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Abstract

Multiple imputation provides a useful strategy for dealing
with data sets with missing values. Instead of filling in a
single value for each missing value, Rubin’s (1987) multiple
imputation procedure replaces each missing value with a
set of plausible values that represent the uncertainty about
the right value to impute. These multiply imputed data sets
are then analyzed by using standard procedures for com-
plete data and combining the results from these analyses.
No matter which complete-data analysis is used, the pro-
cess of combining results from different imputed data sets
is essentially the same. This results in valid statistical in-
ferences that properly reflect the uncertainty due to missing
values.

This paper reviews methods for analyzing missing data,
including basic concepts and applications of multiple im-
putation techniques. The paper also presents new
SAS R
procedures for creating multiple imputations for in-
complete multivariate data and for analyzing results from
multiply imputed data sets.

These procedures are still under development and will be
available in experimental form in Release 8.1 of the SAS
System.

Introduction

Most SAS statistical procedures exclude observations with
any missing variable values from the analysis. These obser-
vations are called incomplete cases. While using only com-
plete cases has its simplicity, you lose information in the
incomplete cases. This approach also ignores the possi-
ble systematic difference between the complete cases and
incomplete cases, and the resulting inference may not be
applicable to the population of all cases, especially with a
smaller number of complete cases.

Some SAS procedures use all the available cases in an
analysis, that is, cases with available information. For ex-
ample, PROC CORR estimates a variable mean by using
all cases with nonmissing values on this variable, ignor-
ing the possible missing values in other variables. PROC
CORR also estimates a correlation by using all cases with
nonmissing values for this pair of variables. This may make
better use of the available data, but the resulting correlation
matrix may not be positive definite.

Another strategy is simple imputation, in which you substi-
tute a value for each missing value. Standard statistical pro-

cedures for complete data analysis can then be used with
the filled-in data set. For example, each missing value can
be imputed from the variable mean of the complete cases,
or it can be imputed from the mean conditional on observed
values of other variables. This approach treats missing val-
ues as if they were known in the complete-data analyses.
Single imputation does not reflect the uncertainty about the
predictions of the unknown missing values, and the result-
ing estimated variances of the parameter estimates will be
biased toward zero.

Instead of filling in a single value for each missing value, a
multiple imputation procedure (Rubin 1987) replaces each
missing value with a set of plausible values that represent
the uncertainty about the right value to impute. The multiply
imputed data sets are then analyzed by using standard pro-
cedures for complete data and combining the results from
these analyses. No matter which complete-data analysis is
used, the process of combining results from different data
sets is essentially the same.

Multiple imputation does not attempt to estimate each miss-
ing value through simulated values but rather to represent a
random sample of the missing values. This process results
in valid statistical inferences that properly reflect the uncer-
tainty due to missing values; for example, valid confidence
intervals for parameters.

Multiple imputation inference involves three distinct phases:

� The missing data are filled in m times to generate m
complete data sets.

� The m complete data sets are analyzed by using
standard procedures.

� The results from the m complete data sets are com-
bined for the inference.

A new SAS/STAT R
procedure, PROC MI, is a multiple impu-
tation procedure that creates multiply imputed data sets for
incomplete p-dimensional multivariate data. It uses meth-
ods that incorporate appropriate variability across the m im-
putations. Once the m complete data sets are analyzed by
using standard procedures, another new procedure, PROC
MIANALYZE, can be used to generate valid statistical infer-
ences about these parameters by combining results from
the m complete data sets.
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Ignorable Missing-Data Mechanism

Let Y be the n�p matrix of complete data, which is not
fully observed, and denote the observed part of Y by Y obs

and the missing part byYmis. The SAS multiple imputation
procedures assume that the missing data are missing at
random (MAR), that is, the probability that an observation is
missing may depend onYobs, but not onYmis (Rubin 1976;
1987, p. 53).

For example, consider a trivariate data set with variables Y 1

and Y2 fully observed, and a variable Y3 that has missing
values. MAR assumes that the probability that Y3 is missing
for an individual may be related to the individual’s values
of variables Y1 and Y2, but not to its value of Y3. On the
other hand, if a complete case and an incomplete case for
Y3 with exactly the same values for variables Y1 and Y2 have
systematically different values, then there exists a response
bias for Y3 and it is not MAR.

