f8.2;

VARIABLE: NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92
m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp
algebra retain aca_back female per_mino hw_time
salary dis_fair clas_dis mean_col per_high unsafe 
num_frie teaqual par_invo ac_track urban size rural 
private mean_ses catholic stu_teac per_adva tea_exce
tea_res;

USEV = m92 female stud_ses per_adva private catholic 
mean_ses;

!per_adva = percent teachers with an MA or higher

WITHIN = female stud_ses;
BETWEEN = per_adva private catholic mean_ses;
MISSING = blank;
CLUSTER = school;
CENTERING = GRANDMEAN (stud_ses per_adva mean_ses);

Input For NELS Math Achievement Regression
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ANALYSIS: TYPE = TWOLEVEL RANDOM MISSING;

MODEL: 
%WITHIN%
s1 | m92 ON female;
s2 | m92 ON stud_ses;

%BETWEEN%
m92 s1 s2 ON per_adva private catholic mean_ses;
m92 WITH s1 s2;

OUTPUT: TECH8 SAMPSTAT;

Input For NELS Math Achievement Regression
(Continued)

30

10468
68028

26234
38063
64112
67574

42640
68595

26790
87842

1995

18219
68254

85508
93569
95317
35719

83048
98582

45025
11662

52654

74791
83234

68153
10904
44395
93859

61407
93469

81263
27159

75862

14464
9471

31646
5095

98461
9208

65407
40402
66512

41743
4570

89863

15773
6842

74400
51670
12835
25784

83085
75498

56241
56214

20770
10910
47555
80675

60835
66125
77381
34139

83390
86733
50880
20048

4

877
45854

97616
3496

72193
70718

5

39685
81069

67708
17543

41412
11517

3

214748286060281
38454

2
89239326611

N = 10,933

Summary of Data

Number of clusters 902

Size (s) Cluster ID with Size s

Output Excerpts NELS Math 
Achievement Regression
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315728984236
5327234

9951642

16515678324458626
622091882634292597105661925

7690984728
8288727

9480247120536601278631
3617730

19091
67835
93599

50626
70024
97947

22874
60328
15426

75115

80553

36988
6411
79570 4603

32

43

24
23

109268512522

Average cluster size  12.187
Estimated Intraclass Correlations for the Y Variables

Intraclass
Variable Correlation

M92 0.107

Output Excerpts NELS Math
Achievement Regression (Continued)

32

Tests of Model Fit
Loglikelihood

H0 Value -39390.404
Information Criteria

Number of Free parameters 21
Akaike (AIC) 78822.808
Bayesian (BIC) 78976.213
Sample-Size Adjusted BIC 78909.478

(n* = (n + 2) / 24)

-0.9440.780-0.736CATHOLIC

Within Level
Residual 
Variances

61.4421.14970.577M92
Between Level

-0.5420.428-0.232MEAN_SES

-0.1590.844-0.134PRIVATE
0.1000.8410.084PER_ADVA

S1         ON

Model Results
Estimates S.E. Est./S.E.

Output Excerpts NELS Math 
Achievement Regression (Continued)
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4.0661.4115.740S1

-2.6120.562-1.467CATHOLIC
3.6400.2831.031MEAN_SES

0.2680.7270.195PER_ADVA
1.3581.1081.505PRIVATE

Intercepts

-4.4271.007-4.456M92
S1          WITH

S2         WITH

1.1780.6500.765CATHOLIC

M92        ON

0.3220.3990.128M92

9.8140.3993.912MEAN_SES

-3.8760.211 -0.819 S1
297.2480.185 55.136 M92

Residual Variances
31.9000.152 4.841 S2

0.5830.5270.307S2

8.6491.0038.679M92

-2.6770.706-1.890PRIVATE
2.5870.5211.348PER_ADVA

Est./S.E.S.E.EstimatesS2         ON

Output Excerpts NELS Math 
Achievement Regression (Continued)
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Cross-Level Influence
Between-level (level 2) variable w influencing within-level (level 1) 
y variable: 

Random intercept

yij = β0j + β1 xij + rij

β0j = γ00 + γ01 wj + u0j

Mplus:
MODEL:

%WITHIN%;
y ON x;   ! estimates beta1 
%BETWEEN%;
y ON w;   ! y is the same as beta0

! estimates gamma01
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Cross-Level Influence (Continued)
Cross-level interaction, or between-level (level 2) variable
moderating a within level (level 1) relationship: 

Random slope

yij = β0 + β1j xij + rij

β1j = γ10 + γ11 wj + u1j

Mplus:
MODEL:

%WITHIN%;
beta1 | y ON x;
%BETWEEN%;
beta1 ON w;      ! estimates gamma11

36

• In single-level modeling random slopes ßi describe variation across     
individuals i,

yi = αi + ßi xi + εi , (100)
αi = α + ζ0i , (101)
ßi = ß + ζ1i , (102)

resulting in heteroscedastic residual variances
V ( yi | xi ) = V ( ßi ) +    . (103)

• In two-level modeling random slopes ßj describe variation across 
clusters j

yij = aj + ßj xij + εij , (104)
aj = a + ζ0j , (105)
ßj = ß + ζ1j , (106)

A small variance for a random slope typically leads to slow convergence of the 
ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are
• Observed covariates
• Observed dependent variables 
• Continuous latent variables

2
ix θ

Random Slopes
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Further Readings On 
Multilevel Regression Analysis

Ludtke Marsh, Robitzsch, Trautwein, Asparouhov, Muthen
(2007). Analysis of group level effects using multilevel modeling:
Probing a latent covariate approach. Submitted for publication.

Raudenbush, S.W. & Bryk, A.S. (2002).  Hierarchical linear models: 
Applications and data analysis methods.  Second edition.  Newbury 
Park, CA: Sage Publications.

Snijders, T. & Bosker, R. (1999).  Multilevel analysis. An introduction 
to basic and advanced multilevel modeling.  Thousand Oakes, CA: 
Sage Publications.

38

Logistic And Probit Regression




