Mplus Short Courses Day 2

Growth Modeling With Latent Variables Using Mplus

Linda K. Muthén Bengt Muthén

Copyright © 2007 Muthén & Muthén www.statmodel.com

1

Table Of Contents General Latent Variable Modeling Framework Typical Examples Of Growth Modeling 13 Basic Modeling Ideas 20 Growth Modeling Frameworks 24 The Latent Variable Growth Model In Practice 37 Simple Examples Of Growth Modeling 54 Growth Model With Free Time Scores 67 Covariates In The Growth Model 77 Centering 90 Further Practical Issues 96 101 Piecewise Growth Modeling Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates 108 Advanced Growth Models 119 Regressions Among Random Effects 121 Growth Modeling With Parallel Processes 131 Modeling With Zeroes 143 Two-Part Growth Modeling 149 Multiple Populations 165 Growth Modeling With Multiple Indicators 193 Embedded Growth Models 220 Power For Growth Models 230 2 References 250

Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics, psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics
 - Powerful: General modeling capabilities
- · Mplus versions
 - V1: November 1998
 V2: February 2001
 V3: March 2004
 V4: February 2006
- Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir Asparouhov, Michelle Conn

3

Statistical Analysis With Latent Variables A General Modeling Framework

Statistical Concepts Captured By Latent Variables

Continuous Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

Categorical Latent Variables

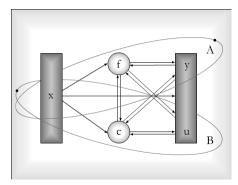
- Latent classes
- Clusters
- Finite mixtures
- · Missing data

Statistical Analysis With Latent Variables A General Modeling Framework (Continued)

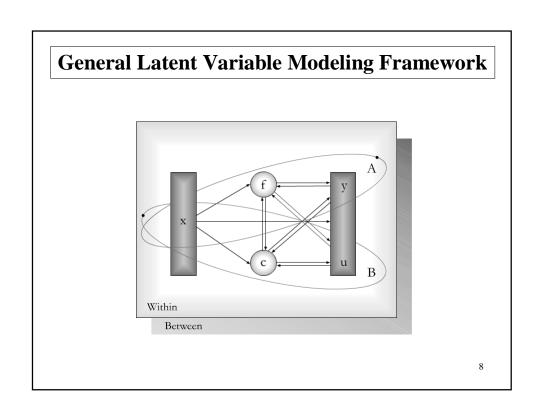
Models That Use Latent Variables

Continuous Latent Variables

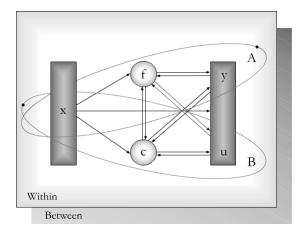
- Factor analysis models
- Structural equation models
- Growth curve models
- Multilevel models

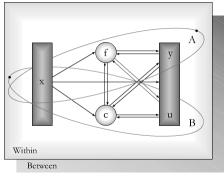

Categorical Latent Variables

- Latent class models
- Mixture models
- Discrete-time survival models
- Missing data models


Mplus integrates the statistical concepts captured by latent variables into a general modeling framework that includes not only all of the models listed above but also combinations and extensions of these models.

5


General Latent Variable Modeling Framework


- Observed variables
 - x background variables (no model structure)
 - y continuous and censored outcome variables
 - categorical (dichotomous, ordinal, nominal) and count outcome variables
- Latent variables
 - continuous variables
 - interactions among f's
 - c categorical variables
 - multiple c's

General Latent Variable Modeling Framework

General Latent Variable Modeling Framework

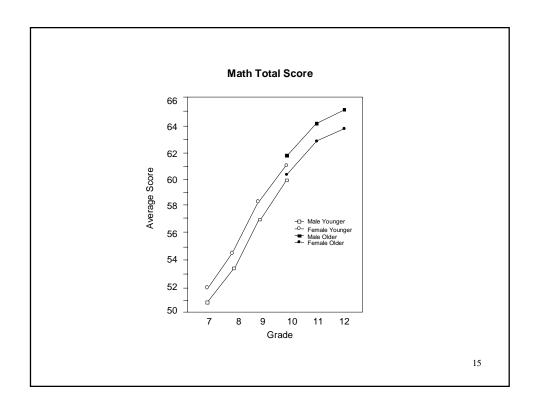
- Observed variables
 - background variables (no model structure)
 - continuous and censored outcome variables
 - categorical (dichotomous, ordinal, nominal) and count outcome variables
- Latent variables
 - continuous variables
 - interactions among f's categorical variables
 - - $\ multiple \ c's$

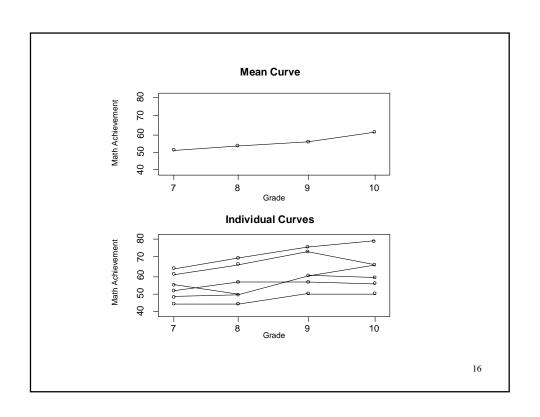
	Overview					
Single-Level Analysis						
	Cross-Sectional	Longitudinal				
Continuous Observed And Latent Variables	Day 1 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	Day 2 Growth Analysis				
Adding Categorical Observed And Latent Variables	Day 3 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling Latent Class Analysis Factor Mixture Analysis Structural Equation Mixture Modeling	Day 4 Latent Transition Analysis Latent Class Growth Analysis Growth Analysis Growth Mixture Modeling Discrete-Time Survival Mixture Analysis Missing Data Analysis				

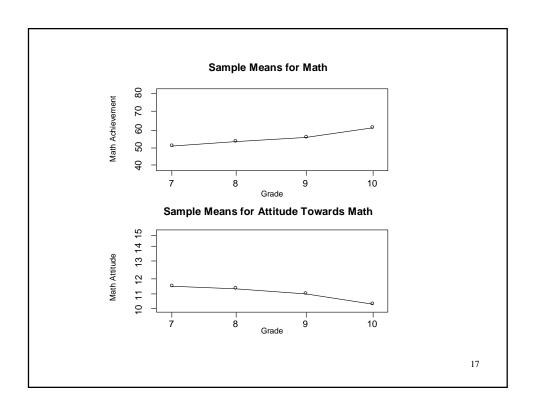
Overview (Continued)

Multilevel Analysis

	Cross-Sectional	Longitudinal
Continuous Observed And Latent Variables	Day 5 Regression Analysis Path Analysis Exploratory Factor Analysis Confirmatory Factor Analysis Structural Equation Modeling	Day 5 Growth Analysis
Adding Categorical Observed And Latent Variables	Day 5 Latent Class Analysis Factor Mixture Analysis	Day 5 Growth Mixture Modeling

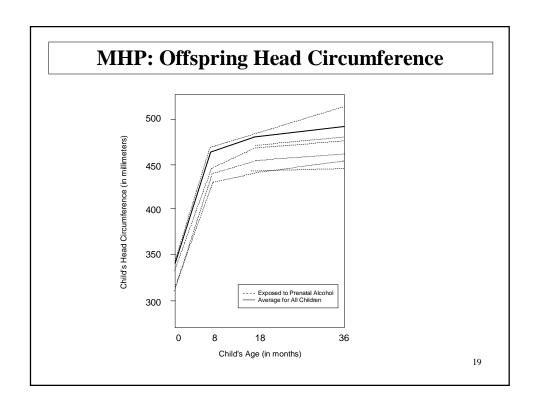

Typical Examples Of Growth Modeling


13


LSAY Data

Longitudinal Study of American Youth (LSAY)

- Two cohorts measured each year beginning in 1987
 - Cohort 1 Grades 10, 11, and 12
 - Cohort 2 Grades 7, 8, 9, and 10
- Each cohort contains approximately 60 schools with approximately 60 students per school
- Variables math and science achievement items, math and science attitude measures, and background variables from parents, teachers, and school principals
- Approximately 60 items per test with partial item overlap across grades adaptive tests



Maternal Health Project Data

Maternal Health Project (MHP)

- Mothers who drank at least three drinks a week during their first trimester plus a random sample of mothers who used alcohol less often
- Mothers measured at fourth month and seventh month of pregnancy, at delivery, and at 8, 18, and 36 months postpartum
- Offspring measured at 0, 8, 18 and 36 months
- Variables for mothers demographic, lifestyle, current environment, medical history, maternal psychological status, alcohol use, tobacco use, marijuana use, other illicit drug use
- Variables for offspring head circumference, height, weight, gestational age, gender, and ethnicity

Basic Modeling Ideas

Longitudinal Data: Three Approaches

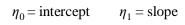
Three modeling approaches for the regression of outcome on time (n is sample size, T is number of time points):

- Use all *n* x *T* data points to do a single regression analysis: Gives an intercept and a slope estimate for all individuals does not account for individual differences or lack of independence of observations
- Use each individual's *T* data points to do *n* regression analyses: Gives an intercept and a slope estimate for each individual. Accounts for individual differences, but does not account for similarities among individuals
- Use all *n* x *T* data points to do a single random effect regression analysis: Gives an intercept and a slope estimate for each individual. Accounts for similarities among individuals by stipulating that all individuals' random effects come from a single, common population and models the non-independence of observations as show on the next page

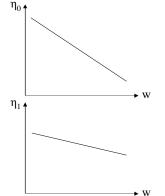
21

Individual Development Over Time

$$(1) y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$$

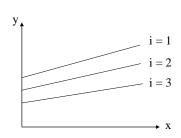

(2a)
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$

$$t = timepoint$$
 $i = individual$

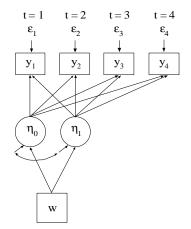

(2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$


x = time score

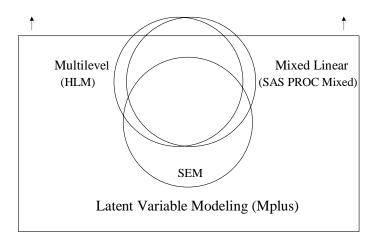
w = time-invariant covariate



y = outcome



Individual Development Over Time


- $(1) y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}$
- (2a) $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$
- (2b) $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$

23

Growth Modeling Frameworks

Growth Modeling Frameworks/Software

25

Comparison Summary Of Multilevel, Mixed Linear, And SEM Growth Models

- Multilevel and mixed linear models are the same
- SEM differs from the multilevel and mixed linear models in two ways
 - Treatment of time scores
 - Time scores are data for multilevel and mixed linear models -- individuals can have different times of measurement
 - Time scores are parameters for SEM growth models -- time scores can be estimated
 - Treatment of time-varying covariates
 - Time-varying covariates have random effect coefficients for multilevel and mixed linear models -- coefficients vary over individuals
 - Time-varying covariates have fixed effect coefficients for SEM growth models -- coefficients vary over time

Random Effects: Multilevel And Mixed Linear Modeling

Individual i (i = 1, 2, ..., n) observed at time point t (t = 1, 2, ..., T).

Multilevel model with two levels (e.g. Raudenbush & Bryk, 2002, HLM).

• Level 1:
$$y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}$$
 (39)

• Level 2:
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
 (40)

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i} \tag{41}$$

$$\kappa_i = \alpha + \gamma \, w_i + \zeta_i \tag{42}$$

27

Random Effects: Multilevel And Mixed Linear Modeling (Continued)

Mixed linear model:

$$y_{ti} = fixed \ part + random \ part$$
 (43)

$$= \alpha_0 + \gamma_0 w_i + (\alpha_1 + \gamma_1 w_i) x_{ti} + (\alpha + \gamma w_i) w_{ti} + \zeta_{0i} + \zeta_{1i} x_{ti} + \zeta_i w_{ti} + \varepsilon_{ti}.$$
(44)

$$+\zeta_{0i} + \zeta_{1i} x_{ti} + \zeta_i w_{ti} + \varepsilon_{ti}. \tag{45}$$

E.g. "time x w_i " refers to γ_1 (e.g. Rao, 1958; Laird & Ware, 1982; Jennrich & Sluchter, 1986; Lindstrom & Bates, 1988; BMDP5V; Goldstein, 1995, MLn; SAS PROC MIXED - Littell et al. 1996 and Singer, 1999).

Random Effects: SEM And Multilevel Modeling

SEM (Tucker, 1958; Meredith & Tisak, 1990; McArdle & Epstein 1987; SEM software):

Measurement part:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \kappa_t w_{ti} + \varepsilon_{ti}.$$
 (46)

Compare with level 1 of multilevel:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}.$$
 (47)

Multilevel approach:

- x_{ti} as data: Flexible individually-varying times of observation
- Slopes for time-varying covariates vary over individuals

29

Random Effects: SEM And Multilevel Modeling (Continued)

SEM approach:

- x_t as parameters: Flexible growth function form
- Slopes for time-varying covariates vary over time points

Structural part (same as level 2, except for κ_t):

$$\eta_{0i} = \alpha_0 + \gamma_0 \, w_i + \zeta_{0i}, \tag{48}$$

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i}, \tag{49}$$

 κ_t not involved (parameter).

Random Effects: Mixed Linear Modeling And SEM

Mixed linear model in matrix form:

$$\mathbf{y}_{i} = (y_{1i}, y_{2i}, ..., y_{Ti})'$$
 (51)

$$= X_i \alpha + Z_i b_i + e_i. (52)$$

Here, X, Z are design matrices with known values, α contains fixed effects, and b contains random effects. Compare with (43) - (45).

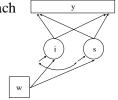
31

Random Effects: Mixed Linear Modeling And SEM (Continued)

SEM in matrix form:

$$y_i = v + \Lambda \, \eta_i + K \, x_i + \varepsilon_i, \tag{53}$$

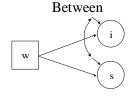
$$\eta_i = \alpha + B \, \eta_i + \Gamma \, x_i + \zeta_i \,. \tag{54}$$


$$\begin{aligned} y_i &= \textit{fixed part} + \textit{random part} \\ &= \mathbf{v} + \Lambda \; (I - B)^{-1} \; \alpha + \Lambda \; (I - B)^{-1} \; \Gamma \; x_i + K \; x_i \\ &+ \Lambda \; (I - B)^{-1} \; \zeta_i + \varepsilon_i. \end{aligned}$$

Assume $x_{ti} = x_t$, $\kappa_i = \kappa_t$ in (39). Then (39) is handled by (53) and (40) – (41) are handled by (54), putting x_t in Λ and w_{ti} , w_i in x_i .

Need for Λ_i , K_i , B_i , Γ_i .

Growth Modeling Approached In Two Ways: Data Arranged As Wide Versus Long


• Wide: Multivariate, Single-Level Approach

- $y_{ti} = i_i + s_i \times time_{ti} + \varepsilon_{ti}$
- i_i regressed on w_i s_i regressed on w_i
- Long: Univariate, 2-Level Approach (CLUSTER = id)

time s i y

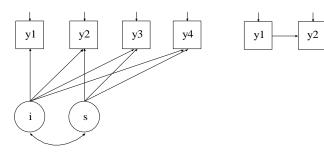
Within

The intercept i is called y in Mplus

33

Multilevel Modeling In A Latent Variable Framework

Integrating multilevel and SEM analyses (Asparouhov & Muthén, 2002).


