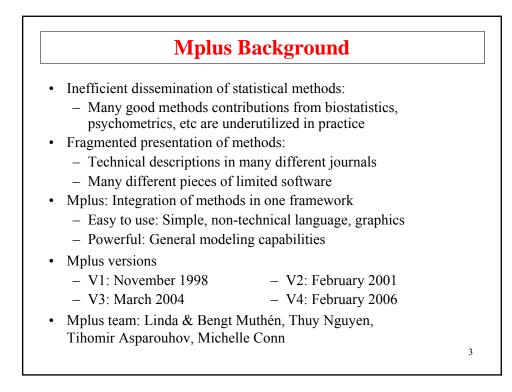
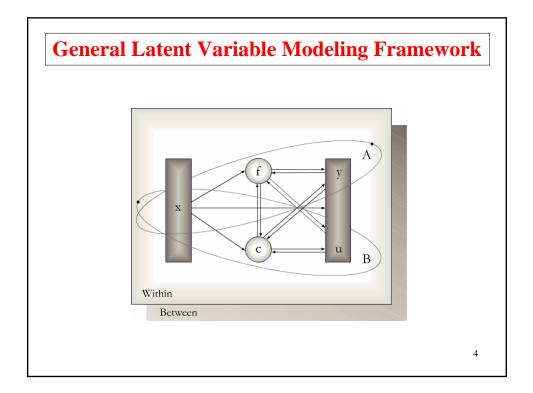
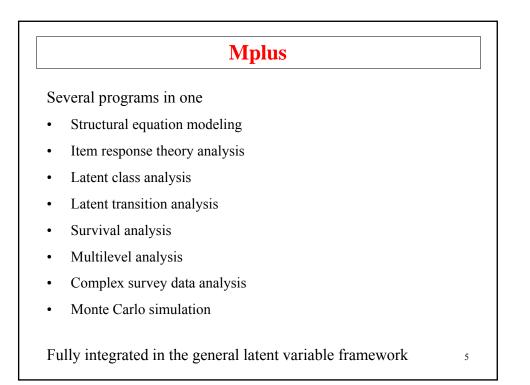
Mplus Short Courses Day 5A