The MAR assumption is not the same as missing com-
pletely at random (MCAR), which is a special case of MAR.
With MCAR, the missing data values are a simple random
sample of all data values; the missingness does not depend
on the values of any variables in the data set.

Furthermore, these SAS procedures also assume that the
parameters � of the data model and the parameters � of the
missing data indicators are distinct. That is, knowing the val-
ues of � does not provide any additional information about
�, and vice versa. If both MAR and distinctness assump-
tions are satisfied, the missing-data mechanism is said to
be ignorable.

Imputation Mechanisms

This section describes three methods that are available in
the MI procedure. The method of choice depends on the
type of missing data pattern. For monotone missing data
patterns, either a parametric regression method that as-
sumes multivariate normality or a nonparametric method
that uses propensity scores is appropriate. For an arbitrary
missing data pattern, a Markov chain Monte Carlo (MCMC)
method (Schafer 1997) that assumes multivariate normality
can be used.

A data set is said to have a monotone missing pattern when
a variable Yj is missing for the individual i implies that all
subsequent variables Yk, k>j, are all missing for the indi-
vidual i. When you have a monotone missing data pattern,
you have greater flexibility in your choice of strategies. For
example, you can implement a regression model without in-
volving iterations as in MCMC.

When you have an arbitrary missing data pattern, you can
often use the MCMC method, which creates multiple impu-
tations by using simulations from a Bayesian prediction dis-
tribution for normal data. Another way to handle a data set
with an arbitrary missing data pattern is to use the MCMC
approach to impute enough values to make the missing data
pattern monotone. Then, you can use a more flexible impu-
tation method. This approach is still being researched.

Regression Method

In the regression method, a regression model is fitted for
each variable with missing values, with the previous vari-
ables as covariates. Based on the resulting model, a new
regression model is then fitted and is used to impute the
missing values for each variable (Rubin 1987, pp. 166-167.)
Since the data set has a monotone missing data pattern, the
process is repeated sequentially for variables with missing
values.

That is, for a variable Yj with missing values, a model

Yj = �0 + �1 Y1 + �2 Y2 + ::: + �(j�1) Y(j�1)

is fitted with the nonmissing observations.

The fitted model has the regression parameter estimates
(�̂0; �̂1; :::; �̂(j�1)) and the associated covariance matrix
�
2
jVj , whereVj is the usualX0

X matrix from the intercept
and variables Y1; Y2; :::; Y(j�1).

For each imputation, new parameters (�
�0; ��1; :::; ��(j�1))

and �
2
�j are drawn from the posterior predictive distribu-

tion of the missing data. That is, they are simulated from
(�̂0; �̂1; :::; �̂(j�1)), �

2
j , andVj .

The missing values are then replaced by

�
�0 + �

�1 y1 + �
�2 y2 + ::: + �

�(j�1) y(j�1) + zi ��j

where y1; y2; :::; y(j�1) are the covariate values of the first
(j � 1) variables and zi is a simulated normal deviate.

The following Fitness data set has a monotone missing
data pattern and is used with the regression method to gen-
erate imputed data sets. Note that the original data set has
been altered for this example.

*-------------------Data on Physical Fitness--------------*
| These measurements were made on men involved in a |
| physical fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (intake rate, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), |
| RunPulse (heart rate while running) are used. |
| |
| Certain values were changed to missing for the analysis |
*--------------------------------------------------------*;

data Fitness1;
input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176
45.681 11.95 176 49.091 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 54.625 8.92 146
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;
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The following statements invoke the MI procedure and re-
quest the regression method. The resulting data set is
named miout1.

proc mi data=Fitness1 seed=37851 out=miout1;
multinormal method=regression;
var Oxygen RunTime RunPulse;

run;

The procedure generates the following output:

The MI Procedure

Model Information

Data Set WORK.FITNESS1
Method Regression
Number of Imputations 5
Seed for random number generator 37851

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 23 74.19
2 X X . 5 16.13
3 X . . 3 9.68

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.684174 10.776957 170.739130
2 47.505800 10.280000 .
3 52.461667 . .