Flexible combination of random effects and other latent variables:

- Multilevel models with random effects (intercepts, slopes)
 - Individually-varying times of observation read as data
 - Random slopes for time-varying covariates
- SEM with factors on individual and cluster levels
- · Models combining random effects and factors, e.g.
 - Cluster-level latent variable predictors with multiple indicators
 - Individual-level latent variable predictors with multiple indicators
- Special applications
 - Random coefficient regression (no clustering; heteroscedasticity)
 - Interactions between continuous latent variables and observed variables

Alternative Models For Longitudinal Data

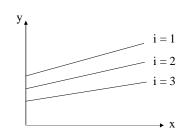
Growth Curve Model

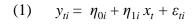
Auto-Regressive Model

Hybrid Models

Curran & Bollen (2001) McArdle & Hamagami (2001)

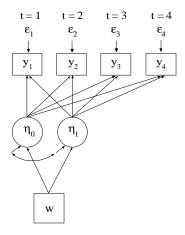
35


Advantages Of Growth Modeling In A Latent Variable Framework

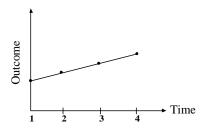

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

The Latent Variable Growth Model In Practice

37

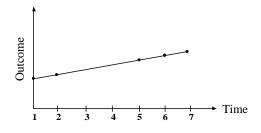

Individual Development Over Time

(2a)
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$


(2b)
$$\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$$

Specifying Time Scores For Linear Growth Models

Linear Growth Model


• Need two latent variables to describe a linear growth model: Intercept and slope

• Equidistant time scores 0 1 2 3 for slope: 0 .1 .2 .3

39

Specifying Time Scores For Linear Growth Models (Continued)

- Nonequidistant time scores for slope:
- 0 1 4 5 6

Interpretation Of The Linear Growth Factors

Model:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \qquad (17)$$

where in the example t = 1, 2, 3, 4 and $x_t = 0, 1, 2, 3$:

$$y_{1i} = \eta_{0i} + \eta_{1i} \, 0 + \varepsilon_{1i}, \tag{18}$$

$$\eta_{0i} = y_{1i} - \varepsilon_{1i}, \tag{19}$$

$$y_{2i} = \eta_{0i} + \eta_{1i} \, 1 + \varepsilon_{2i}, \tag{20}$$

$$y_{3i} = \eta_{0i} + \eta_{1i} 2 + \varepsilon_{3i}, \tag{21}$$

$$y_{4i} = \eta_{0i} + \eta_{1i} \, 3 + \varepsilon_{4i}. \tag{22}$$

41

Interpretation Of The Linear Growth Factors (Continued)

Interpretation of the intercept growth factor

 η_{0i} (initial status, level):

Systematic part of the variation in the outcome variable at the time point where the time score is zero.

Unit factor loadings

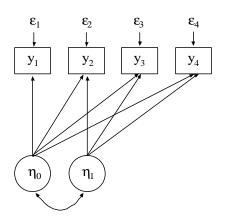
Interpretation of the slope growth factor

 η_{1i} (growth rate, trend):

Systematic part of the increase in the outcome variable for a time score increase of one unit.

• Time scores determined by the growth curve shape

Interpreting Growth Model Parameters


- Intercept Growth Factor Parameters
 - Mean
 - Average of the outcome over individuals at the timepoint with the time score of zero;
 - When the first time score is zero, it is the intercept of the average growth curve, also called initial status
 - Variance
 - Variance of the outcome over individuals at the timepoint with the time score of zero, excluding the residual variance

43

Interpreting Growth Model Parameters (Continued)

- Linear Slope Growth Factor Parameters
 - Mean average growth rate over individuals
 - Variance variance of the growth rate over individuals
 - Covariance with Intercept relationship between individual intercept and slope values
- Outcome Parameters
 - Intercepts not estimated in the growth model fixed at zero to represent measurement invariance
 - Residual Variances time-specific and measurement error variation
 - Residual Covariances relationships between timespecific and measurement error sources of variation across time

Latent Growth Model Parameters And Sources Of Model Misfit

45

Latent Growth Model Parameters For Four Time Points

Linear growth over four time points, no covariates.

Free parameters in the H_1 unrestricted model:

• 4 means and 10 variances-covariances

Free parameters in the H_0 growth model:

(9 parameters, 5 d.f.):

- · Means of intercept and slope growth factors
- Variances of intercept and slope growth factors
- Covariance of intercept and slope growth factors
- Residual variances for outcomes

Fixed parameters in the H_0 growth model:

- Intercepts of outcomes at zero
- · Loadings for intercept growth factor at one
- Loadings for slope growth factor at time scores
- · Residual covariances for outcomes at zero

Latent Growth Model Sources Of Misfit

Sources of misfit:

- Time scores for slope growth factor
- Residual covariances for outcomes
- Outcome variable intercepts
- Loadings for intercept growth factor

Model modifications:

- Recommended
 - Time scores for slope growth factor
 - Residual covariances for outcomes
- Not recommended
 - Outcome variable intercepts
 - Loadings for intercept growth factor

47

Latent Growth Model Parameters For Three Time Points

Linear growth over three time points, no covariates.

Free parameters in the H_1 unrestricted model:

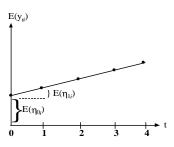
• 3 means and 6 variances-covariances

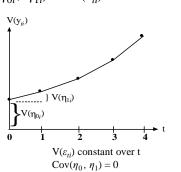
Free parameters in the H_{θ} growth model

(8 parameters, 1 d.f.)

- Means of intercept and slope growth factors
- Variances of intercept and slope growth factors
- Covariance of intercept and slope growth factors
- Residual variances for outcomes

Fixed parameters in the H_0 growth model:


- · Intercepts of outcomes at zero
- Loadings for intercept growth factor at one
- Loadings for slope growth factor at time scores
- Residual covariances for outcomes at zero

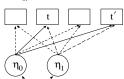

Growth Model Means And Variances

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti},$$

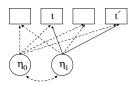
 $x_t = 0, 1, ..., T - 1.$

Expectation (mean; E) and variance (V):

$$\begin{split} E\left(y_{ti}\right) &= E\left(\eta_{0i}\right) + E\left(\eta_{1i}\right)x_{t},\\ V\left(y_{ti}\right) &= V\left(\eta_{0i}\right) + V\left(\eta_{1i}\right)x_{t}^{2}\\ &+ 2x_{t}Cov\left(\eta_{0i},\ \eta_{1i}\right) + V\left(\varepsilon_{ti}\right) \end{split}$$

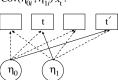


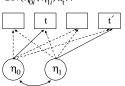
Growth Model Covariances


$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti},$$

 $x_t = 0, 1, ..., T - 1.$

$$\begin{split} Cov(y_{ti},y_{t'i}) &= V(\eta_{0i}) + V(\eta_{1i}) \, x_t \, x_{t'} \\ &\quad + Cov(\eta_{0i} \,,\, \eta_{1i}) \, (x_t + x_{t'}) \\ &\quad + Cov(\varepsilon_{ti} \,,\, \varepsilon_{t'i} \,). \end{split}$$


 $V(\eta_{0t})$:


 $V(\eta_{1i}) x_{t} x_{t'}$:

 $\operatorname{Cov}(\eta_{0i}, \eta_{1i}) x_{t}$:

 $\operatorname{Cov}(\eta_{0i}, \eta_{1i}) x_{t'}$:

50

Growth Model Estimation, Testing, And Model Modification

- Estimation: Model parameters
 - Maximum-likelihood (ML) estimation under normality
 - ML and non-normality robust s.e.'s
 - Quasi-ML (MUML): clustered data (multilevel)
 - WLS: categorical outcomes
 - ML-EM: missing data, mixtures
- · Model Testing
 - Likelihood-ratio chi-square testing; robust chi square
 - Root mean square of approximation (RMSEA):
 Close fit (≤ .05)
- Model Modification
 - Expected drop in chi-square, EPC
- Estimation: Individual growth factor values (factor scores)
 - Regression method Bayes modal Empirical Bayes
 - Factor determinacy

51

Alternative Growth Model Parameterizations

Parameterization 1 – for continuous outcomes

$$y_{ti} = \mathbf{0} + \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \tag{32}$$

$$\eta_{0i} = \boldsymbol{\alpha}_0 + \zeta_{0i},\tag{33}$$

$$\eta_{1i} = \alpha_1 + \zeta_{1i}. \tag{34}$$

Parameterization 2 – for categorical outcomes and multiple indicators

$$y_{ti} = \mathbf{v} + \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \tag{35}$$

$$\eta_{0i} = \mathbf{0} + \zeta_{0i},\tag{36}$$

$$\eta_{1i} = \alpha_1 + \zeta_{1i}. \tag{37}$$

Alternative Growth Model Parameterizations

Parameterization 1 – for continuous outcomes

- Outcome variable intercepts fixed at zero
- Growth factor means free to be estimated

MODEL: i BY y1-y4@1;

s BY y1@0 y2@1 y3@2 y4@3;

[y1-y4@0 i s];

Parameterization 2 – for categorical outcomes and multiple indicators

- Outcome variable intercepts constrained to be equal
- Intercept growth factor mean fixed at zero

MODEL: i BY y1-y4@1;

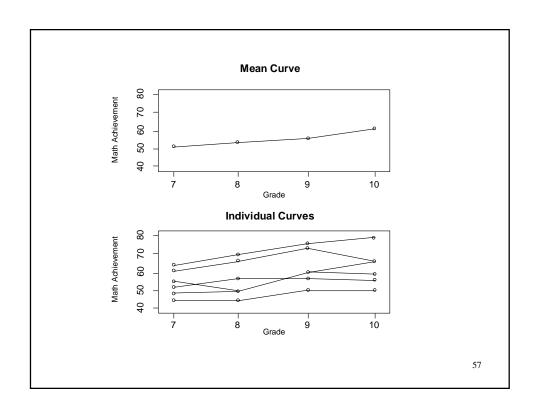
s BY y1@0 y2@1 y3@2 y4@3;

[y1-y4] (1); [i@0 s];

53

Simple Examples Of Growth Modeling

Steps In Growth Modeling


- Preliminary descriptive studies of the data: means, variances, correlations, univariate and bivariate distributions, outliers, etc.
- Determine the shape of the growth curve from theory and/or data
 - Individual plots
 - Mean plot
- Consider change in variance across time
- Fit model without covariates using fixed time scores
- Modify model as needed
- Add covariates

55

LSAY Data

The data come from the Longitudinal Study of American Youth (LSAY). Two cohorts were measured at four time points beginning in 1987. Cohort 1 was measured in Grades 10, 11, and 12. Cohort 2 was measured in Grades 7, 8, 9, and 10. Each cohort contains approximately 60 schools with approximately 60 students per school. The variables measured include math and science achievement items, math and science attitude measures, and background information from parents, teachers, and school principals. There are approximately 60 items per test with partial item overlap across grades – adaptive tests.

Data for the analysis include the younger females. The variables include math achievement from Grades 7, 8, 9, and 10 and the background variables of mother's education and home resources.

Input For LSAY TYPE=BASIC Analysis

TITLE: LSAY For Younger Females With Listwise Deletion

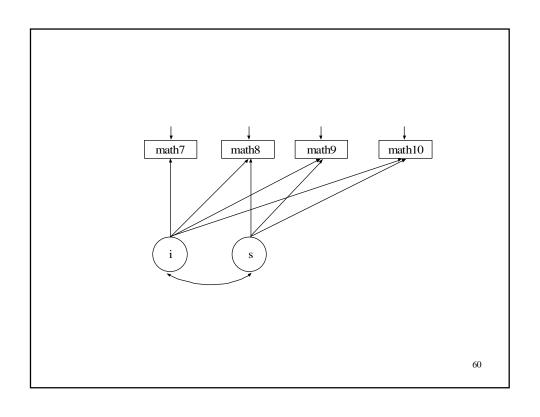
TYPE=BASIC Analysis

DATA: FILE IS lsay.dat;

FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

 $\verb|math|10| \verb|att7| \verb|att8| \verb|att9| \verb|att10| gender| \verb|mothed| \verb|homeres|;$


USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10;

ANALYSIS: TYPE = BASIC; PLOT: TYPE = PLOT1;

Means	n	1 = 984		
Means	MATH7	MATH8	MATH9	MATH10
	52.750	55.411	59.128	61.796
Covariances				
	MATH7	MATH8	MATH9	MATH10
MATH7	81.107			
MATH8	67.663	82.829		
MATH9	73.150	76.513	100.986	
MATH10	77.952	82.668	95.158	131.326
Correlations				
	MATH7	MATH8	MATH9	MATH10
MATH7	1.000			
MATH8	0.826	1.000		
MATH9	0.808	0.837	1.000	
MATH10	0.755	0.793	0.826	1.000

Input For LSAY Linear Growth Model Without Covariates

TITLE: LSAY For Younger Females With Listwise Deletion

Linear Growth Model Without Covariates

DATA: FILE IS lsay.dat;

FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

math10 att7 att8 att9 att10 gender mothed homeres;

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999); USEVAR = math7-math10;

ANALYSIS: TYPE = MEANSTRUCTURE;

MODEL: i BY math7-math10@1;

s BY math7@0 math8@1 math9@2 math10@3;

[math7-math10@0];

[i s];

SAMPSTAT STANDARDIZED MODINDICES (3.84); OUTPUT:

Alternative language:

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

61

Output Excerpts LSAY Linear Growth Model Without Covariates

Tests Of Model Fit

Chi-Square Test of Model Fit

22.664 Degrees of Freedom P-Value 0.0004

CFI/TLI

CFI 0.995 TLI0.994

RMSEA (Root Mean Square Error Of Approximation)

0.060 Estimate

90 Percent C.I. 0.036 0.086

Probability RMSEA <= .05

SRMR (Standardized Root Mean Square Residual)

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Modification Indices

		M.I.	E.P.C.	Std.E.P.C.	StdYX E.P.C.
S	BY MATH7	6.793	0.185	0.254	0.029
S	BY MATH8	14.694	-0.169	-0.233	-0.025
S	BY MATH9	9.766	0.155	0.213	0.021

63

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Model Results

		Estimates	S.E.	Est./S.E.	Std	StdYX
I	ВУ					
	MATH7	1.000	.000	.000	8.029	.906
	MATH8	1.000	.000	.000	8.029	.861
	MATH9	1.000	.000	.000	8.029	.800
	MATH10	1.000	.000	.000	8.029	.708
S	BY					
	MATH7	.000	.000	.000	.000	.000
	MATH8	1.000	.000	.000	1.377	.148
	MATH9	2.000	.000	.000	2.753	.274
	млтш1 О	3 000	000	000	4 130	364

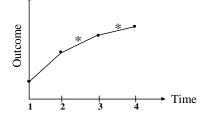
Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

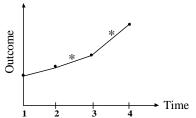
	Estimates	S.E.	Est./S.E.	Std	StdYX
Means					
I	52.623	.275	191.076	6.554	6.554
S	3.105	.075	41.210	2.255	2.255
Intercepts					
MATH7	.000	.000	.000	.000	.000
MATH8	.000	.000	.000	.000	.000
MATH9	.000	.000	.000	.000	.000
MATH10	.000	.000	.000	.000	.000

65

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Model	villiout Co	varia	ites (Coi	IIIIIII	1)
	Estimates	S.E.	Est./S.E.	Std	StdYX
I WITH					
S	3.491	.730	4.780	.316	.316
Residual Variand	ces				
MATH7	14.105	1.253	11.259	14.105	.180
MATH8	13.525	.866	15.610	13.525	.156
MATH9	14.726	.989	14.897	14.726	.146
MATH10	25.989	1.870	13.898	25.989	.202
Variances					
I	64.469	3.428	18.809	1.000	1.000
S	1.895	.322	5.894	1.000	1.000
R-Square					
Observed					
Variable	R-Square				
MATH7	0.820				
MATH8	0.844				
MATH9	0.854				66
MATH10	0.798				00