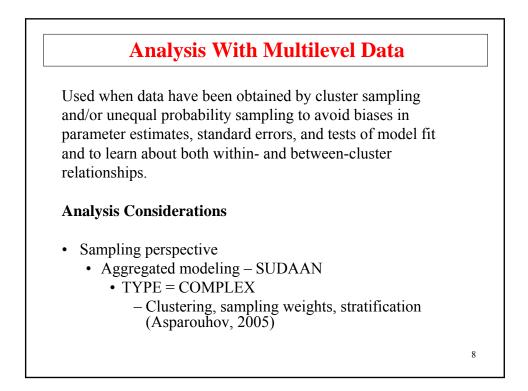

Multilevel Modeling With Latent Variables Using Mplus

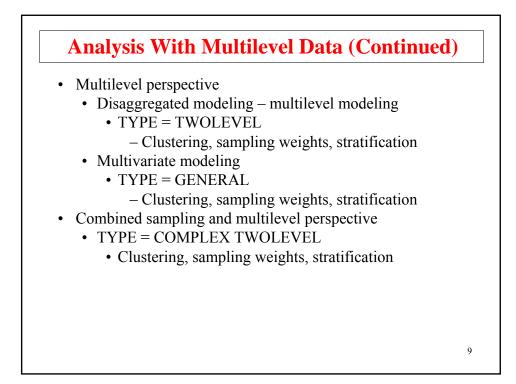

Linda K. Muthén Bengt Muthén

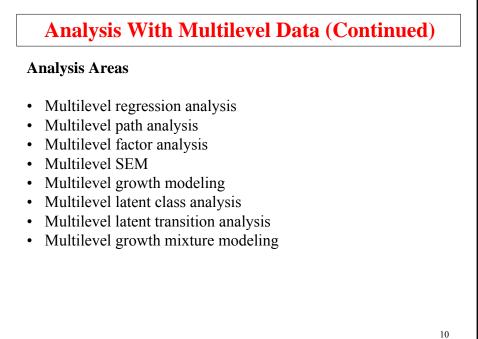

Copyright © 2007 Muthén & Muthén www.statmodel.com

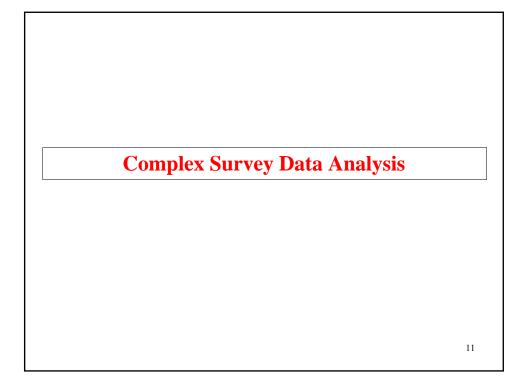
1

Table Of Contents General Latent Variable Modeling Framework 4 Complex Survey Data Analysis 11 Intraclass Correlation 12 Design Effects 14 Two-Level Regression Analysis 23 Two-Level Logistic Regression 44 Two-Level Path Analysis 50 Two-Level Factor Analysis 65 SIMS Variance Decomposition 77 Aggression Items 82 Two-Level Factor Analysis With Covariates 86 Multiple Group, Two-Level Factor Analysis 106 Two-Level SEM 122 Practical Issues Related To The Analysis Of Multilevel Data 133 Technical Aspects Of Multilevel Modeling 136 Multivariate Approach To Multilevel Modeling 145 Twin Modeling 150 Multilevel Growth Models 152 Three-Level Modeling 156 Multilevel Discrete-Time Survival Analysis 175 2 References 180

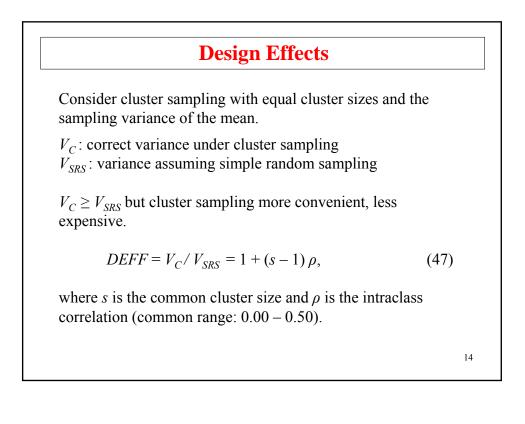


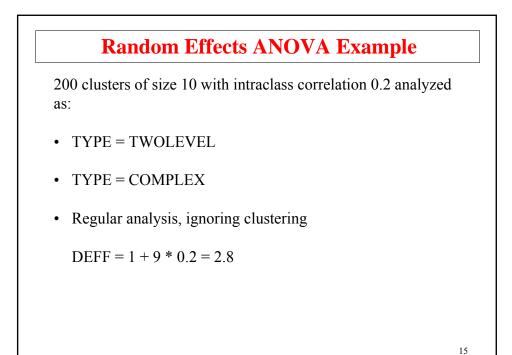





	Overview			
Single-Level Analysis				
	Cross-Sectional	Longitudinal		
Continuous Observed And Latent Variables	Day 1 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	<i>Day 2</i> Growth Analysis		
Adding Categorical Observed And Latent Variables	Day 3 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling Latent Class Analysis Factor Mixture Analysis Structural Equation Mixture Modeling	Day 4 Latent Transition Analysis Latent Class Growth Analysis Growth Analysis Growth Mixture Modeling Discrete-Time Survival Mixture Analysis Missing Data Analysis		

	Multilevel Analysis	3
	Cross-Sectional	Longitudinal
Continuous Observed And Latent Variables	Day 5 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	<i>Day 5</i> Growth Analysis
Adding Categorical Observed And Latent Variables	Day 5 Latent Class Analysis Factor Mixture Analysis	Day 5 Growth Mixture Modeling