Figure 1. Output from PROC MI

The “Model Information” table describes the method and
options used in the multiple imputation process. By default,
five imputations are created for the missing data.

The “Missing Data Patterns” table lists distinct missing
data patterns with corresponding frequencies and percents.
Here, an ‘X’ means that the variable is observed in the cor-
responding group and a ‘.’ means that the variable is miss-
ing. The variable means in each group are also displayed.
The table also displays group-specific variable means.

The following statements produce a listing of the first ten
observations of data set miout1 with imputed values.

proc print data=miout1 (obs=10);
run;

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.609 11.3700 178.000
2 1 45.313 10.0700 185.000
3 1 54.297 8.6500 156.000
4 1 59.571 9.8709 170.676
5 1 49.874 9.2200 137.623
6 1 44.811 11.6300 176.000
7 1 45.681 11.9500 176.000
8 1 49.091 10.8500 121.146
9 1 39.442 13.0800 174.000

10 1 60.055 8.6300 170.000

Figure 2. Output Data Set

Propensity Score Method

The propensity score is the conditional probability of assign-
ment to a particular treatment given a vector of observed
covariates (Rosenbaum and Rubin 1983). In the propen-
sity score method, a propensity score is generated for each
variable with missing values to indicate the probability of
that observation being missing. The observations are then
grouped based on these propensity scores, and an approx-
imate Bayesian bootstrap imputation (Rubin 1987, p. 124)
is applied to each group (Lavori, Dawson, and Shera 1995).

With a monotone missing pattern, the following steps are
used to impute values for each variable Y j with missing val-
ues:

1. Create an indicator variable R j with the value 0 for ob-
servations with missing Yj and 1 otherwise.

2. Fit a logistic regression model of

logit(pj) = �0 + �1 Y1 + �2 Y2 + :::+ �(j�1) Y(j�1)

where pj = Pr(Rj = 0jY1; Y2; :::; Y(j�1))

and logit(p) = log(p=(1� p)):

3. Create a propensity score for each observation to indi-
cate the probability of its being missing.

4. Divide the observations into a fixed number of groups
based on these propensity scores.

5. Apply an approximate Bayesian bootstrap imputation to
each group. In group k, let Yobs denote the n1 observa-
tions with nonmissing Yj values and Ymis denote the n0

observations with missing Yj . Approximate Bayesian boot-
strap imputation first draws n1 observations randomly with
replacement from Yobs to create a new data set Y �

obs. This
is a nonparametric analogue of the drawing of parameters
from the posterior predictive distribution of the missing data.
The process then draws the n0 values for Ymis randomly
with replacement from Y

�

obs.

The process is repeated sequentially for each variable with
missing values.

The propensity score method uses only the covariate infor-
mation that is associated with whether the imputed variable
values are missing. It does not use correlations among vari-
ables. It is effective for inferences about the distributions
of individual imputed variables, but it is not appropriate for
analyses involving relationship among variables.

MCMC Method

MCMC originated in physics as a tool for exploring equilib-
rium distributions of interacting molecules. In statistical ap-
plications, it is used to generate pseudorandom draws from
multidimensional and otherwise intractable probability distri-
butions via Markov chains. A Markov chain is a sequence of
random variables in which the distribution of each element
depends on the value of the previous one.

In MCMC, one constructs a Markov chain long enough for
the distribution of the elements to stabilize to a common

3



distribution. This stationary distribution is the distribution
of interest. By repeatedly simulating steps of the chain, it
simulates draws from the distribution of interest. Refer to
Schafer (1997) for a detailed discussion of this method.

In Bayesian inference, information about unknown parame-
ters is expressed in the form of a posterior probability dis-
tribution. MCMC has been applied as a method for explor-
ing posterior distributions in Bayesian inference. That is,
through MCMC, one can simulate the entire joint posterior
distribution of the unknown quantities and obtain simulation-
based estimates of posterior parameters that are of interest.