Growth Model With Free Time Scores


67

Specifying Time Scores For Non-Linear Growth Models With Estimated Time Scores

Non-linear growth models with estimated time scores

• Need two latent variables to describe a non-linear growth model: Intercept and slope

Time scores: 0

Estimated Estimated

Interpretation Of Slope Growth Factor Mean For Non-Linear Models

- The slope growth factor mean is the change in the outcome variable for a one unit change in the time score
- In non-linear growth models, the time scores should be chosen so that a one unit change occurs between timepoints of substantive interest.
 - An example of 4 timepoints representing grades 7, 8, 9, and 10
 - Time scores of 0 1 * * slope factor mean refers to change between grades 7 and 8
 - Time scores of 0 * * 1 -slope factor mean refers to change between grades 7 and 10

69

70

Growth Model With Free Time Scores

- Identification of the model for a model with two growth factors, at least one time score must be fixed to a non-zero value (usually one) in addition to the time score that is fixed at zero (centering point)
- Interpretation—cannot interpret the mean of the slope growth factor as a constant rate of change over all timepoints, but as the rate of change for a time score change of one.
- Approach—fix the time score following the centering point at one
- Choice of time score starting values if needed
 - Means 52.75 55.41 59.13 61.80
 - Differences 2.66 3.72 2.67
 - Time scores 0 1 >2 >2+1

Input Excerpts For LSAY Linear Growth Model With Free Time Scores Without Covariates

MODEL: i s | math7@0 math8@1 math9 math10;

OUTPUT: RESIDUAL;

Alternative language:

MODEL: i BY math7-math10@1;

s BY math7@0 math8@1 math9 math10;

[math7-math10@0];

[i s];

71

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates

n = 984

Tests Of Model Fit

Chi-Square Test of Model Fit		
Value	4.222	
Degrees of Freedom	3	
P-Value	0.2373	
CFI/TLI		
CFI	1.000	
TLI	0.999	
RMSEA (Root Mean Square Error Of Approximation)		
Estimate	0.020	
90 Percent C.I.	0.000	0.061
Probability RMSEA <= .05	0.864	
SRMR (Standardized Root Mean Square Residual)		
Value	0.015	

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

Selected Estimates

		Estimates	S.E.	Est./S.E.	Std	StdYX
I	1					
	MATH7	1.000	.000	.000	8.029	.903
	MATH8	1.000	.000	.000	8.029	.870
	MATH9	1.000	.000	.000	8.029	.797
	MATH10	1.000	.000	.000	8.029	.708
S						
	MATH7	.000	.000	.000	.000	.000
	MATH8	1.000	.000	.000	1.134	.123
	MATH9	2.452	.133	18.442	2.780	.276
	MATH10	3.497	.199	17.540	3.966	.350

73

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

		Estimates	S.E.	Est./S.E.	Std	StdYX
S	WITH					
I		3.110	.600	5.186	.342	.342
Varianc	es					
I		64.470	3.394	18.994	1.000	1.000
S		1.286	.265	4.853	1.000	1.000
Means						
I		52.785	.283	186.605	6.574	6.574
s		2.586	.167	15.486	2.280	2.280

Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

Residuals

Model Estimated Means/Intercepts/Thresholds

MATH7 MATH8 MATH9 MATH10
52.785 55.370 59.123 61.827

Residuals for Means/Intercepts/Thresholds

<u>MATH7</u> <u>MATH8</u> <u>MATH9</u> <u>MATH10</u> _ _ .031

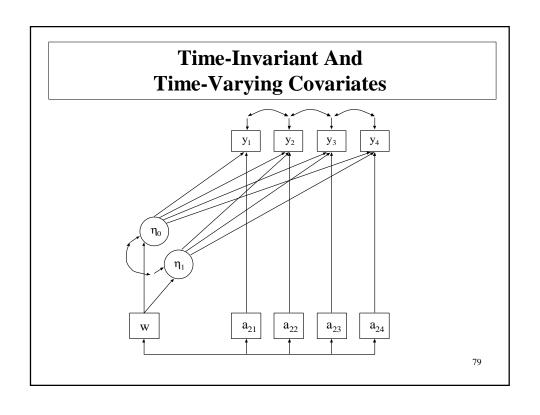
75

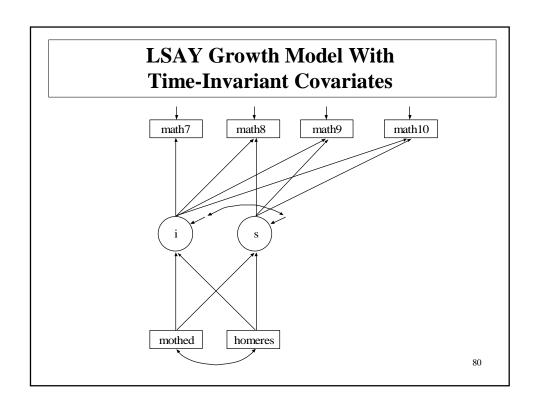
Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

Model Estimated Covariances/Correlations/Residual Correlations

	MATH7	MATH8	MATH9	MATH10
MATH7	79.025			
MATH8	67.580	85.180		
MATH9	72.094	78.356	101.588	
MATH10	75.346	82.952	93.994	128.477

Residuals for Covariances/Correlations/Residual Correlations


	MATH7	MATH8	MATH9	MATH10
MATH7	1.999			
MATH8	.014	-2.436		
MATH9	.981	-1.921	705	
MATH10	2.527	368	1.067	2.715


Covariates In The Growth Model

77

Covariates In The Growth Model

- Types of covariates
 - Time-invariant covariates—vary across individuals not time, explain the variation in the growth factors
 - Time-varying covariates—vary across individuals and time, explain the variation in the outcomes beyond the growth factors

Input Excerpts For LSAY Linear Growth Model With Free Time Scores And Covariates

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

 $\verb|math|10| \verb|att7| \verb| att8| \verb| att9| \verb| att10| \verb| gender| \verb|mothed| \verb| homeres|;$

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10 mothed homeres;

ANALYSIS: !ESTIMATOR = MLM;

MODEL: i s | math7@0 math8@1 math9 math10;

is ON mothed homeres;

Alternative language:

MODEL: i BY math7-math10@1;

s BY math7@0 math8@1 math9 math10;

[math7-math10@0];

[i s];

i s ON mothed homeres;

81

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates

n = 935

Tests Of Model Fit for ML

Chi-Square Test of Model Fit

Value 15.845
Degrees of Freedom 7
P-Value 0.0265

CFI/TLI

CFI 0.998 TLI 0.995

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.037 90 Percent C.I. 0.012 0.061

Probability RMSEA <= .05 0.794

SRMR (Standardized Root Mean Square Residual)

Value 0.015

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates (Continued)

Tests Of Model Fit for MLM

Selected Estimates For ML

Intercepts

Т

Chi-Square Test of Model Fit	
Value	8.554*
Degrees of Freedom	7
P-Value	0.2862
Scaling Correction Factor	1.852
for MLM	
CFI/TLI	
CFI	0.999
TLI	0.999
RMSEA (Root Mean Square Error Of Approximation)	
Estimate	0.015
SRMR (Standardized Root Mean Square Residual)	
Value	0.015
WRMR (Weighted Root Mean Square Residual)	
Value	0.567

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates (Continued)

Estimates S.E. Est./S.E. StdYX Std ON MOTHED 2.054 .281 7.322 .257 .247 .182 .172 .255 HOMERES 1.376 7.546 ON .103 .068 1.524 .094 .090 MOTHED HOMERES .149 .045 3.334 .136 .201 WITH 2.604 .559 4.658 .297 .297 Residual Variances 53.931 2.995 18.008 .842 .842 .942 1.134 .253 4.488 .942

.790

.221

55.531

8.398

5.484

1.695 1.695

43.877

1.859

84

5.484

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates (Continued)

R-Square

Observed	
Variable	R-Square
MATH7	0.813
MATH8	0.849
MATH9	0.861
MATH10	0.796
Latent	
Variable	R-Square
I	.158
S	.058

85

Model Estimated Average And Individual Growth Curves With Covariates

Model:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \qquad (23)$$

$$\eta_{0i} = \alpha_0 + \gamma_0 \ w_i + \zeta_{0i} ,
\eta_{1i} = \alpha_1 + \gamma_1 \ w_i + \zeta_{1i} ,$$
(24)

$$\eta_{1i} = \alpha_1 + \gamma_1 \, w_i + \zeta_{1i} \,, \tag{25}$$

Estimated growth factor means:

$$\hat{E}(\eta_{0i}) = \hat{\alpha}_0 + \hat{\gamma}_0 \overline{w} , \qquad (26)$$

$$\hat{E}(\eta_{1i}) = \hat{\alpha}_1 + \hat{\gamma}_1 \overline{w} . \tag{27}$$

Estimated outcome means:

$$\hat{E}(y_{ti}) = \hat{E}(\eta_{0i}) + \hat{E}(\eta_{1i}) x_t.$$
 (28)

Estimated outcomes for individual i:

$$\hat{y}_{ti} = \hat{\eta}_{0i} + \hat{\eta}_{1i} \ x_t \tag{29}$$

where $\hat{\eta}_{0i}$ and $\hat{\eta}_{1i}$ are estimated factor scores. \hat{y}_{ti} can be used for prediction purposes.

Model Estimated Means With Covariates

Model estimated means are available using the TECH4 and RESIDUAL options of the OUTPUT command.

Estimated Intercept Mean = Estimated Intercept +

Estimated Slope (Mothed)*

Sample Mean (Mothed) +

Estimated Slope (Homeres)*

Sample Mean (Homeres)

 $43.88 + 2.05 \times 2.31 + 1.38 \times 3.11 = 52.9$

Estimated Slope Mean = Estimated Intercept +

Estimated Slope (Mothed)*

Sample Mean (Mothed) + Estimated Slope (Homeres)*

Sample Mean (Homeres)

1.86 + .10*2.31 + .15*3.11 = 2.56

87

Model Estimated Means With Covariates (Continued)

Estimated Outcome Mean at Timepoint t =

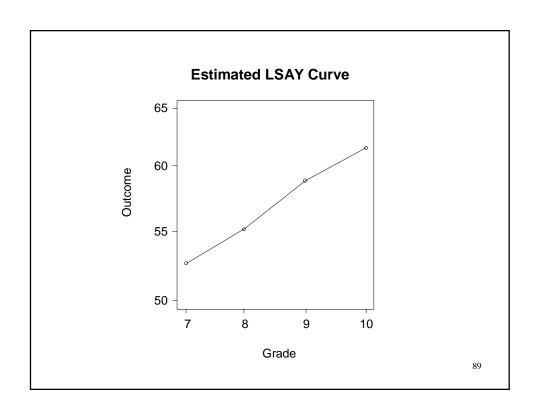
Estimated Intercept Mean +

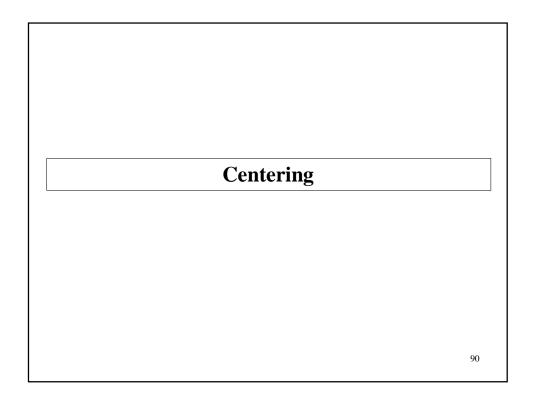
Estimated Slope Mean * (Time Score at Timepoint t)

Estimated Outcome Mean at Timepoint 1 =

52.9 + 2.56 * (0) = 52.9

Estimated Outcome Mean at Timepoint 2 =


52.9 + 2.56 * (1.00) = 55.46


Estimated Outcome Mean at Timepoint 3 =

52.9 + 2.56 * (2.45) =**59.17**

Estimated Outcome Mean at Timepoint 4 =

52.9 + 2.56 * (3.50) =**61.86**

Centering

- Centering determines the interpretation of the intercept growth factor
- The centering point is the timepoint at which the time score is zero
- A model can be estimated for different centering points depending on which interpretation is of interest
- Models with different centering points give the same model fit because they are reparameterizations of the model
- Changing the centering point in a linear growth model with four timepoints

```
Timepoints 1 2 3 4

Centering at

Time scores 0 1 2 3 Timepoint 1

-1 0 1 2 Timepoint 2

-2 -1 0 1 Timepoint 3

-3 -2 -1 0 Timepoint 4
```

91

Input Excerpts For LSAY Growth Model With Free Time Scores And Covariates Centered At Grade 10

i s | math7*-3 math8*-2 math9@-1 math10@0;

MODEL:

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates Centered At Grade 10

n = 935

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 15.845
Degrees of Freedom 7
P-Value .0265

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate .037
90 Percent C.I. .012 .061
Probability RMSEA <= .05 .794

93

Output Excerpts LSAY Growth Model With Free Time Scores And Covariates Centered At Grade 10 (Continued)

Selected Estimates

		Estimates	S.E.	Est./S.E.	Std	StdYX
I	ON					
	MOTHED	2.418	0.353	6.851	0.238	0.229
	HOMERES	1.903	0.229	8.294	0.187	0.277
S	ON					
	MOTHED	0.111	0.073	1.521	0.094	0.090
	HOMERES	0.161	0.049	3.311	0.136	0.201

Further Readings On Introductory Growth Modeling

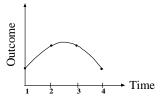
- Bijleveld, C. C. J. H., & van der Kamp, T. (1998). <u>Longitudinal data analysis:</u> <u>Designs, models, and methods</u>. Newbury Park: Sage.
- Bollen, K.A. & Curran, P.J. (2006). <u>Latent curve models</u>. A structural equation perspective. New York: Wiley.
- Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement growth using latent variable modeling. Learning and Individual Differences, Special issue: latent growth curve analysis, 10, 73-101. (#80)
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. <u>Journal of Studies on Alcohol</u>, 61, 290-300. (#83)
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Singer, J.D. & Willett, J.B. (2003). <u>Applied longitudinal data analysis.</u>
 <u>Modeling change and event occurrence</u>. New York, NY: Oxford University Press.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis</u>. An introduction to basic and advanced <u>multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.