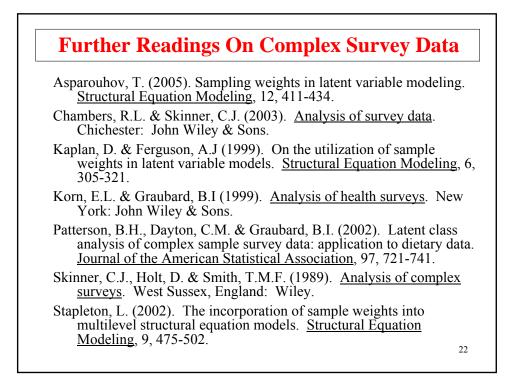




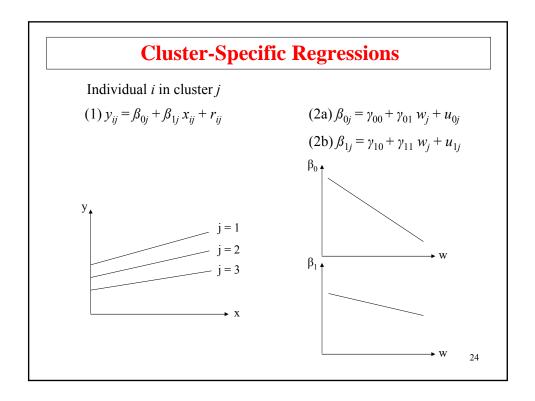
Intraclass Correlation	
Consider nested, random-effects ANOVA for unit <i>i</i> in cluster	er <i>j</i> ,
$y_{ij} = v + \eta_j + \varepsilon_{ij}$; $i = 1, 2,, n_j$; $j = 1, 2,, J$. (44)	4)
Random sample of J clusters (e.g. schools).	
With timepoint as <i>i</i> and individual as <i>j</i> , this is a repeated measures model with random intercepts.	
Consider the covariance and variances for cluster members and $i = l$,	i = k
$Cov(y_{ki}, y_{li}) = V(\eta),$	(45)
$V(y_{kj}) = V(y_{lj}) = V(\eta) + V(\varepsilon),$	(46)
resulting in the intraclass correlation	
$\rho(y_{kj}, y_{lj}) = V(\eta) / [V(\eta) + V(\varepsilon)].$	(47)
Interpretation: Between-cluster variability relative to total	
variation, intra-cluster homogeneity.	

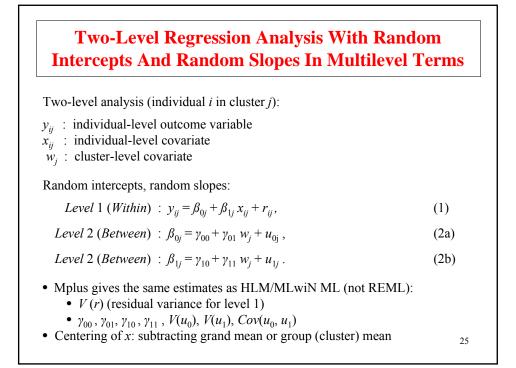
Household Type	# of Households*	Intraclass Corr	relations for Siblings
(# of respondent	s)	Year	Heavy Drinking
Single	5,944	1982	0.19
Two	1,985	1983	0.18
Three	634	1984	0.12
Four	170	1985	0.09
Five	32	1988	0.04
Six	5	1989	0.06
Total number of	households: 8,770		
Total number of	respondents: 12,686		
Average numbe	r of respondents per hous	ehold: 1.4	

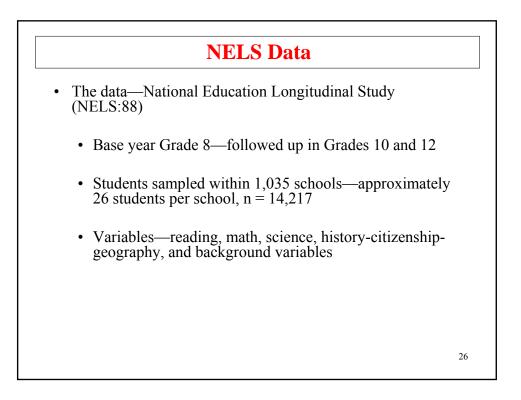
Input For Two-Level Random Effects ANOVA Analysis		
TITLE:	Random effects ANOVA data Two-level analysis with balanced data	
DATA:	<pre>FILE = anova.dat;</pre>	
VARIABLE:	NAMES = y cluster; USEV = y; CLUSTER = cluster;	
ANALYSIS:	TYPE = TWOLEVEL;	
MODEL:	%WITHIN% y; %BETWEEN% y;	
		16