Assuming that the data are from a multivariate normal distri-
bution, data augmentation is applied to Bayesian inference
with missing data by repeating the following steps:

1. The imputation I-step:
With the estimated mean vector and covariance matrix, the
I-step simulates the missing values for each observation in-
dependently. That is, if you denote the variables with miss-
ing values for observation i by Yi(mis) and the variables with
observed values by Yi(obs), then the I-step draws values for
Yi(mis) from a conditional distribution Y i(mis) given Yi(obs).

2. The posterior P-step:
The P-step simulates the posterior population mean vec-
tor and covariance matrix from the complete sample esti-
mates. These new estimates are then used in the I-step.
Without prior information about the parameters, a noninfor-
mative prior is used. You can also use other informative
priors. For example, a prior information about the covari-
ance matrix may be helpful to stabilize the inference about
the mean vector for a near singular covariance matrix.

The two steps are iterated long enough for the results to
be reliable for a multiply imputed data set (Schafer 1997, p.
72). The goal is to have the iterates converge to their sta-
tionary distribution and then to simulate an approximately
independent draw of the missing values.

That is, with a current parameter estimate �
(t) at tth itera-

tion, the I-step draws Y (t+1)

mis
from p(YmisjYobs; �

(t)) and the
P-step draws �(t+1) from p(�jYobs; Y

(t+1)

mis
).

This creates a Markov chain

(Y
(1)

mis
; �

(1)) , (Y (2)

mis
; �

(2)) , ... ,

which converges in distribution to p(Ymis; �jYobs).

The following Fitness data set has been altered to contain
an arbitrary missing pattern:

*-------------------Data on Physical Fitness--------------*
| These measurements were made on men involved in a |
| physical fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (intake rate, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), |
| RunPulse (heart rate while running) are used. |
| |
| Certain values were changed to missing for the analysis |
*--------------------------------------------------------*;

data Fitness2;
input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .

49.874 9.22 . 44.811 11.63 176
. 11.95 176 49.091 10.85 .

39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .

. 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 146
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

The following statements invoke the MI procedure and spec-
ify the MCMC method. The option NIMPU=3 requests three
imputations.

proc mi data=Fitness nimpu=3 out=mioutmc;
multinormal method=mcmc;
var Oxygen RunTime RunPulse;

run;

The MI Procedure

Model Information

Data Set WORK.FITNESS2
Method MCMC
Multiple Imputation Chain Multiple Chains
Initial Estimates for MCMC EM
Start Starting Value
Prior Jeffreys
Number of Imputations 3
Number of Burn-in Iterations 50
Seed for random number generator 36611

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 2 6.45
5 . X . 1 3.23

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.688750 10.287500 .
3 52.461667 . .
4 . 10.435000 161.000000
5 . 10.250000 .

Figure 3. Output from PROC MI, MCMC

By default, the procedure uses multiple chains to create five
imputations. It takes 50 burn-in iterations before the first
imputation. The burn-in iterations are used to make the it-
erations converge to the stationary distribution before the
imputation.

By default, the procedure also uses the statistics from the
available cases in the data as the initial estimates for the EM
algorithm. That is, it uses the available cases for the means
and standard deviations. The correlations are set to zero
and the covariance matrix is generated from these standard
deviations and zero correlations. Refer to Schafer (1997, p.
169) for suggested starting values for the algorithm.

The expectation-maximization (EM) algorithm (Little and
Rubin 1987) is a technique that finds maximum likelihood
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estimates for parametric models for incomplete data. It can
also be used to compute posterior modes, the parameter
estimates with the highest observed-data posterior density.
The resulting EM estimate provides a good starting value
with which to begin the MCMC process.

The following “Initial Parameter Estimates for MCMC” tables
display the starting mean and covariance estimates used in
each imputation. The same starting estimates are used to
begin the MCMC process for each imputation because the
same EM algorithm is used. You can specify different initial
estimates for different imputations explicitly or use the boot-
strap to generate different initial estimates for the EM algo-
rithm to find possible different starting values for the MCMC
process.