95

Further Practical Issues

Five Ways To Model Non-Linear Growth

- Estimated time scores
- Quadratic (cubic) growth model
- Fixed non-linear time scores
- Piece-wise growth modeling
- Time-varying covariates


97

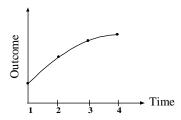
Specifying Time Scores For Quadratic Growth Models

Quadratic growth model

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \eta_{2i} x_t^2 + \varepsilon_{ti}$$

• Need three latent variables to describe a quadratic growth model: Intercept, linear slope, quadratic slope

- Linear slope time scores: 0 1 2 3
 - 0.1.2.3
- Quadratic slope time scores: 0 1 4 9

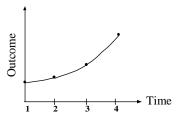

 $0\ .01\ .04\ .09$

Specifying Time Scores For Non-Linear Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores

• Need two latent variables to describe a non-linear growth model: Intercept and slope

Growth model with a logarithmic growth curve--ln(t)

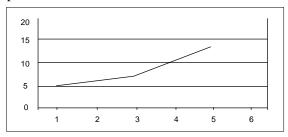


Time scores: 0 0.69 1.10 1.39

9

Specifying Time Scores For Non-Linear Growth Models With Fixed Time Scores (Continued)

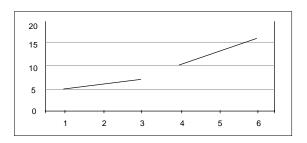
Growth model with an exponential growth curve—exp(t-1) - 1

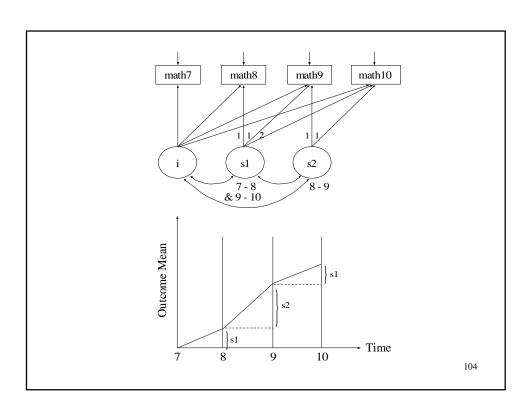

Time scores: 0 1.72 6.39 19.09

Piecewise Growth Modeling

101

Piecewise Growth Modeling


- Can be used to represent different phases of development
- Can be used to capture non-linear growth
- Each piece has its own growth factor(s)
- Each piece can have its own coefficients for covariates



One intercept growth factor, two slope growth factors

- 0 1 2 2 2 2 Time scores piece 1
- 0 0 0 1 2 3 Time scores piece 2

Piecewise Growth Modeling (Continued)

Input For LSAY Piecewise Growth Model With Covariates

MODEL: i s1 | math7@0 math8@1 math9@1 math10@2; i s2 | math7@0 math8@0 math9@1 math10@1;

i s1 s2 ON mothed homeres;

Alternative language:

MODEL: i BY math7-math10@1;

s1 BY math7@0 math8@1 math9@1 math10@2; s2 BY math7@0 math8@0 math9@1 math10@1;

[math7-math10@0];

[i s1 s2];

i s1 s2 ON mothed homeres;

105

Output Excerpts LSAY Piecewise Growth Model With Covariates

n = 935

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 11.721
Degrees of Freedom 3
P-Value .0083

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate .056
90 Percent C.I. .025 .091
Probability RMSEA <= .05 .331

Output Excerpts LSAY Piecewise Growth Model With Covariates (Continued)

Selected Estimates

		Estimates	S.E.	Est./S.E.	Std	StdYX
I	ON					
	MOTHED	2.127	.284	7.488	.266	.256
	HOMERES	1.389	.185	7.524	.174	.257
S1	ON					
	MOTHED	126	.147	858	113	109
	HOMERES	.091	.096	.950	.081	.120
S2	ON					
	MOTHED	.436	.191	2.285	.185	.178
	HOMERES	.289	.124	2.329	.123	.181

107

Growth Model With Individually-Varying Times Of Observation And Random Slopes For Time-Varying Covariates

Growth Modeling In Multilevel Terms

Time point *t*, individual *i* (two-level modeling, no clustering):

 y_{ti} : repeated measures of the outcome, e.g. math achievement

 a_{1ti} : time-related variable; e.g. grade 7-10

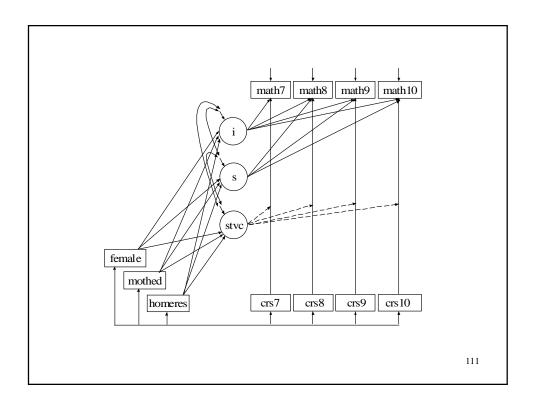
 a_{2ti} : time-varying covariate, e.g. math course taking x_i : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and random slopes for time-varying covariates:

Level 1:
$$y_{ti} = \pi_{0i} + \pi_{1i} a_{1ti} + \pi_{2ti} a_{2ti} + e_{ti}$$
, (55)

Level 2:
$$\pi_{0i} = \beta_{00} + \beta_{01} x_{i} + r_{0i},
\pi_{1i} = \beta_{10} + \beta_{11} x_{i} + r_{1i},
\pi_{2i} = \beta_{20} + \beta_{21} x_{i} + r_{2i}.$$
(56)

109


Growth Modeling In Multilevel Terms (Continued)

Time scores a_{1ti} read in as data (not loading parameters).

- π_{2ti} possible with time-varying random slope variances
- Flexible correlation structure for $V(e) = \Theta(T \times T)$
- Regressions among random coefficients possible, e.g.

$$\pi_{1i} = \beta_{10} + \gamma_1 \, \pi_{0i} + \beta_{11} \, x_i + r_{1i}, \tag{57}$$

$$\pi_{2i} = \beta_{20} + \gamma_2 \,\pi_{0i} + \beta_{21} \,x_i + r_{2i}. \tag{58}$$

Input For Growth Model With Individually Varying Times Of Observation

TITLE: Growth model with individually varying times of

observation and random slopes

DATA: FILE IS lsaynew.dat;

FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9

crs10 female mothed homeres a7-a10;

! ${\tt crs7-crs10}$ = highest math course taken during each

! grade (0=no course, 1=low, basic, 2=average, 3=high.

! 4=pre-algebra, 5=algebra I, 6=geometry,

! 7=algebra II, 8=pre-calc, 9=calculus)

MISSING ARE ALL (9999);

CENTER = GRANDMEAN (crs7-crs10 mothed homeres);

TSCORES = a7-a10;

Input For Growth Model With Individually Varying Times Of Observation (Continued)

```
DEFINE:
           math7 = math7/10;
           math8 = math8/10;
           math9 = math9/10;
           math10 = math10/10;
ANALYSIS: TYPE = RANDOM MISSING;
           ESTIMATOR = ML;
           MCONVERGENCE = .001;
MODEL:
           i s | math7-math10 AT a7-a10;
           stvc | math7 ON crs7;
           stvc | math8 ON crs8;
           stvc | math9 ON crs9;
           stvc | math10 ON crs10;
           i ON female mothed homeres;
           s ON female mothed homeres;
           stvc ON female mothed homeres;
           i WITH s;
           stvc WITH i;
           stvc WITH s;
OUTPUT:
           TECH8;
```

113

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates

n = 2271

Tests of Model Fit

Loglikelihood

HO Value -8199.311

Information Criteria

Number of Free Parameters 22
Akaike (AIC) 16442.623
Bayesian (BIC) 16568.638
Sample-Size Adjusted BIC 16498.740
(n* = (n + 2) / 24)

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)

Model Re	sults	Estimates	S.E.	Est./S.E.	
I	ON	<u> rstimates</u>	S.E.	ESL./S.E.	
FEMA	ALE	0.187	0.036	5.247	
MOTI	HED	0.187	0.018	10.231	
HOM	ERES	0.159	0.011	14.194	
S	ON				
FEMA	ALE	-0.025	0.012	-2.017	
MOTI	HED	0.015	0.006	2.429	
HOM	ERES	0.019	0.004	4.835	
STVC	ON				
FEMA	ALE	-0.008	0.013	-0.590	
MOTI	HED	0.003	0.007	0.429	
HOM	ERES	0.009	0.004	2.167	
I	WITH				
S		0.038	0.006	6.445	
STVC	WITH				
I		0.011	0.005	2.087	
S		0.004	0.002	2.033	115

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)

Intercepts	0.000	0.000	0.000	
MATH7	0.000	0.000	0.000	
MATH8	0.000	0.000	0.000	
MATH9	0.000	0.000	0.000	
MATH10	0.000	0.000	0.000	
I	4.992	0.025	198.456	
S	0.417	0.009	47.275	
STVC	0.113	0.010	11.416	
Residual Variances				
MATH7	0.185	0.011	16.464	
MATH8	0.178	0.008	22.232	
MATH9	0.156	0.008	18.497	
MATH10	0.169	0.014	12.500	
I	0.570	0.023	25.087	
S	0.036	0.003	12.064	

Random Slopes

• In single-level modeling random slopes β_i describe variation across individuals i.

$$y_i = \alpha_i + \beta_i x_i + \varepsilon_i, \tag{100}$$

$$\alpha_i = \alpha + \zeta_{0i},\tag{101}$$

$$\alpha_i = \alpha + \zeta_{0i},
\beta_i = \beta + \zeta_{1i},$$
(101)

Resulting in heteroscedastic residual variances

$$V(y_i/x_i) = V(\beta_i) x_i^2 + \theta$$
(103)

• In two-level modeling random slopes β_i describe variation across clusters j

$$y_{ij} = a_j + \beta_j x_{ij} + \varepsilon_{ij}, \tag{104}$$

$$a_i = a + \zeta_{0i}, \tag{105}$$

$$\beta_i = \beta + \zeta_{1i}. \tag{106}$$

 $a_{j} = a + \zeta_{0j}, \tag{105}$ $\beta_{j} = \beta + \zeta_{1j}. \tag{106}$ A small variance for a random slope typically leads to slow convergence of the ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are

- Observed covariates
- Observed dependent variables
- Continuous latent variables

117

Computational Issues For Growth Models

- Decreasing variances of the observed variables over time may make the modeling more difficult
- Scale of observed variables keep on a similar scale
- Convergence often related to starting values or the type of model being estimated
 - Program stops because maximum number of iterations has been reached
 - · If no negative residual variances, either increase the number of iterations or use the preliminary parameter estimates as starting values
 - If there are large negative residual variances, try better starting values
 - Program stops before the maximum number of iterations has been reached
 - · Check if variables are on a similar scale
 - Try new starting values
- Starting values the most important parameters to give starting values to are residual variances and the intercept growth factor mean
- Convergence for models using the | symbol
 - Non-convergence may be caused by zero random slope variances which indicates that the slopes should be fixed rather than random

Advanced Growth Models

119

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

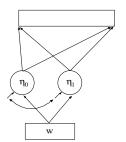
Regressions Among Random Effects

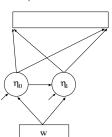
121

Regressions Among Random Effects

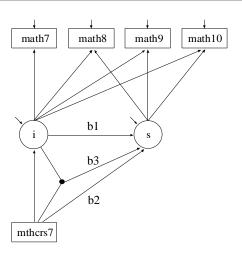
Standard multilevel model (where $x_t = 0, 1, ..., T$):

Level 1:
$$y_{ti} = \eta_{0i} + \eta_{Ii} x_t + \varepsilon_{ti}$$
, (1)


evel 2a:
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
, (2)


Level 2a:
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
, (2)
Level 2b: $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$. (3)

A useful type of model extension is to replace (3) by the regression equation


$$\eta_{1i} = \alpha + \beta \, \eta_{0i} + \gamma \, w_i + \zeta_i. \tag{4}$$

Example: Blood Pressure (Bloomqvist, 1977)

123

Input For A Growth Model With An Interaction Between A Latent And An Observed Variable

growth model with an interaction between a latent and an observed variable $% \left(1\right) =\left(1\right) \left(1\right)$ TITLE:

DATA: FILE IS lsay.dat;

VARIABLE: NAMES ARE math7 math8 math9 math10 mthcrs7;

MISSING ARE ALL (9999);

CENTERING = GRANDMEAN (mthcrs7);

DEFINE: math7 = math7/10;

math8 = math8/10; math9 = math9/10;math10 = math10/10;

ANALYSIS: TYPE=RANDOM MISSING;

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

[math7-math10] (1); !growth language defaults

[i@0 s]; !overridden

inter | i XWITH mthcrs7; s ON i mthcrs7 inter;

i ON mthcrs7;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8;

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable

Tests Of Model Fit

Loglikelihood

125

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

Model Results

		Estimates	S.E.	Est./S.E.
I	- 1			
	MATH7	1.000	0.000	0.000
	MATH8	1.000	0.000	0.000
	MATH9	1.000	0.000	0.000
	MATH10	1.000	0.000	0.000
S				
	MATH7	0.000	0.000	0.000
	MATH8	1.000	0.000	0.000
	MATH9	2.000	0.000	0.000
	MATH10	3.000	0.000	0.000

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

		Estimates	S.E.	Est./S.E.
S	ON			
	I	0.087	0.012	7.023
	INTER	-0.047	0.006	-7.301
S	ON			
	MTHCRS7	0.045	0.013	3.555
I	ON			
	MTHCRS7	0.632	0.016	40.412

127

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

	Estimates	S.E.	Est./S.E.
Intercepts			
MATH7	5.019	0.015	341.587
MATH8	5.019	0.015	341.587
MATH9	5.019	0.015	341.587
MATH10	5.019	0.015	341.587
I	0.000	0.000	0.000
S	0.417	0.007	57.749
Residual Variand	ces		
MATH7	0.184	0.011	16.117
MATH8	0.178	0.009	20.109
MATH9	0.164	0.009	18.369
MATH10	0.173	0.015	11.509
I	0.528	0.018	28.935
S	0.037	0.004	10.027

Interpreting The Effect Of The Interaction Between Initial Status Of Growth In Math Achievement And Course Taking In Grade 6

Model equation for slope s

```
s = a + b1*i + b2*mthcrs7 + b3*i*mthcrs7 + e
```

or, using a moderator function (Klein & Moosbrugger, 2000) where i moderates the influence of mthcrs7 on s s = a + b1*i + (b2 + b3*i)*mthcrs7 + e

Estimated model

Unstandardized

s = 0.417 + 0.087*i + (0.045 - 0.047*i)*mthcrs7

Standardized with respect to i and mthcrs7 s = 0.42 + 0.08 * i + (0.04-0.04*i)*mthcrs7

129

Interpreting The Effect Of The Interaction Between Initial Status Of Growth In Math Achievement And Course Taking In Grade 6 (Continued)

Interpretation of the standardized solution
 At the mean of i, which is zero, the slope increases 0.04 for 1 SD increase in mthcrs7

At 1 SD below the mean of i, which is zero, the slope increases 0.08 for 1 SD increase in mthcrs7

At 1 SD above the mean of i, which is zero, the slope does not increase as a function of mthcrs7

Growth Modeling With Parallel Processes

131

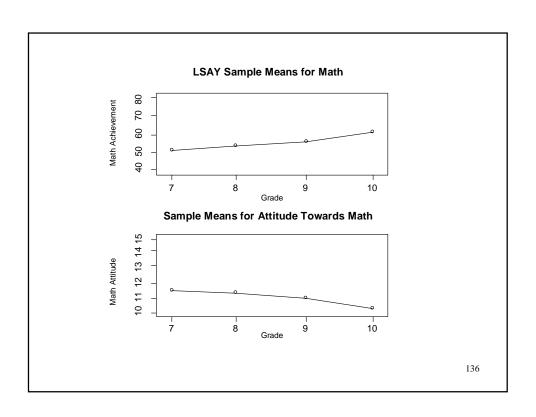
Advantages Of Growth Modeling In A Latent Variable Framework

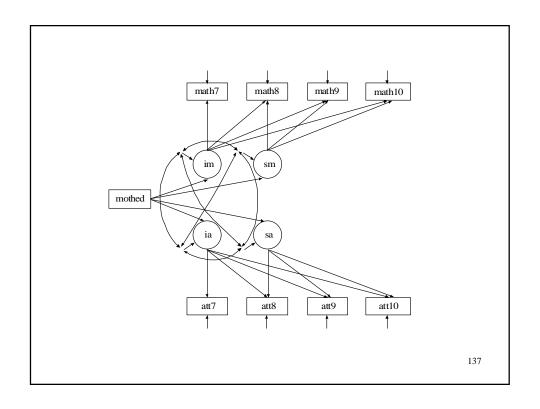
- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Multiple Processes

- Parallel processes
- Sequential processes

133


Growth Modeling With Parallel Processes


- Estimate a growth model for each process separately
 - Determine the shape of the growth curve
 - Fit model without covariates
 - Modify the model
- Joint analysis of both processes
- · Add covariates

LSAY Data

The data come from the Longitudinal Study of American Youth (LSAY). Two cohorts were measured at four time points beginning in 1987. Cohort 1 was measured in Grades 10, 11, and 12. Cohort 2 was measured in Grades 7, 8, 9, and 10. Each cohort contains approximately 60 schools with approximately 60 students per school. The variables measured include math and science achievement items, math and science attitude measures, and background information from parents, teachers, and school principals. There are approximately 60 items per test with partial item overlap across grades—adaptive tests.