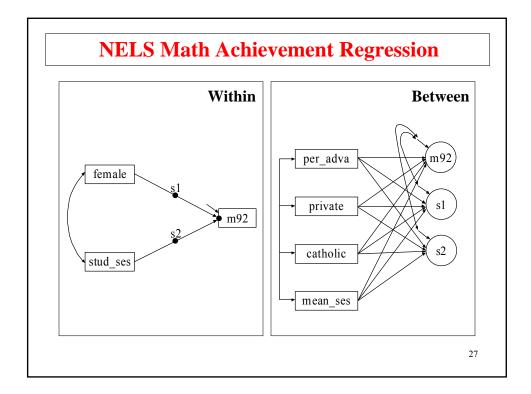

Output Excerpts Two-Level Random Effects ANOVA Analysis				5
Model Results				
	Estimates	S.E.	Est./S.E.	
Within Level				
Variances				
Y	0.779	0.025	31.293	
Between Level				
Means				
Y	0.003	0.038	0.076	
Variances				
Y	0.212	0.028	7.496	
				17


R	Input For Complex andom Effects ANOVA Analysis	
TITLE:	Random effects ANOVA data Complex analysis with balanced data	
DATA:	<pre>FILE = anova.dat;</pre>	
VARIABLE:	NAMES = y cluster; USEV = y; CLUSTER = cluster;	
ANALYSIS:	TYPE = COMPLEX;	
		18


	Output Ex dom Effec		Complex VA Analysis	5
Model Results	5			
	Estimates	S.E.	Est./S.E.	
Means				
Y	0.003	0.038	0.076	
Variances				
Y	0.990	0.036	27.538	
				19

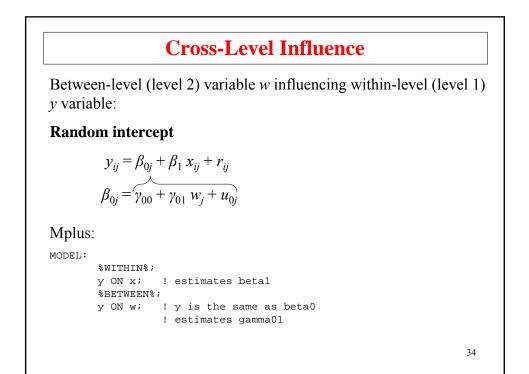

TITLE:	Random effects ANOVA data Ignoring clustering	
DATA:	FILE = anova.dat;	
VARIABLE:	NAMES = y cluster; USEV = y;	
!	CLUSTER = cluster;	
ANALYSIS:	TYPE = MEANSTRUCTURE;	


		•	dom Effects ing Clusteriı	ıg
Model Result	s			
	Estimates	S.E.	Est./S.E.	
Means				
Y	0.003	0.022	0.131	
Variances				
Y	0.990	0.031	31.623	
Note: The es	timated mean has	SE = 0.022 in	nstead of the correct	0.038



TITLE:	NELS math achievement regression
DATA:	<pre>FILE IS completev2.dat; ! National Education Longitudinal Study (NELS) FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2 f18.2 f8.0 4f8.2;</pre>
VARIABLE:	NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp algebra retain aca_back female per_mino hw_time salary dis_fair clas_dis mean_col per_high unsafe num_frie teaqual par_invo ac_track urban size rural private mean_ses catholic stu_teac per_adva tea_exce tea_res;
	USEV = m92 female stud_ses per_adva private catholic mean_ses;
	<pre>!per_adva = percent teachers with an MA or higher</pre>
	WITHIN = female stud_ses; BETWEEN = per_adva private catholic mean_ses; MISSING = blank; CLUSTER = school; CENTERING = GRANDMEAN (stud_ses per_adva mean_ses);
	28

Input For NELS Math Achievement Regression (Continued)


ANALYSIS	TYPE = TWOLEVEL RANDOM MISSING;	
MODEL:	%WITHIN% s1 m92 ON female; s2 m92 ON stud_ses;	
	<pre>%BETWEEN% m92 s1 s2 ON per_adva private catholic mean_ses; m92 WITH s1 s2; TECH8 SAMPSTAT;</pre>	
001201.	IECHO SAMPSIAI/	

Output Excerpts NELS Math Achievement Regression								
			N = 2	L0,933				
Summar	y of Data							
Number	r of clust	ers	902					
Size ((s) Cluste	er ID w	ith Siz	e s				
1	89863	75862	52654	1995	32661	89239	56214	
2	41743 4570	81263 27159	45025 11662	26790 87842	60281 38454	82860	56241	21474
3	65407 40402 66512		83048 98582		41412 11517	67708 17543	83085 75498	39685 81069
4	31646 5095 98461	10904	85508 93569 95317		83390 86733 50880	60835 66125 77381	74400 51670 12835	20770 10910 47555
5	9208 14464	93859 74791		67574 10468	20048 72193	34139 97616	25784 15773	80675
	9471	83234	68254	68028	70718	3496	6842	45854 30