The MI Procedure

Initial Parameter Estimates for MCMC

_IMPUTATION_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 MEAN 47.314978 10.562925 170.089851
1 COV Oxygen 25.284270 -5.744658 -22.268666
1 COV RunTime -5.744658 1.757043 4.586548
1 COV RunPulse -22.268666 4.586548 103.588249

Initial Parameter Estimates for MCMC

_IMPUTATION_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

2 MEAN 47.314978 10.562925 170.089851
2 COV Oxygen 25.284270 -5.744658 -22.268666
2 COV RunTime -5.744658 1.757043 4.586548
2 COV RunPulse -22.268666 4.586548 103.588249

Initial Parameter Estimates for MCMC

_IMPUTATION_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

3 MEAN 47.314978 10.562925 170.089851
3 COV Oxygen 25.284270 -5.744658 -22.268666
3 COV RunTime -5.744658 1.757043 4.586548
3 COV RunPulse -22.268666 4.586548 103.588249

Figure 4. Initial Parameter Estimates

Combining Inferences from Imputed Data
Sets

Withm imputations, you can computem different sets of the
point and variance estimates for a parameter Q. Let Q̂i and
Ûi be the point and variance estimates from the ith imputed
data set, i=1, 2, ..., m. Then the point estimate for Q from
multiple imputations is the average of the m complete-data
estimates:

Q =
1

m

mX
i=1

Q̂i

Let U be the within-imputation variance, which is the aver-
age of the m complete-data estimates

U =
1

m

mX
i=1

Ûi

and B be the between-imputation variance

B =
1

m� 1

mX
i=1

(Q̂i �Q)
2

Then the variance estimate associated with Q is the total
variance

T = U + (1 +
1

m
)B

The statistic (Q � Q)T�1=2 is approximately distributed as
a t-distribution with vm degrees of freedom (Rubin 1987),
where

vm = (m� 1)

�
1 +

U

(1 +m�1)B

�2

When the complete-data degrees of freedom v 0 is small and
there is only a modest proportion of missing data, the com-
puted degrees of freedom, vm, can be much larger than v0,
which is inappropriate. Barnard and Rubin (1999) recom-
mend the use of an adjusted degrees of freedom, v �

m.

v
�

m =

�
1

vm
+

1

^vobs

�
�1

where

^vobs =
v0 + 1

v0 + 3
v0 (1� 
)


 =
(1 +m

�1)B

T

Similar to the univariate inferences, multivariate inferences
based on Wald’s tests can also be derived from the m im-
puted data sets.

Multiple Imputation Efficiency

The degrees of freedom vm depends on m and the ratio

r =
(1 +m

�1)B

U

The ratio r is called the relative increase in variance due to
nonresponse (Rubin 1987). When there is no missing infor-
mation about Q, both values r and B are zero. With a large
value of m or a small value of r, the degrees of freedom
vm will be large and the distribution will be approximately
normal.

Another useful statistic about the nonresponse is the frac-
tion of missing information about Q:

�̂ =
r + 2=(vm + 3)

r + 1

The relative efficiency of using the finite m imputation esti-
mator, rather than using an infinite number for the fully ef-
ficient imputation, in units of variance, is approximately a
function of m and �.

RE = (1 +
�

m
)
�1
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The following table shows the relative efficiencies with dif-
ferent values of m and �. For cases with little missing infor-
mation, only a small number of imputations are necessary
for the MI analysis.

�

m 10% 20% 30% 50% 70%
3 0:9677 0:9375 0:9091 0:8571 0:8108

5 0:9804 0:9615 0:9434 0:9091 0:8772

10 0:9901 0:9804 0:9709 0:9524 0:9346

20 0:9950 0:9901 0:9852 0:9756 0:9662

Imputer’s Model versus Analyst’s Model

Note: This section is mainly based on Section 4.5.4 of
Schafer (1997). You should consult this book for a com-
prehensive discussion on choosing an imputation model.

Multiple imputation inferences assume that the analyst’s
model is the same as the imputer’s model. But in practice,
the two models may not be the same.

For example, consider the same trivariate data set with vari-
ables Y1 and Y2 fully observed, and a variable Y3 with miss-
ing values. An imputer creates multiple imputations with the
model

Y3 = Y1 Y2

However, the analyst may later model Y3 = Y1 only. In this
case, the analyst assumes more than the imputer. That
is, the analyst assumes there is no relationship between
variables Y3 and Y2.