Data for the analysis include the younger females. The variables include math achievement and math attitudes from Grades 7, 8, 9, and 10 and mother's education.

Input For LSAY Parallel Process Growth Model

TITLE: LSAY For Younger Females With Listwise Deletion

Parallel Process Growth Model-Math Achievement and

Math Attitudes

DATA: FILE IS lsay.dat;

FORMAT IS 3f8 f8.4 8f8.2 3f8 2f8.2;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

math10 att7 att8 att9 att10 gender mothed homeres

ses3 sesq3;

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10 att7-att10 mothed;

ANALYSIS: TYPE = MEANSTRUCTURE;

Input For LSAY Parallel Process Growth Model

MODEL: im sm | math7@0 math8@1 math9 math10;

ia sa | att7@0 att8@1 att9@2 att10@3;

im-sa ON mothed;

OUTPUT: MODINDICES STANDARDIZED;

Alternative language:

im BY math7-math10@1;

sm BY math7@0 math8@1 math9 math10;

ia BY att7-att10@1;

sa BY att7@0 att8@1 att9@2 att10@3;

[math7-math10@0 att7-att10@0];

[im sm ia sa];

im-sa ON mothed;

139

Output Excerpts LSAY Parallel Process Growth Model

n = 910

Tests of Model Fit

Chi-Square Test of Model Fit

Value 43.161 Degrees of Freedom 24 P-Value .0095

RMSEA (Root Mean Square Error Of Approximation)

Estimate .030 90 Percent C.I. .015 .044 Probability RMSEA <= .05 .992

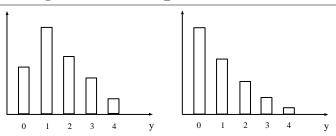
Output Excerpts LSAY Parallel Process Growth Model (Continued)

		Estimates	S.E. E	st./S.E.	Std	StdYX
IM	ON MOTHED	2.462	.280	8.798	.311	.303
SM	ON MOTHED	.145	.066	2.195	.132	.129
IA	ON MOTHED	.053	.086	.614	.025	.024
SA	ON MOTHED	.012	.035	.346	.017	.017

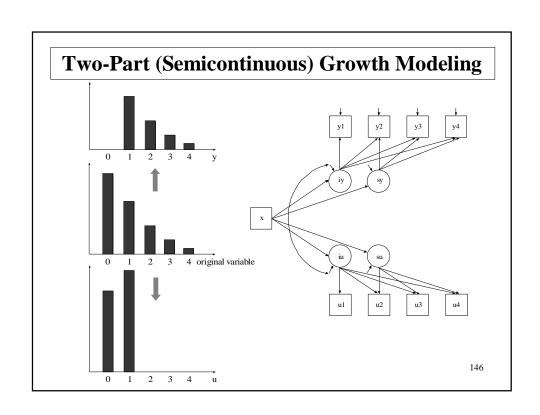
141

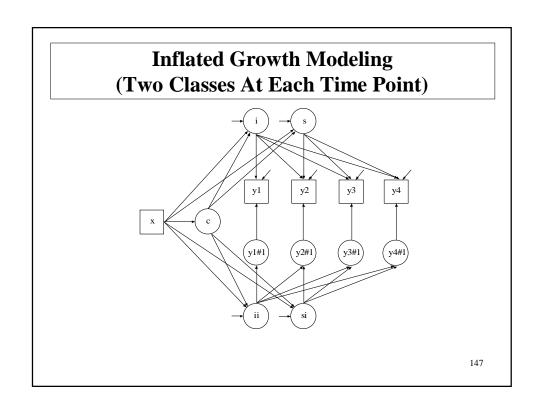
Output Excerpts LSAY Parallel Process Growth Model (Continued)

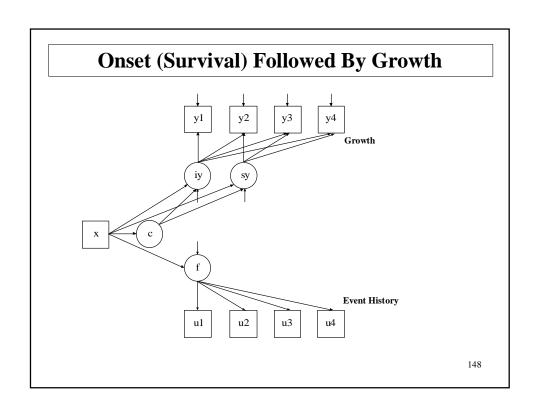
			Estimates	S.E.	Est./S.E.	Std	StdYX
SM	IM	WITH	3.032	.580	5.224	.350	.350
IA		WITH					
	IM		4.733	.702	6.738	.282	.282
	SM		.544	.164	3.312	.235	.235
SA		WITH					
	IM		276	.279	987	049	049
	SM		.130	.066	1.976	.168	.168
	IA		567	.115	-4.913	378	378

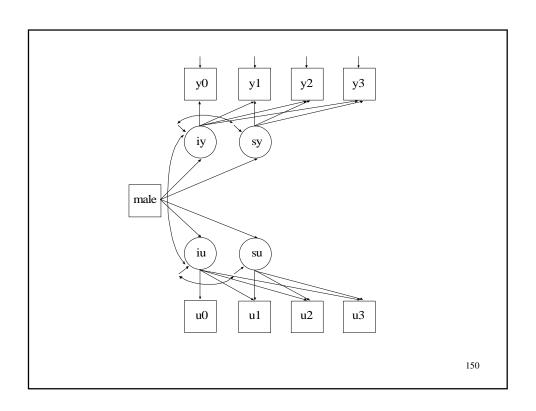

Modeling With Zeroes

143


Advantages Of Growth Modeling In A Latent Variable Framework


- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures


Modeling With A Preponderance Of Zeros


- Outcomes: non-normal continuous count categorical
- Censored-normal modeling
- Two-part (semicontinuous modeling): Duan et al. (1983), Olsen & Schafer (2001)
- Mixture models, e.g. zero-inflated (mixture) Poisson (Roeder et al., 1999), censored-inflated, mover-stayer latent transition models, growth mixture models
- Onset (survival) followed by growth: Albert & Shih (2003)

Two-Part Growth Modeling

Input For Step 1 Of A Two-Part Growth Model

```
TITLE:
           step 1 of a two-part growth model
              Amover u
                        У
                     1
                         >0
               0
                     0
                        999
               999 999 999
DATA:
           FILE = amp.dat;
VARIABLE: NAMES ARE caseid
           amover0 ovrdrnk0 illdrnk0 vrydrn0
           amover1 ovrdrnk1 illdrnk1 vrydrn1
           amover2 ovrdrnk2 illdrnk2 vrydrn2
           amover3 ovrdrnk3 illdrnk3 vrydrn3
           amover4 ovrdrnk4 illdrnk4 vrydrn4
           amover5 ovrdrnk5 illdrnk5 vrydrn5
           amover6 ovrdrnk6 illdrnk6 vrydrn6
           tfq0-tfq6 v2 sex race livewith
           agedrnk0-agedrnk6 grades0-grades6;
           USEV = amover0 amover1 amover2 amover3
           sex race u0-u3 y0-y3;
          ! MISSING = ALL (999);
                                                              151
```

Input For Step 1 Of A Two-Part Growth Model (Continued)

```
DEFINE:
              u0 = 1;
                                                !binary part of variable
              IF(amover0 eq 0) THEN u0 = 0;
              IF(amover0 eq 999) THEN u0 = 999;
             y0 = amover0;
                                                !continuous part of variable
              IF (amover0 eq 0) THEN y0 = 999;
             u1 = 1;
              IF(amover1 eq 0) THEN u1 = 0;
              IF(amover1 eq 999) THEN u1 = 999:
             y1 = amover1;
              IF(amover1 eq 0) THEN y1 = 999;
             IF(amover2 eq 0) THEN u2 = 0;
              IF(amover2 eq 999) THEN u2 = 999;
             y2 = amover2;
             IF(amover2 eq 0) THEN y2 = 999;
             u3 = 1;
             IF(amover3 eq 0) THEN u3 = 0;
             IF(amover3 eq 999) THEN u3 = 999;
             y3 = amover3;
             IF(amover3 eq 0) THEN y3 = 999;
ANALYSIS:
             TYPE = BASIC;
                                                                      152
SAVEDATA:
             FILE = ampyu.dat;
```

Output Excerpts Step 1 Of A Two-Part Growth Model

SAVEDATA Information

```
Order and format of variables
   AMOVER0 F10.3
   AMOVER1 F10.3
   AMOVER2 F10.3
   AMOVER3 F10.3
   SEX
           F10.3
   RACE
           F10.3
   U0
           F10.3
   U1
            F10.3
   U2
           F10.3
   U3
           F10.3
   Y0
           F10.3
           F10.3
   Y1
   Y2
           F10.3
           F10.3
   Y3
Save file
    ampyu.dat
Save file format
    14F10.3
Save file record length
                          1000
```

153

Input For Step 2 Of A Two-Part Growth Model

```
TITLE: two-part growth model with linear growth for both parts

DATA: FILE = ampyau.dat;

VARIABLE: NAMES = amover0-amover3 sex race u0-u3 y0-y3;

USEV = u0-u3 y0-y3 male;

USEOBS = u0 NE 999;

MISSING = ALL (999);

CATEGORICAL = u0-u3;

DEFINE: male = 2-sex;
```

Input For Step 2 Of A Two-Part Growth Model (Continued)

ANALYSIS: TYPE = MISSING;

ESTIMATOR = ML;

ALGORITHM = INTEGRATION;

COVERAGE = .09;

MODEL: iu su | u0@0 u1@0.5 u2@1.5 u3@2.5;

iy sy | y0@0 y1@0.5 y2@1.5 y3@2.5;

iu-sy ON male;

! estimate the residual covariances

! iu with su, iy with sy, and iu with iy

iu WITH sy@0;
su WITH iy-sy@0;

OUTPUT: PATTERNS SAMPSTAT STANDARDIZED TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;

SERIES = $u0-u3(su) \mid y0-y3(sy);$

155

Output Excerpts Step 2 Of A Two-Part Growth Model

Tests of Model Fit

Loglikelihood

HO Value -3277.101

Information Criteria

Number of Free parameters 19 Akaike (AIC) 6592.202 Bayesian (BIC) 6689.444

Sample-Size Adjusted BIC 6629.092

(n* = (n + 2) / 24)

Model Results

	Estimates	S.E.	Est./S.E.	Std	StdYX
IU	1				
U0	1.000	0.000	0.000	2.839	0.843
U1	1.000	0.000	0.000	2.839	0.882
U2	1.000	0.000	0.000	2.839	0.926
U3	1.000	0.000	0.000	2.839	0.905
SU					
υ0	0.000	0.000	0.000	0.000	0.000
U1	0.500	0.000	0.000	0.416	0.129
U2	1.500	0.000	0.000	1.249	0.407
U3	2.500	0.000	0.000	2.082	0.664

157

Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

IY					
Y0	1.000	0.000	0.000	0.534	0.787
Y1	1.000	0.000	0.000	0.534	0.738
Y2	1.000	0.000	0.000	0.534	0.740
Y3	1.000	0.000	0.000	0.534	0.644
SY					
Y0	0.000	0.000	0.000	0.000	0.000
Y1	0.500	0.000	0.000	0.117	0.162
Y2	1.500	0.000	0.000	0.351	0.487
V 3	2 500	0 000	0 000	0 586	0 707

Output Excerpts Step 2 Of A
Two-Part Growth Model (Continued)

IU		ON					
	MALE		0.569	0.234	2.433	0.200	0.100
SU		ON					
	MALE		-0.181	0.119	-1.518	-0.218	-0.109
IY		ON					
	MALE		0.149	0.061	2.456	0.279	0.139
SY		ON					
	MALE		-0.068	0.038	-1.790	-0.290	-0.145
IU		WITH					
	SU		-1.144	0.326	-3.509	-0.484	-0.484
	IY		1.193	0.134	8.897	0.788	0.788
	SY		0.000	0.000	0.000	0.000	0.000
IY		WITH					
	SY		-0.039	0.019	-2.109	-0.316	-0.316
SU		WITH					
	IY		0.000	0.000	0.000	0.000	0.000
	SY		0.000	0.000	0.000	0.000	0.000 159

Intercepts					
Υ0	0.000	0.000	0.000	0.000	0.00
Y1	0.000	0.000	0.000	0.000	0.00
Y2	0.000	0.000	0.000	0.000	0.00
Y3	0.000	0.000	0.000	0.000	0.00
IU	0.000	0.000	0.000	0.000	0.00
SU	0.855	0.098	8.716	1.027	1.02
IY	0.232	0.059	3.901	0.435	0.43
SY	0.240	0.031	7.830	1.025	1.02
Thresholds					
U0\$1	2.655	0.206	12.877		
U1\$1	2.655	0.206	12.877		
U2\$1	2.655	0.206	12.877		
U3\$1	2.655	0.206	12.877		

Residual Variances					
Υ0	0.175	0.032	5.470	0.175	0.380
Y1	0.266	0.029	9.159	0.266	0.509
Y2	0.238	0.027	8.810	0.238	0.457
Y3	0.269	0.054	5.014	0.269	0.392
IU	7.982	1.086	7.351	0.990	0.990
SU	0.685	0.202	3.400	0.988	0.988
IY	0.279	0.040	7.019	0.981	0.981
SY	0.054	0.017	3.224	0.979	0.979

161

Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

Observed		
Variable	R-Square	
***	0.710	
υ0	0.710	
U1	0.682	
U2	0.650	
U3	0.666	
Υ0	0.620	
Y1	0.491	
Y2	0.543	
Y3	0.608	
Latent		
Variable	R-Square	
IU	0.010	
SU	0.012	
IY	0.019	
SY	0.021	162

Technical 4 Output

	ESTIMATED	MEANS	FOR	THE	LATENT	VARIABLES		
	IU	SU			IY	SY	MALE	
1								
	0.305		0.758		0.312	0.204	0.536	

	ESTIMATED	COVARIANCE	MATRIX	FOR	THE	LATENT	VARIABL	ES
	IU	SU	IY		SY		MALE	
		_						
IU	8.062	_						
SU	-1.170	0.694						
IY	1.214	-0.007	0.2	85				
SY	-0.010	0.003	-0.0	42		0.055		
MALE	0.142	-0.045	0.0	37	-	0.017	0.249	

163

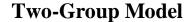
Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

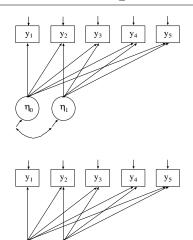
	ESTIMATED	CORRELATION	MATRIX	FOR THE	LATENT	VARIABLES
	IU	SU	IY	SY	ľ	MALE
IU	1.000					
SU	-0.495	1.000				
IY	0.801	-0.015	1.000)		
SY	-0.014	0.016	-0.336	5 1.	000	
MALE	0.100	-0.109	0.139	-0.	145	1.000