Output Excerpts NELS Math								
Achievement Regression (Continued)								
22	79570	15426	97947	93599	85125	10926	4603	
23	6411	60328	70024	67835				
24	36988	22874	50626	19091				
25	56619	59710	34292	18826	62209			
26	44586	67832	16515					
27	82887							
28	847	76909						
30	36177							
31	12786	53660	47120	94802				
32	80553							
34	53272							
36	89842	31572						
42	99516							
43	75115							
Average clu	uster size	12.18	7					
Estimated 3				or the	Y Variał	oles		
Variable Co	Intraclass prrelation							
м92	0.107							

Output Excerpts NELS Math Achievement Regression (Continued)						
Tests of Model H	0					
Loglikelihood						
H0 Val	ue	-393	90.404			
Sample	an (BIC) -Size Adjusted = (n + 2) / 24	BIC 789	976.213 909.478			
	Estimates	S.E.	Est./S.E.			
Within Level						
Residual Variances						
M92	70.577	1.149	61.442			
Between Level						
S1 ON						
PER_ADVA	0.084	0.841	0.100			
PRIVATE	-0.134	0.844				
CATHOLIC	-0.736	0.780	-0.944			

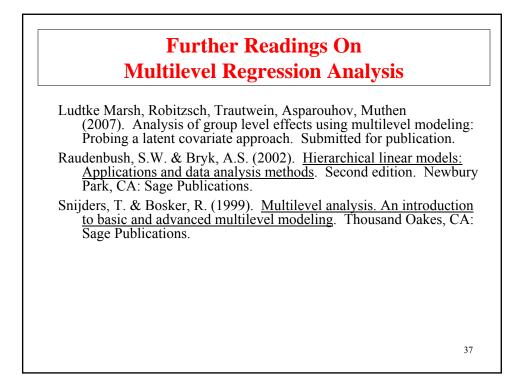
Output Excerpts NELS Math						
1	Achieve	ment Reg	ression	n (Continue	ed)	
S2	ON	Estimates	S.E.	Est./S.E.		
PER_A	ADVA	1.348	0.521	2.587		
PRIV	ATE	-1.890	0.706	-2.677		
CATH	OLIC	-1.467	0.562	-2.612		
MEAN	_SES	1.031	0.283	3.640		
м92	ON					
PER_A	ADVA	0.195	0.727	0.268		
PRIV	ATE	1.505	1.108	1.358		
CATH	OLIC	0.765	0.650	1.178		
MEAN	_SES	3.912	0.399	9.814		
S1	WITH					
M92		-4.456	1.007	-4.427		
S2	WITH					
M92		0.128	0.399	0.322		
Interce	ots					
M92		55.136	0.185	297.248		
S1		-0.819	0.211	-3.876		
S2		4.841	0.152	31.900		
Residua	al Variances	3				
M92		8.679	1.003	8.649		
S1		5.740	1.411	4.066		
S2		0.307	0.527	0.583	33	

Cross-Level Influence (Continued)

Cross-level interaction, or between-level (level 2) variable moderating a within level (level 1) relationship:

Random slope

$$y_{ij} = \beta_0 + \beta_{1j} x_{ij} + r_{ij}$$
$$\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1j}$$


Mplus:

MODEL:

```
%WITHIN%;
betal | y ON x;
%BETWEEN%;
betal ON w; ! estimates gammall
```

35

Random Slopes	
• In single-level modeling random slopes β_i describe vari individuals <i>i</i> ,	ation across
$y_i = \alpha_i + \beta_i x_i + \varepsilon_i$,	(100)
$lpha_i=lpha+\zeta_{0i}$,	(101)
$eta_i=eta+\zeta_{1i}$,	(102)
resulting in heteroscedastic residual variances	
$V(y_i \mid x_i) = V(\beta_i) x_i^2 + \theta.$	(103)
 In two-level modeling random slopes β_j describe variate clusters j 	ion across
$y_{ij} = a_j + \beta_j x_{ij} + \varepsilon_{ij}$	(104)
$a_j = a + \zeta_{0j}$,	(105)
$\beta_i = \beta + \zeta_{1i}^{3}$	(106)
A small variance for a random slope typically leads to slo ML-EM iterations. This suggests respecifying the slope as	-
Mplus allows random slopes for predictors that are • Observed covariates	
Observed dependent variablesContinuous latent variables	36