The effect of the discrepancy depends on whether the an-
alyst’s additional assumption is true. If the assumption is
true, the imputer’s model still applies. The inferences de-
rived from multiple imputations will still be valid, although it
may be somewhat conservative because it reflects the addi-
tional uncertainty of estimating the relationship between Y 3

and Y2.

On the other hand, suppose that the analyst model Y 3 = Y1

only and there is a relationship between variables Y 3 and
Y2. Then the model of Y3 = Y1 will be biased and the an-
alyst’s model is inappropriate. Appropriate results can be
generated only from appropriate analyst’s models.

Another type of discrepancy occurs when the imputer as-
sumes more than the analyst. For example, an imputer cre-
ates multiple imputations with the model

Y3 = Y1

but the analyst later fits a model Y3 = Y1 Y2. When the
assumption is true, the imputer’s model is a correct model
and the inferences still hold.

On the other hand, suppose there is a relationship between
Y3 and Y2. Imputations created under the incorrect assump-
tion that there is no relationship between Y 3 and Y2 will
make the analyst’s estimate of the relationship biased to-
ward zero. Multiple imputations created under an incorrect
model can lead to incorrect conclusions.

Thus, generally you want to include as many variables as
you can when doing multiple imputation. The precision you
lose when you include unimportant predictors is usually a
relatively small price to pay for the general validity of analy-
ses of the resultant multiply imputed data set (Rubin 1996).

Note that it is good practice to include a description of the
imputer’s model with the multiply imputed data set. That
way, the analysts will have information about the variables
involved in the imputation and which relationships among
the variables have been implicitly set to zero.

The MI Procedure

The MI procedure provides three methods to create imputed
data sets that can be analyzed using standard procedures.

The following statements are available in PROC MI:

PROC MI < options > ;

BY variables ;
FREQ variable ;
MULTINORMAL < options > ;
VAR variables ;

The PROC MI statement is the only required statement in
the MI procedure. Available options in the PROC MI state-
ment include:

NIMPU=number
specifies the number of imputations. The default is
NIMPU=5.

OUT=SAS-data-set
creates an output SAS data set in which to put the impu-
tation results. The data set includes an identification vari-
able, –IMPUTATION–, to identify the imputation number.
For each imputation, the data set contains all variables in
the input data set, with missing values being replaced by
the imputed values.

SEED=number
specifies a positive integer that is used to start the pseudo-
random number generator. The default is a value gener-
ated from reading the time of day from the computer’s clock.
However, in order to be able to duplicate the result under
identical situations, you must control the value of the seed
explicitly rather than rely on the clock reading.

If the default value is used, the seed information is displayed
so that the results can be reproduced by specifying this
seed with the SEED= option. You need to specify exactly
the same seed number in the future to reproduce the same
results.
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The following options are used to make the imputed values
consistent with the observed variable values:

MAXIMUM=numbers
MINIMUM=numbers
specifies the maximum/minimum values for imputed vari-
ables. If only one number is specified, that number is used
for all variables. If more than one number is specified, you
must use a VAR statement, and the specified numbers cor-
respond to variables in the VAR statement. A missing value
indicates no restriction on maximum/minimum for the corre-
sponding variable.

ROUND=numbers
specifies the units to round variables in the imputation. If
only one number is specified, that number is used for all
variables. If more than one number is specified, you must
use a VAR statement, and the specified numbers corre-
spond to variables in the VAR statement.

The following statements generate imputed values rounded
to the desired units:

proc mi data=Fitness1 seed=37851 out=miout2
round=.001 .01 1;

multinormal method=regression;
var Oxygen RunTime RunPulse;

run;

proc print data=miout2 (obs=10);
run;

Run Run
Obs _Imputation_ Oxygen Time Pulse

1 1 44.609 11.37 178
2 1 45.313 10.07 185
3 1 54.297 8.65 156
4 1 59.571 9.87 171
5 1 49.874 9.22 138
6 1 44.811 11.63 176
7 1 45.681 11.95 176
8 1 49.091 10.85 121
9 1 39.442 13.08 174

10 1 60.055 8.63 170

Figure 5. Output Data Set with a ROUND option

You specify a BY statement with PROC MI to obtain sepa-
rate analyses on observations in groups defined by the BY
variables. When a BY statement appears, the procedure
expects the input data set to be sorted in order of the BY
variables.