165

Advantages Of Growth Modeling In A Latent Variable Framework


- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- · Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures


Multiple Population Growth Modeling


- Group as a dummy variable
- Multiple-group analysis
- Multiple-group analysis of randomized interventions

167

Group Dummy Variable As A Covariate

169

Multiple Population Growth Modeling Specifications

Let y_{git} denote the outcome for population (group) g, individual i, and timepoint t,

Level 1:
$$y_{gti} = \eta_{g0i} + \eta_{g1i} x_t + \varepsilon_{gti}$$
, (65)

Level 2a:
$$\eta_{g0i} = \alpha_{g0} + \gamma_{g0} w_{gi} + \zeta_{g0i}$$
, (66)

Level 2b:
$$\eta_{g1i} = \alpha_{g1} + \gamma_{g1} w_{gi} + \zeta_{g1i}$$
, (67)

Measurement invariance (level-1 equation): time-invariant intercept 0 and slopes 1, x_t

Structural differences (level-2): α_g , γ_g , $V(\zeta_g)$

Alternative parameterization:

Level 1:
$$y_{gii} = v + \eta_{g0i} + \eta_{g1i} x_t + \varepsilon_{gii}$$
, with α_{10} fixed at zero in level 2a. (68)

Analysis steps:

- 1. Separate growth analysis for each group
- 2. Joint analysis of all groups, free structural parameters
- 3. Join analysis of all groups, tests of structural parameter invariance

NLSY: Multiple Cohort Structure

Birth									Age											
Year Cohort	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
57								82	83	84	85	86	87	88	89	90	91	92	93	94
58							82	83	84	85	86	87	88	89	90	91	92	93	94	
59						82	83	84	85	86	87	88	89	90	91	92	93	94		
60					82	83	84	85	86	87	88	89	90	91	92	93	94			
61				82	83	84	85	86	87	88	89	90	91	92	93	94				
62			82	83	84	85	86	87	88	89	90	91	92	93	94					
63		82	83	84	85	86	87	88	89	90	91	92	93	94						
64	82	83	84	85	86	87	88	89	90	91	92	93	94							

^a Non-shaded areas represent years in which alcohol measures were obtained

171

Multiple Group Modeling Of Multiple Cohorts

- Data two cohorts born in 1961 and 1962 measured on the frequency of heavy drinking in the years 1983, 1984, 1988, and 1989
- Development of heavy drinking across chronological age, not year of measurement, is of interest

Cohort/Year	1983			198	4	198	1989	1	
1961 (older)		22		23		2 7		28	,
1962 (younger)		21		22		26		27	
Cohort/Age	21		23	24	25	26	27	28	
` /	83	83 84	84			88	88 89	89	
,	21 83	22 83		_	_	_	27 88	_	,

Multiple Group Modeling Of Multiple Cohorts (Continued)

• Time scores calculated for age, not year of measurement

Age 21 22 23 24 25 26 27 28 Time score 0 1 2 3 4 5 6 7

Cohort 1961 time scores 1 2 6 7 Cohort 1962 time scores 0 1 5 6

- Can test the degree of measurement and structural invariance
 - Test of full invariance
 - Growth factor means, variances, and covariances held equal across cohorts
 - Residual variances of shared ages held equal across cohorts

173

Input For Multiple Group Modeling Of Multiple Cohorts

```
TITLE:
              Multiple Group Modeling Of Multiple Cohorts
DATA:
              FILE IS cohort.dat;
VARIABLE:
              NAMES ARE cohort hd83 hd84 hd88 hd89;
              MISSING ARE *;
              USEV = hd83 hd84 hd88 hd89;
              GROUPING IS cohort (61 = older 62 = younger);
MODEL:
              i s | hd83@0 hd84@1 hd88@5 hd89@6;
              [i] (1);
              [s] (2);
              i (3);
              s (4);
              i WITH s (5);
```

Input For Multiple Group Modeling Of Multiple Cohorts (Continued)

MODEL older:

is | hd83@1 hd84@2 hd88@6 hd89@7; hd83 (6); hd88 (7);

MODEL younger:

hd84 (6); hd89 (7);

OUTPUT: STANDARDIZED;

175

Output Excerpts Multiple Group Modeling Of Multiple Cohorts

Tests Of Model Fit

Chi-Square Test of Model Fit
Value 68.096
Degrees of Freedom 17
P-Value .0000

RMSEA (Root Mean Square Error Of Approximation)
Estimate .047
90 Percent C.I. .036 .059

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)

M	ode	ı R	esu	lte
141	vu		LUSU	\mathbf{L}

	Estimates	S.E.	Est./S.E.	Std	StdYX
Group OLDER					
I WITH					
S	111	.010	-11.390	537	537
Residual Variances					
HD83	1.141	.046	24.996	1.141	.445
HD84	1.062	.057	18.489	1.062	.453
HD88	1.028	.041	25.326	1.028	.455
HD89	.753	.053	14.107	.753	.358
Variances					
I	1.618	.068	23.651	1.000	1.000
S	.026	.002	13.372	1.000	1.000
Means					
I	1.054	.030	35.393	.828	.828
S	032	.005	-6.611	200	200
					177

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)

GROUP YOUNGER

Residual	Variances					
HD83		1.049	.066	15.916	1.049	.393
HD84		1.141	.046	24.996	1.141	.445
HD88		1.126	.056	19.924	1.126	.491
HD89		1.028	.041	25.326	1.028	.455

Preventive Interventions Randomized Trials

Prevention Science Methodology Group (PSMG)

Developmental Epidemiological Framework:

- Determining the levels and variation in risk and protective factors as well as developmental paths within a defined population in the absence of intervention
- Directing interventions at these risk and protective factors in an effort to change the developmental trajectories in a defined population
- Evaluating variation in intervention impact across risk levels and contexts on proximal and distal outcomes, thereby empirically testing the developmental model

179

Aggressive Classroom Behavior: The GBG Intervention

Muthén & Curran (1997, Psychological Methods)

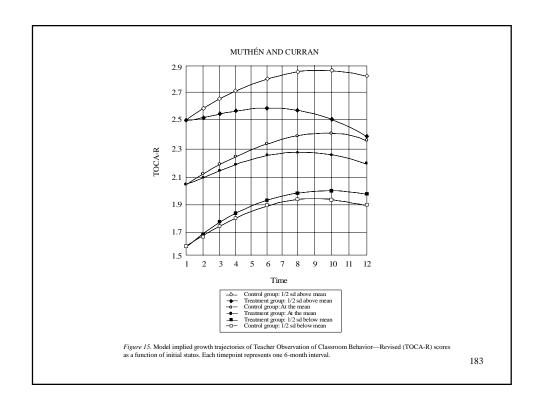
The Johns Hopkins Prevention Center carried out a school-based preventive intervention randomized trial in Baltimore public schools starting in grade 1. One of the interventions tested was the Good Behavior Game intervention, a classroom based behavior management strategy promoting good behavior. It was designed specifically to reduce aggressive behavior of first graders and was aimed at longer term impact on aggression through middle school.

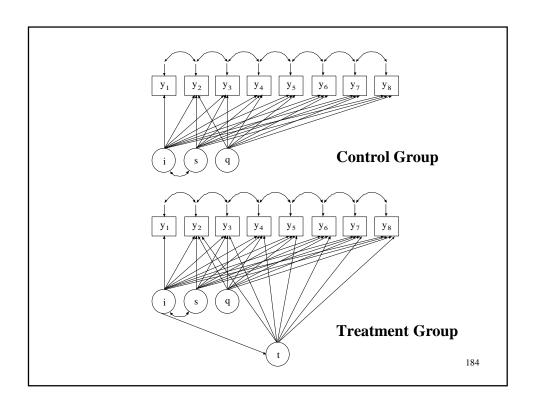
One first grade classroom in a school was randomly assigned to receive the Good Behavior Game intervention and another matched classroom in the school was treated as control. After an initial assessment in fall of first grade, the intervention was administered during the first two grades.

Aggressive Classroom Behavior: The GBG Intervention (Continued)

The outcome variable of interest was teacher ratings (TOCA-R) of each child's aggressive behavior (breaks rules, harms property, fights, etc.) in the classroom through grades 1-6. Eight teacher ratings were made from fall and spring for the first two grades and every spring in grades 3-6.

The most important scientific question was whether the Good Behavior Game reduces the slope of the aggression trajectory across time. It was also of interest to know whether the intervention varies in impact for children who started out as high aggressive versus low aggressive.


Analyses in Muthén-Curran (1997) were based on data for 75 boys in the GBG group who stayed in the intervention condition for two years and 111 boys in the control group.


181

The GBG Aggression Example: Analysis Results

Muthén & Curran (1997):

- Step 1: Control group analysis
- Step 2: Treatment group analysis
- Step 3: Two-group analysis w/out interactions
- Step 4: Two-group analysis with interactions
- Step 5: Sensitivity analysis of final model
- Step 6: Power analysis

Input Excerpts For Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects

```
TITLE:
                 Aggressive behavior intervention growth model
                 n = 111 for control group
n = 75 for tx group
                 i s q | y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;
MODEL:
                 i t | y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;
                 [y1-y8] (1); !alternative growth model
                 [i@0];
                                !parameterization
                 i (2);
                 s (3);
                 i WITH s (4);
                 [s] (5);
                 [q] (6);
                 t@0 q@0;
                 q WITH i@0 s@0 t@0; y1-y7 PWITH y2-y8;
                  t ON i;
                                                                      185
```

Input Excerpts For Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

```
MODEL control:

[s] (5);

[q] (6);

t ON i@0;

[t@0];
```

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects

Tests Of Model Fit

Chi-Square Test of Model Fit

Value 64.553
Degrees of Freedom 50
P-Value .0809

RMSEA (Root Mean Square Error Of Approximation)

Estimate .056 90 Percent C.I. .000 .092

187

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

Group (Control	Group	Tx
Observed		Observed	
Variable	R-Square	Variable	R-Square
Y1	.644	Y1	.600
Y2	.642	Y2	.623
Y3	.663	Y3	.568
Y4	.615	Y4	.464
Y5	.637	Y5	.425
Y6	.703	Y6	.399
Y7	.812	Y7	.703
Y8	.818	Y8	.527

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

roup Control ON	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	999.000	999.000
esidual Variano	es				
Y1	.444	.088	5.056	.444	.356
Y2	.449	.079	5.714	.449	.358
Y3	.414	.069	6.026	.414	.337
Y4	.522	.080	6.551	.522	.385
Y5	.512	.079	6.469	.512	.363
Y6	.422	.074	5.677	.422	.297
Υ7	.264	.083	3.186	.264	.188
У8	.291	.094	3.097	.291	.182
T	.000	.000	.000	999.000	999.000
ariances					
I	.803	.109	7.330	1.000	1.000
S	.004	.001	3.869	1.000	1.000
Q	.000	.000	.000	999.000	999.000 189

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

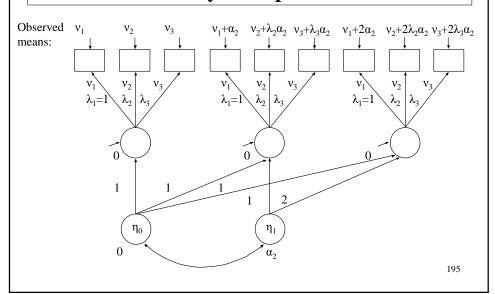
Means	Estimates	S.E.	Est./S.E.	Std	StdYX	
I	.000	.000	.000	.000	.000	
S	.086	.021	4.035	1.285	1.285	
Q	005	.002	-3.005	999.000	999.000	
Intercepts						
Y1	2.041	.078	26.020	2.041	1.828	
Y2	2.041	.078	26.020	2.041	1.823	
У3	2.041	.078	26.020	2.041	1.841	
Y4	2.041	.078	26.020	2.041	1.753	
Y5	2.041	.078	26.020	2.041	1.718	
Y6	2.041	.078	26.020	2.041	1.711	
Y7	2.041	.078	26.020	2.041	1.724	
У8	2.041	.078	26.020	2.041	1.612	
T	.000	.000	.000	999.000	999.000	

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

_		Estimates	S.E.	Est./S.E.	Std	StdYX
T	ON					
I		052	.015	-3.347	-1.000	-1.000
Resid	ual Variano	es				
Y1		.535	.141	3.801	.535	.400
Y2		.439	.122	3.595	.439	.377
Y3		.501	.108	4.653	.501	.432
Y4		.701	.132	5.332	.701	.536
Y5		.736	.133	5.545	.736	.575
Y6		.805	.152	5.288	.805	.601
¥7		.245	.104	2.364	.245	.297
Y8		.609	.182	3.351	.609	.473
T		.000	.000	.000	.000	.000
Varia	nces					
I		.803	.109	7.330	1.000	1.000
S		.004	.001	3.869	1.000	1.000
Q		.000	.000	.000	999.000	999.000

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

.,	Estimates	S.E.	Est./S.E.	Std	StdYX
Means	22021110002	5.2.	2001,0121	554	Dodin
I	.000	.000	.000	.000	.000
S	.086	.021	4.035	1.285	1.285
Q	005	.002	-3.005	999.000	999.000
Intercepts					
Y1	2.041	.078	26.020	2.041	1.764
Y2	2.041	.078	26.020	2.041	1.893
У3	2.041	.078	26.020	2.041	1.895
Y4	2.041	.078	26.020	2.041	1.785
Y5	2.041	.078	26.020	2.041	1.805
Y6	2.041	.078	26.020	2.041	1.764
Y7	2.041	.078	26.020	2.041	2.248
Y8	2.041	.078	26.020	2.041	1.799
Т	016	.013	-1.225	341	341


Growth Modeling With Multiple Indicators

193

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- · Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Growth Of Latent Variable Construct Measured By Multiple Indicators

Multiple Indicator Growth Modeling Specifications

Let y_{jti} denote the outcome for individual i, indicator j, and timepoint t, and let η_{ti} denote a latent variable construct,

Level 1a (measurement part):

$$y_{iti} = v_{it} + \lambda_{it} \, \eta_{ti} + \varepsilon_{iti}, \tag{44}$$

Level 1b:
$$\eta_{ti} = \eta_{0i} + \eta_{1i} x_t + \zeta_{ti}$$
, (45)

$$y_{jti} = v_{jt} + \lambda_{jt} \eta_{ti} + \varepsilon_{jti},$$

$$Level \ 1b : \eta_{ti} = \eta_{0i} + \eta_{1i} \ x_{t} + \zeta_{ti},$$

$$Level \ 2a : \eta_{0i} = \alpha_{0} + \gamma_{0} \ w_{i} + \zeta_{0i},$$

$$(45)$$

Level 2b:
$$\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$$
, (47)

Measurement invariance: time-invariant indicator intercepts and slopes:

$$v_{i1} = v_{i2} = \dots v_{iT} = v_i,$$
 (48)

$$v_{j1} = v_{j2} = \dots v_{jT} = v_j,$$
 (48)
 $\lambda_{j1} = \lambda_{j2} = \dots \lambda_{jT} = \lambda_j,$ (49)

where $\lambda_1 = 1$, $\alpha_0 = 0$. $V(\varepsilon_{jii})$ and $V(\zeta_{ii})$ may vary over time. Structural differences: $E(\eta_{ti})$ and $V(\eta_{ti})$ vary over time.

Steps In Growth Modeling With Multiple Indicators

- Exploratory factor analysis of indicators for each timepoint
- Determine the shape of the growth curve for each indicator and the sum of the indicators
- Fit a growth model for each indicator—must be the same
- Confirmatory factor analysis of all timepoints together
 - Covariance structure analysis without measurement parameter invariance
 - Covariance structure analysis with invariant loadings
 - Mean and covariance structure analysis with invariant measurement intercepts and loadings
- Growth model with measurement invariance across timepoints

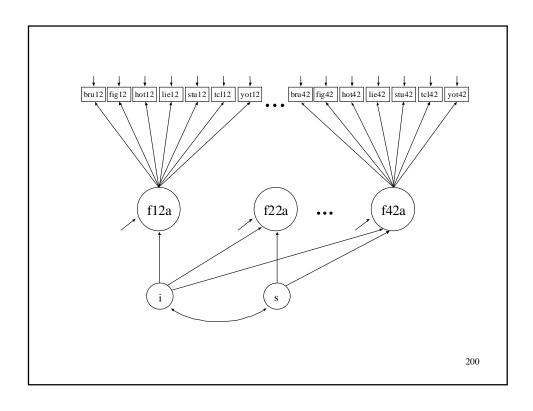
197

Advantages Of Using Multiple Indicators Instead Of An Average

- Estimation of unequal weights
- Partial measurement invariance—changes across time in individual item functioning
- No confounding of time-specific variance and measurement error variance
- Smaller standard errors for growth factor parameters (more power)

Classroom Aggression Data (TOCA)

The classroom aggression data are from an intervention study in Baltimore public schools carried out by the Johns Hopkins Prevention Research Center. Subjects were randomized into treatment and control conditions. The TOCA-R instrument was used to measure 10 aggression items at multiple timpoints. The TOCA-R is a teacher rating of student behavior in the classroom. The items are rated on a six-point scale from almost never to almost always.


Data for this analysis include the 342 boys in the control group. Four time points are examined: Spring Grade 1, Spring Grade 2, Spring Grade 3, and Spring Grade 4.

Seven aggression items are used in the analysis:

- Break rules - Lies - Yells at others

- Fights - Stubborn

- Harms others - Teasing classmates

Input Excerpts For TOCA Data Multiple Indicator CFA With No Measurement Invariance

```
TITLE:
            Multiple indicator CFA with no measurement invariance
            f12a BY bru12
MODEL:
                   fig12
                    hot12
                    lie12
                    stu12
                    tcl12
                    yot12;
            f22a BY bru22
                    fig22
                    hot22
                    lie22
                    stu22
                    tc122
                    yot22;
                                                                  201
```

Input Excerpts For TOCA Data Multiple Indicator CFA With No Measurement Invariance (Continued)

```
MODEL:
            f32a BY bru32
                    fig32
                    hot32
                    lie32
                     stu32
                    tc132
                    yot32;
            f42a BY bru42
                    fig42
                    hot42
                    lie42
                     stu42
                     tcl42
                    yot42;
                                                                  202
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance

```
Multiple indicator CFA with factor loading invariance
TITLE:
            f12a BY bru12
MODEL:
                   fig12 (1)
                    hot12 (2)
                    lie12 (3)
                    stu12 (4)
                    tcl12 (5)
                    yot12 (6);
            f22a BY bru22
                    fig22 (1)
                    hot22 (2)
                    lie22 (3)
                    stu22 (4)
                    tcl22 (5)
                                                                  203
                    yot22 (6);
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance (Continued)

```
MODEL:
            f32a BY bru32
                    fig32 (1)
                    hot32 (2)
                    lie32 (3)
                    stu32 (4)
                    tc132 (5)
                    yot32 (6);
            f42a BY bru42
                    fig42 (1)
                    hot42 (2)
                    lie42 (3)
                    stu42 (4)
                    tc142 (5)
                    yot42 (6);
                                                                  204
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance

```
TITLE:
            Multiple indicator CFA with factor loading and intercept
MODEL:
            f12a BY bru12
                   fig12 (1)
                    hot12 (2)
                    lie12 (3)
                    stu12 (4)
                    tcl12 (5)
                    yot12 (6);
            f22a BY bru22
                   fig22 (1)
                    hot22 (2)
                    lie22 (3)
                    stu22 (4)
                    tc122 (5)
                    yot22 (6);
                                                                  205
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance (Continued)

```
MODEL:
            f32a BY bru32
                    fig32 (1)
                    hot32 (2)
                    lie32 (3)
                    stu32 (4)
                    tc132 (5)
                    yot32 (6);
            f42a BY bru42
                    fig42 (1)
                    hot42 (2)
                    lie42 (3)
                    stu42 (4)
                    tc142 (5)
                    yot42 (6);
                                                                  206
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance (Continued)

```
[brul2 bru22 bru32 bru42] (7);

[fig12 fig22 fig32 fig42] (8);

[hot12 hot22 hot32 hot42] (9);

[lie12 lie22 lie32 lie42] (10);

[stu12 stu22 stu32 stu42] (11);

[tc112 tc122 tc132 tc142] (12);

[yot12 yot22 yot32 yot42] (13);

[f12a@0 f22a f32a f42a];
```

207

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance

```
Multiple indicator CFA with factor loading and partial intercept invariance % \left( 1\right) =\left( 1\right) \left( 1\right
TITLE:
MODEL:
                                                                                                                                                                                                                                                                                 f12a BY bru12
                                                                                                                                                                                                                                                                                                                                                                                                                                                      fig12 (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      hot12 (2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      lie12 (3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          stu12 (4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                   tcl12 (5)
                                                                                                                                                                                                                                                                                                                                                                                                                                            yot12 (6);
                                                                                                                                                                                                                                                                                 f22a BY bru22
                                                                                                                                                                                                                                                                                                                                                                                                                                            fig22 (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      hot22 (2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          lie22 (3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              stu22 (4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              tc122 (5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          yot22 (6);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             208
```

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance (Continued)

```
f32a BY bru32
fig32 (1)
hot32 (2)
lie32 (3)
stu32 (4)
tc132 (5)
yot32 (6);
f42a BY bru42
fig42 (1)
hot42 (2)
lie42 (3)
stu42 (4)
tc142 (5)
yot42 (6);
```

209

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance (Continued)

```
[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32 ] (9);
[lie12 lie22 lie32 lie42] (10);
[stu12 stu22 ] (11);
[tcl12 tcl22 tcl32 ] (12);
[yot12 yot22 yot32 yot42] (13);
[f12a@0 f22a f32a f42a];
```

Summary of Analysis Results For TOCA Measurement Invariance Models

Model	Chi-Square (d.f.)	Difference (d.f. diff.)
Measurement non-invariance	567.08 (344)	
Factor loading invariance	581.29 (362)	14.21 (18)
Factor loading and		
intercept invariance	654.59 (380)	73.30* (18)
Factor loading and partial		
intercept invariance	606.97 (376)	25.68* (14)
Factor loading and partial intercept		
invariance with a linear growth		
structure	614.74 (381)	7.77 (5)
		211

Summary of Analysis Results For TOCA Measurement Invariance Models (Continued)

Explanation of Chi-Square Differences

Factor loading invariance (18)	6 factor loadings instead of 24
Factor loading and	7 intercepts plus 3 factor means
intercept invariance (18)	instead of 28 intercepts
Factor loading and partial	4 additional intercepts
intercept invariance (14)	
Factor loading and partial	1 growth factor mean instead
intercept invariance with	of 3 factor means
a linear growth structure (5)	2 growth factor variances, 1
	growth factor covariance, 4 factor residual variances instead of 10 factor variances/covariances 212

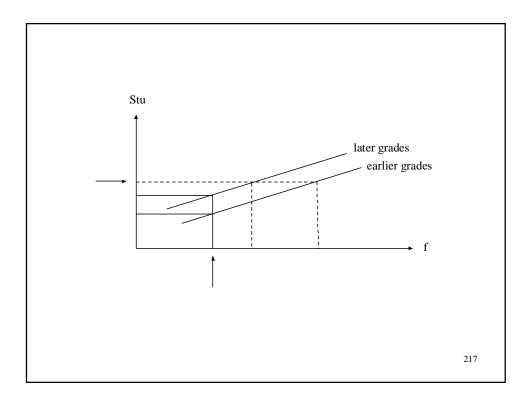
Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure

```
MODEL: f12a BY bru12
fig12 (1)
hot12 (2)
lie12 (3)
stu12 (4)
tc112 (5)
yot12 (6);
f22a BY bru22
fig22 (1)
hot22 (2)
lie22 (3)
stu22 (4)
tc122 (5)
yot22 (6);
```

213

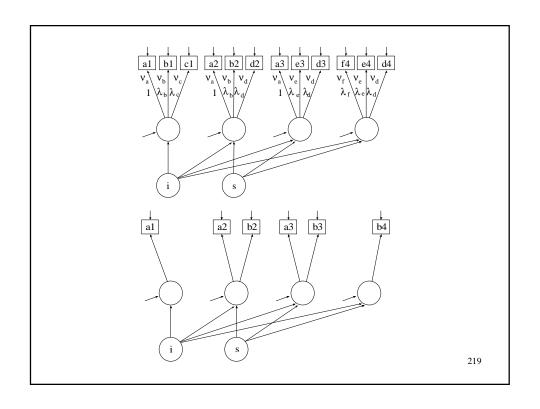
Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure (Continued)

```
MODEL: f32a BY bru32
fig32 (1)
hot32 (2)
lie32 (3)
stu32 (4)
tc132 (5)
yot32 (6);
f42a BY bru42
fig42 (1)
hot42 (2)
lie42 (3)
stu42 (4)
tc142 (5)
yot42 (6);
```


Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure (Continued)

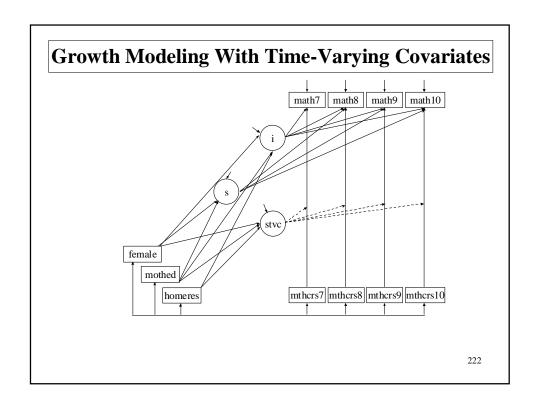
```
[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32 ] (9);
[lie12 lie22 lie32 lie42] (10);
[stu12 stu22 ] (11);
[tcl12 tcl22 tcl32 ] (12);
[yot12 yot22 yot32 yot42] (13);
i s | f12a@0 f22a@1 f32a@2 f42a@3;
Alternative language:
i BY f12a-f42a@1;
s BY f12a@0 f22a@1 f32a@2 f42a@3;
[f12a-f42a@0 i@0 s];
```

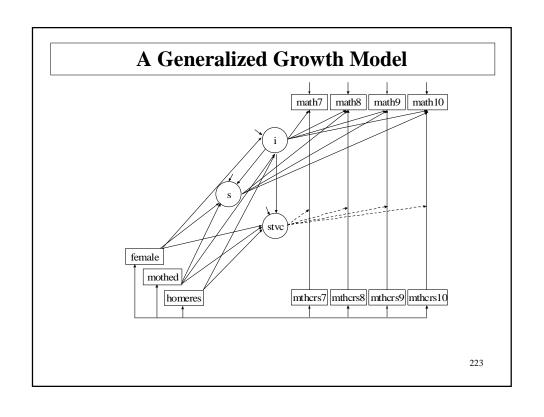
215

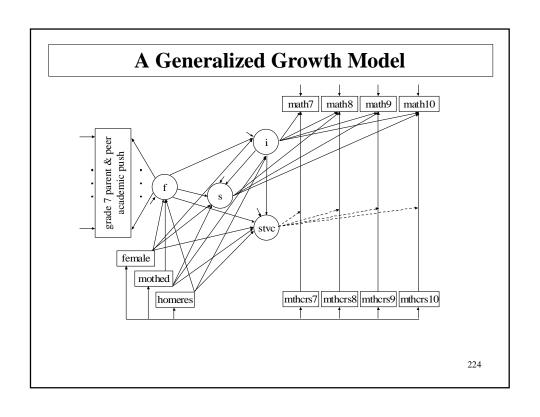

Output Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure

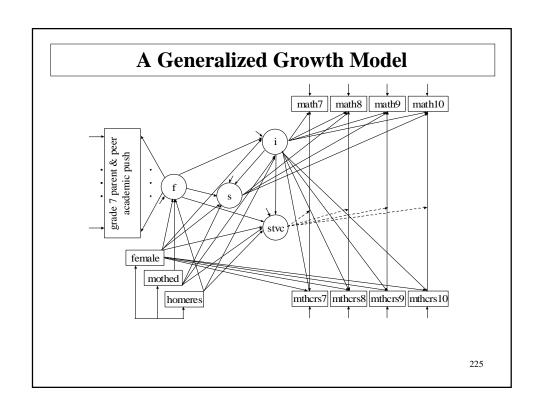
F12A BRU12 FIG12 HOT12 LIE12	1.000 1.097 .986 .967	.000	.000 28.425 26.586	.190 .208 .187	.786 .868
BRU12 FIG12 HOT12	1.097 .986	.039	28.425	.208	.868
FIG12 HOT12	1.097 .986	.039	28.425	.208	.868
HOT12	.986	.037			
			26.586	.187	011
т.т.г.1.2	.967				.811
111112		.041	23.769	.184	.742
STU12	.880	.041	21.393	.167	.667
TCL12	1.034	.039	26.206	.196	.786
YOT12	.932	.039	23.647	.177	.709
Intercepts					
STU12	.331	.013	25.408	.331	1.324
STU22	.331	.013	25.408	.331	1.231
STU32	.417	.017	24.345	.417	1.592
STU42	.390	.017	23.265	.390	1.496

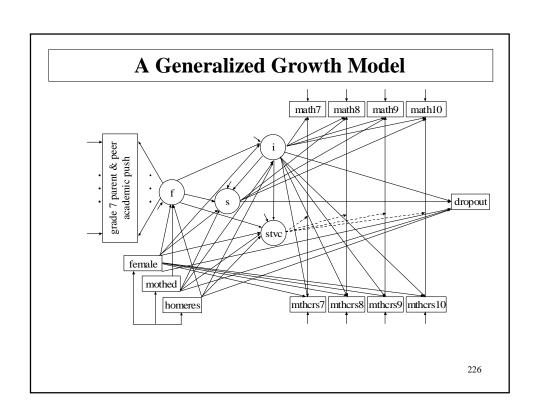
Degrees Of Invariance Across Time

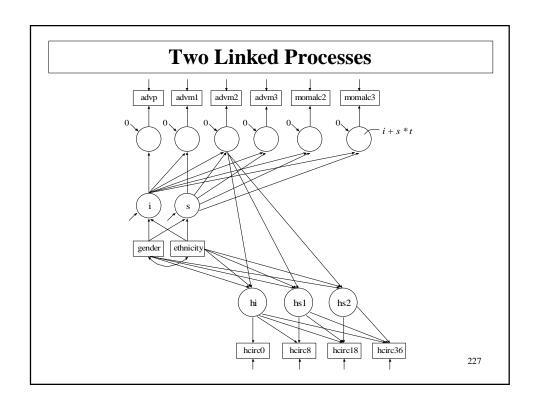

- Case 1
 - Same items
 - All items invariant
 - Same construct
- Case 2
 - Same items
 - Some items non-invariant
 - Same construct
- Case 3
 - Different items
 - Some items invariant
 - Same construct
- Case 4
 - Different items
 - Some items invariant
 - · Different construct




Embedded Growth Models


Advantages Of Growth Modeling In A Latent Variable Framework


- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures



Input Excerpts For Two Linked Processes With Measurement Error In The Covariates