If one variable in your input data set represents the fre-
quency of occurrence for other values in the observation,
you can specify the variable’s name in a FREQ statement.
PROC MI then treats the data set as if each observation ap-
peared n times, where n is the value of the FREQ variable
for the observation.

The VAR statement lists the variables to be analyzed. The
variables must be numeric. If you omit the VAR statement,
all numeric variables not mentioned in other statements are
used.

The MULTINORMAL statement specifies the imputation
method. Available options are:

METHOD=REGRESSION
METHOD=PROPENSITY <(NGROUPS=number)>
METHOD=MCMC <( options )>

The default is METHOD=MCMC. If no MULTINORMAL
statement is included, this method is used.

METHOD=PROPENSITY(NGROUPS=number)
specifies the number of groups based on propensity scores.
The default is NGROUPS=5.

Available options for METHOD=MCMC include:

CHAIN=SINGLE | MULTIPLE
specifies whether a single chain is used for all imputations
or a separate chain is used for each imputation (Schafer
1997, pp. 137-138). The default is CHAIN=MULTIPLE.

INITIAL=EM < (BOOTSTRAP < = p >) >
INITIAL=INPUT=SAS-data-set
specifies the initial mean and covariance estimates to begin
the MCMC process.

With INITIAL=EM, PROC MI uses the means and standard
deviations from available cases as the initial estimates for
the EM algorithm. The correlations are set to zero. The
resulting estimates are used to begin the MCMC process.

You can specify a BOOTSTRAP option to use a simple ran-
dom sample with replacement of [np] observations from
the input data set to compute the initial estimates for each
chain (Schafer 1997, p. 128), where n is the number of
observations in the data set, [np] is the integer part of np,
and 0 < p <= 1. This gives an overdispersed initial esti-
mate that provides possible different starting values for the
MCMC. If a BOOTSTRAP option is specified without the p
value, p=0.75 is used.

You can also specify INITIAL=INPUT=SAS-data-set to
use a SAS data set from which to obtain the initial estimates
of the mean and covariance matrix for each imputation. The
default is INITIAL=EM.

NBITER=number
specifies the number of burn-in iterations before the first im-
putation in each chain. The default is NBITER=50.

NITER=number
specifies the number of iterations between imputations in a
single chain. The default is NITER=30.

Although the MI procedure with a regression or MCMC
method assumes multivariate normality, the inference by
multiple imputation may be robust to departures from the
multivariate normality if the amounts of missing information
are not large. It often makes sense to use a normal model
to create multiple imputations even when the observed data
are somewhat nonnormal, as supported by the simulation
studies described in Schafer (1997) and the original refer-
ences therein.
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The MIANALYZE Procedure

From m imputations, m different sets of the point and vari-
ance estimates for a parameter Q can be computed. PROC
MIANALYZE combines these results and generates valid
statistical inferences about the parameter. Multivariate in-
ferences can also be derived from the m imputed data sets.

The following statements are available in PROC MIANA-
LYZE:

PROC MIANALYZE < options > ;

BY variables ;
VAR variables ;

The PROC MIANALYZE and VAR statements are required.
Available options in the PROC MIANALYZE statement are:

ALPHA=p
specifies that confidence limits are to be constructed for
the parameter estimates with confidence level 100(1� p)%,
where 0 < p < 1. The default is ALPHA=0.05.

EDF=numbers
specifies the complete-data degrees of freedom for the pa-
rameter estimates. This is used to compute an adjusted
degrees of freedom.

MU0=numbers
specifies the means under the null hypothesis in the t-test
for location. If only one number is specified, that number is
used for all variables. If more than one number is specified,
you must use a VAR statement, and the specified numbers
correspond to variables in the VAR statement.

MULT | MULTIVARIATE
requests multivariate inference for the variables together.

DATA=SAS-data-set
names a specially structured SAS data set to be analyzed
by PROC MIANALYZE. The input data set must have a
TYPE of COV, CORR, or EST. The parameter estimates and
their associated covariance matrix from each imputed data
set are read from the data set.