```
TITLE:
          Embedded growth model with measurement error in the
          covariates and sequential processes
          advp: mother's drinking before pregnancy
          advml-advm3: drinking in first trimester
          momalc2-momalc3: drinking in 2nd and 3rd trimesters
          hcirc0-hcirc36; head circumference
MODEL:
                   BY advp;
                                   fadvp@0;
          fadvp
          fadvm1
                  BY advml;
                                  fadvm1@0;
                  BY advm2;
          fadvm2
                                   fadvm2@0;
          fadvm3
                   BY advm3;
                                   fadvm3@0;
          fmomalc2 BY momalc2; fmomalc2@0;
          fmomalc3 BY momalc3; fmomalc3@0;
          i BY fadvp-fmomalc3@1;
          s BY fadvp@0 fadvml@1 fadvm2*2 fadvm3*3
                 fmomalc2-fmomalc3*5 (1);
          [advp-momalc3@0 fadvp-fmomalc3@0 i s];
                                                            228
```

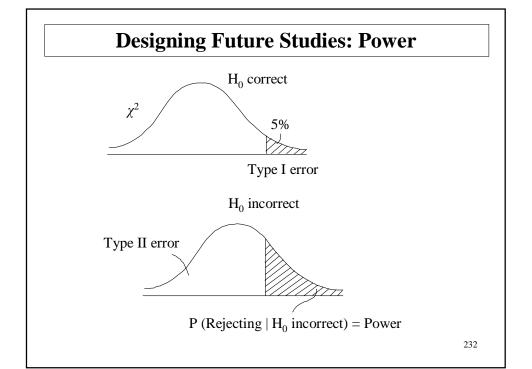
Input Excerpts For Two Linked Processes With Measurement Error In The Covariates (Continued)

advp WITH advml; advml WITH advm2; advm3 WITH advm2;

i s ON gender eth; s WITH i;

hi BY hcirc0-hcirc36@1;
hs1 BY hcirc0@0 hcirc8@1.196 hcirc36@1.196 hcirc36@1.196;
hs2 BY hcirc0@0 hcirc8@0 hcirc18@1 hcirc36*2;

[hcirc0-hcirc36@0 hi*34 hs1 hs2];
hs1 WITH hs2@0; hi WITH hs2@0; hi WITH hs1@0;
hi WITH i@0; hi WITH se0; hs1 WITH i@0;
hil WITH se0; hs2 WITH i@0; hs2 WITH se0;


hi-hs2 ON gender eth fadvm2;

229

Power For Growth Models

Designing Future Studies: Power

- Computing power for growth models using Satorra-Saris (Muthén & Curran, 1997; examples)
- Computing power using Monte Carlo studies (Muthén & Muthén, 2002)
- Power calculation web site PSMG
- Multilevel power (Miyazaki & Raudenbush, 2000; Moerbeek, Breukelen & Berger, 2000; Raudenbush, 1997; Raudenbush & Liu, 2000)
- School-based studies (Brown & Liao, 1999: Principles for designing randomized preventive trials)
- Multiple- (sequential-) cohort power
- Designs for follow-up (Brown, Indurkhia, & Kellam, 2000)

Power Estimation For Growth Models Using Satorra & Saris (1985)

- Step 1: Create mean vector and covariance matrix for hypothesized parameter values
- Step 2: Analyze as if sample statistics and check that parameter values are recovered
- Step 3: Analyze as if sample statistics, misspecifying the model by fixing treatment effect(s) at zero
- Step 4: Use printed x^2 as an appropriate noncentrality parameter and computer power.

Muthén & Curran (1997): Artificial and real data situations.

233

Input For Step 1 Of Power Calculation

TITLE: Power calculation for a growth model

Step 1: Computing the population means and

covariance matrix

FILE IS artific.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500;

VARIABLE: NAMES ARE y1-y4;

DATA:

MODEL: is | y1@0 y2@1 y3@2 y4@3;

> i@.5; s@.1; i WITH s@0;

y1-y4@.5;

OUTPUT: STANDARDIZED RESIUDAL;

Data For Step 1 Of Power Calculation (Continued)

235

Input For Step 2 Of Power Calculation

TITLE: Power calculation for a growth model

Step 2: Analyzing the population means and covariance matrix to check that parameters are

recovered

DATA: FILE IS pop.dat;

TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500;

VARIABLE: NAMES ARE y1-y4;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;
OUTPUT: STANDARDIZED RESIUDAL;

Data For Step 2 Of Power Calculation (Continued)

Data From Step 1 Residual Output

```
0 .2 .4 .6
1 .5 1.1 .5 .7 1.4 .5 .8 1.1 1.9
```

237

Input For Step 3 Of Power Calculation

TITLE: Power calculation for a growth model

Step 3: Analyzing the population means and covariance matrix with a misspecified model

DATA: FILE IS pop.dat;

TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 50;

VARIABLE: NAMES ARE y1-y4;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;
OUTPUT: STANDARDIZED RESIUDAL;

Step 4 Of Power Calculation

Output Excerpt From Step 3

```
Chi-Square Test of Model Fit

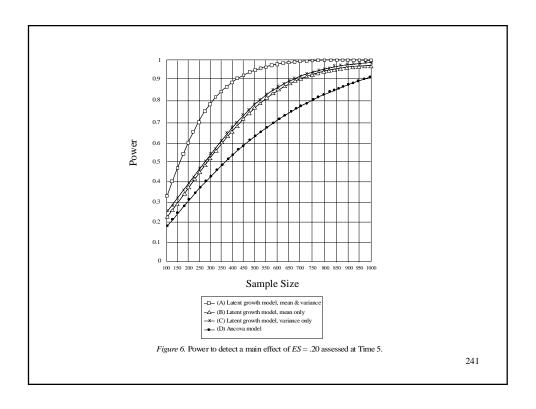
Value 9.286

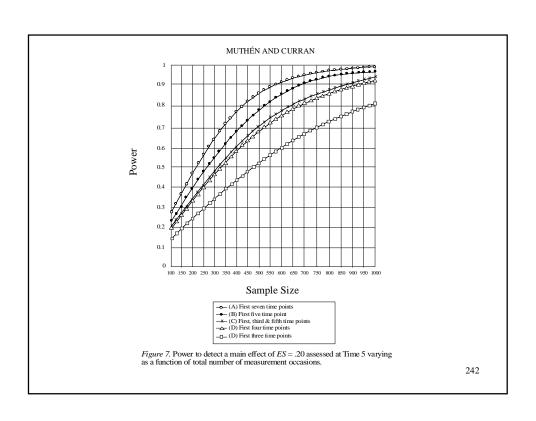
Degrees of Freedom 6

P-Value .1580
```

Power Algorithm in SAS

```
DATA POWER;
DF=1; CRIT=3.841459;
LAMBDA=9.286;
Power=(1 - (PROBCHI(CRIT, DF, LAMBDA)));
RUN;
```


239


Step 4 Of Power Calculation (Continued)

Results From Power Algorithm

```
SAMPLE SIZE POWER
44 0.80
50 0.85
100 0.98
200 0.99
```

Note: Non-centrality parameter = printed chi-square value from Step 3 = 2*sample size*F

Power Estimation For Growth Models Using Monte Carlo Studies

Muthén & Muthén (2002)

Input Power Estimation For Growth Models Using Monte Carlo Studies

TITLE: This is an example of a Monte Carlo simulation study for a linear growth model for a continuous outcome with missing data

where attrition is predicted by time-

invariant covariates (MAR)

MONTECARLO: NAMES ARE y1-y4 x1 x2;

NOBSERVATIONS = 500; NREPS = 500;

SEED = 4533;

CUTPOINTS = x2(1); MISSING = y1-y4;

245

Input Power Estimation For Growth Models Using Monte Carlo Studies (Continued)

MODEL POPULATION: x1-x2@1;

[x1-x2@0];

is | y1@0 y2@1 y3@2 y4@3;

[i*1 s*2];

i*1; s*.2; i WITH s*.1;

y1-y4*.5;

i ON x1*1 x2*.5;

s ON x1*.4 x2*.25;

MODEL MISSING: [y1-y4@-1];

y1 ON x1*.4 x2*.2;

y2 ON x1*.8 x2*.4; y3 ON x1*1.6 x2*.8;

y4 ON x1*3.2 x2*1.6;

Input Power Estimation For Growth Models Using Monte Carlo Studies (Continued)

ANALYSIS: TYPE = MISSING H1;

MODEL: i s | y1@0 y2@1 y3@2 y4@3;

[i*1 s*2];

i*1; s*.2; i WITH s*.1;

y1-y4*.5;

i ON x1*1 x2*.5; s ON x1*.4 x2*.25;

OUTPUT: TECH9;

247

Output Excerpts Power Estimation For Growth Models Using Monte Carlo Studies

Model Results

			ESTIMATE	ES	S.E.	M. S. E.	95%	%Sig
	Population		Average	Std. Dev.	Average		Cover	Coeff
I	ON							
X1		1.000	1.0032	0.0598	0.0579	0.0036	0.936	1.000
X2		0.500	0.5076	0.1554	0.1570	0.0241	0.952	0.908
S	ON							
X1		0.400	0.3980	0.0366	0.0349	0.0013	0.936	1.000
X2		0.250	0.2469	0.0865	0.0877	0.0075	0.938	0.830

Cohort-Sequential Designs and Power

Considerations:

- Model identification
- Number of timepoints needed substantively
- Number of years of the study
- Number of cohorts: More gives longer timespan but greater risk of cohort differences
- Number of measurements per individual
- Number of individuals per cohort
- Number of individuals per age

Tentative conclusion:

Power most influenced by total timespan, not the number of measures per cohort

249

References

(To request a Muthén paper, please email bmuthen@ucla.edu.)

Analysis With Longitudinal Data

Introductory

- Bollen, K.A. & Curran, P.J. (2006). <u>Latent curve models.</u> A structural <u>equation perspective</u>. New York: Wiley.
- Collins, L.M. & Sayer, A. (Eds.) (2001). New methods for the analysis of change. Washington, D.C.: American Psychological Association.
- Curran, P.J. & Bollen, K.A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In Collins, L.M. & Sayer, A.G. (Eds.) New methods for the analysis of change (pp. 105-136). Washington, DC: American Psychological Association.
- Duncan, T.E., Duncan, S.C., Strycker, L.A., Li, F., & Alpert, A. (1999). <u>An introduction to latent variable growth curve modeling: concepts, issues, and applications</u>. Mahwah, NJ: Lawrence Erlbaum Associates.
- Goldstein, H. (1995). <u>Multilevel statistical models</u>. Second edition. London: Edward Arnold.
- Jennrich, R.I. & Schluchter, M.D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42, 805-820.

- Laird, N.M., & Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
- Lindstrom, M.J. & Bates, D.M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. <u>Journal of the</u> American Statistical Association, 83, 1014-1022.
- Littell, R., Milliken, G.A., Stroup, W.W., & Wolfinger, R.D. (1996). SAS system for mixed models. Cary NC: SAS Institute.
- McArdle, J.J. & Epstein, D. (1987). Latent growth curves within developmental structural equation models. <u>Child Development</u>, 58, 110-133.
- McArdle, J.J. & Hamagami, F. (2001). Latent differences score structural models for linear dynamic analyses with incomplete longitudinal data. In Collins, L.M. & Sayer, A. G. (Eds.), New methods for the analysis of change (pp. 137-175). Washington, D.C.: American Psychological Association.
- Meredith, W. & Tisak, J. (1990). Latent curve analysis <u>Psychometrika</u>, 55, 107-122.

251

References (Continued)

- Muthén, B. (1991). Analysis of longitudinal data using latent variable models with varying parameters. In L. Collins & J. Horn (Eds.), <u>Best methods for</u> the analysis of change. Recent advances, unanswered questions, <u>future</u> <u>directions</u> (pp. 1-17). Washington D.C.: American Psychological Association.
- Muthén, B. (2000). Methodological issues in random coefficient growth modeling using a latent variable framework: Applications to the development of heavy drinking. In <u>Multivariate applications in substance use research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 113-140.
- Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement growth using latent variable modeling. <u>Learning and Individual Differences</u>. Special issue: latent growth curve analysis, 10, 73-101.
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. <u>Journal of Studies on Alcohol</u>, 61, 290-300.
- Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.

- Rao, C.R. (1958). Some statistical models for comparison of growth curves. Biometrics, 14, 1-17.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Singer, J.D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. <u>Journal of Educational</u> and Behavioral Statistics, 23, 323-355.
- Singer, J.D. & Willett, J.B. (2003). <u>Applied longitudinal data analysis.</u>

 <u>Modeling change and event occurrence</u>. New York, NY: Oxford University Press.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis: An introduction to basic and advanced multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.
- Tucker, L.R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23, 19-23.

253

References (Continued)

Advanced

- Albert, P.S. & Shih, J.H. (2003). Modeling tumor growth with random onset. Biometrics, 59, 897-906.
- Brown, C.H. & Liao, J. (1999). Principles for designing randomized preventive trials in mental health: An emerging development epidemiologic perspective. <u>American Journal of Community Psychology</u>, special issue on prevention science, 27, 673-709.
- Brown, C.H., Indurkhya, A. & Kellam, S.K. (2000). Power calculations for data missing by design: applications to a follow-up study of lead exposure and attention. <u>Journal of the American Statistical Association</u>, 95, 383-395.
- Collins, L.M. & Sayer, A. (Eds.), <u>New methods for the analysis of change</u>. Washington, D.C.: American Psychological Association.
- Duan, N., Manning, W.G., Morris, C.N. & Newhouse, J.P. (1983). A comparison of alternative models for the demand for medical care. <u>Journal of Business and Economic Statistics</u>, 1, 115-126.

- Ferrer, E. & McArdle, J.J. (2004). Alternative structural models for multivariate longitudinal data analysis. <u>Structural Equation Modeling</u>, 10, 493-524.
- Klein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. <u>Psychometrika</u>, 65, 457-474.
- Khoo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. In <u>Multivariate applications in substance use research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds), Hillsdale, N.J.: Erlbaum, pp. 43-78.
- Miyazaki, Y. & Raudenbush, S.W. (2000). A test for linkage of multiple cohorts from an accelerated longitudinal design. <u>Psychological Methods</u>, 5, 44-63
- Moerbeek, M., Breukelen, G.J.P. & Berger, M.P.F. (2000). Design issues for experiments in multilevel populations. <u>Journal of Educational and</u> Behavioral Statistics, 25, 271-284.
- Muthén, B. (1996). Growth modeling with binary responses. In A.V. Eye & C.
 Clogg (eds), <u>Categorical variables in developmental research: methods of analysis</u> (pp. 37-54). San Diego, CA: Academic Press.

References (Continued)

- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed), <u>Sociological Methodology</u> (pp. 453-380). Boston: Blackwell Publishers.
- Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (ed.), <u>Handbook of quantitative methodology for the social sciences</u> (pp. 345-368). Newbury Park, CA: Sage Publications.
- Muthén, B. & Curran, P. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. <u>Psychological Methods</u>, 2, 371-402.
- Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290-300.
- Muthén, L.K. and Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. <u>Structural Equation Modeling</u>, 4, 599-620.

- Olsen, M.K. & Schafer, J.L. (2001). A two-part random effects model for semicontinuous longitudinal data. <u>Journal of the American Statistical Association</u>, 96, 730-745.
- Raudenbush, S.W. (1997). Statistical analysis and optimal design for cluster randomized trials. Psychological Methods, 2, 173-185.
- Raudenbush, S.W. & Liu, X. (2000). Statistical power and optimal design for multisite randomized trials. <u>Psychological Methods</u>, 5, 199-213.
- Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. <u>Journal of the American Statistical Association</u>, 94, 766-776.
- Satorra, A. & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 51, 83-90.