PARMS=SAS-data-set
names a SAS data set that contains parameter estimates
from imputed data sets. If you use the PARMS= option,
then either the COVB= or XPXI= option must be specified.

COVB=SAS-data-set
names a SAS data set that contains covariance matrices
of the parameter estimates from imputed data sets. If you
use the COVB= option, the PARMS= option must also be
specified.

XPXI=SAS-data-set
names a SAS data set that contains X’X inverse matrices
related to the parameter estimates from imputed data sets.
If you use the XPXI= option, the PARMS= option must also
be specified. In this case, PROC MIANALYZE also reads
the standard errors of the estimates from the PARMS= data.
The standard errors and X’X inverse matrices are used to
derive the covariance matrices.

Input Data Sets

If you do not specify an input data set with the DATA=,
COVB=, or XPXI= option, then the most recently created
SAS data set is used as a DATA= input data set.

You can specify input data sets using one of the following
combinations of options:

� DATA=, which provides both parameter estimates and
the associated covariance matrix in a single input
data set. See Example 1 in the next section.

� PARMS= and COVB=, which provide parameter esti-
mates and the associated covariance matrix in sepa-
rate data sets, respectively.

� PARMS= and XPXI=, which provide parameter es-
timates and the associated standard errors in a
PARMS= data set, and the associated X’X inverse
matrix in sa XPXI= data set.

The combination you use depends on the SAS procedure
you used to create the parameter estimates and associated
covariance matrix. For instance, if you used PROC REG
to create an OUTEST= data set containing the parameter
estimates and covariance matrix, you would use the DATA=
option to read the OUTEST= data set. The next section
illustrates these combinations.

Examples

The following statements generate five imputed data sets:

proc mi data=Fitness seed=37851 noprint out=miout;
var Oxygen RunTime RunPulse;

run;

Example 1. REG: DATA= data set
The following statements generate regression coefficients:

proc reg data=miout outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title ’Parameter Estimates from Imputed Data Sets’;

run;

Parameter Estimates from Imputed Data Sets

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 102.650 -3.17736 -0.12495
2 1 COV Intercept 74.402 -0.85060 -0.38264
3 1 COV RunTime -0.851 0.22194 -0.00881
4 1 COV RunPulse -0.383 -0.00881 0.00280
5 2 PARMS 91.828 -2.95717 -0.07932
6 2 COV Intercept 56.905 -0.23604 -0.32023
7 2 COV RunTime -0.236 0.12399 -0.00632
8 2 COV RunPulse -0.320 -0.00632 0.00229

Figure 6. Output Data Set from PROC REG
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The following statements combine the inferences from the
imputed data sets:

proc mianalyze data=outreg mult edf=28;
var Intercept RunTime RunPulse;

run;

The MIANALYZE Procedure

Multiple-Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Intercept 20.626871 54.139158 78.891402 12
RunTime 0.010739 0.149768 0.162656 23
RunPulse 0.000378 0.002055 0.002509 18

Multiple-Imputation Variance Information

Relative Fraction
Increase Missing

Variable in Variance Information

Intercept 0.457197 0.345206
RunTime 0.086048 0.082107
RunPulse 0.220915 0.194029

Figure 7. Variance Information

The “Multiple-Imputation Variance Information” table dis-
plays the between-imputation, within-imputation, and total
variances for combining complete-data inferences. It also
displays the degrees of freedom for the total variance. The
relative increase in variance due to missing values and the
fraction of missing information for each parameter estimate
are also displayed.

The MIANALYZE Procedure

Multiple-Imputation Parameter Estimates

Std Error
Variable Mean Mean 95% Confidence Limits DF

Intercept 95.565478 8.882083 76.21308 114.9179 12
RunTime -3.060741 0.403306 -3.89504 -2.2264 23
RunPulse -0.092776 0.050087 -0.19801 0.0125 18

Multiple-Imputation Parameter Estimates

t for H0:
Variable Mu0 Mean=Mu0 Pr > |t|

Intercept 0 10.759354 <.0001
RunTime 0 -7.589132 <.0001
RunPulse 0 -1.852276 0.0805

Figure 8. Parameter Estimates

The “Multiple-Imputation Parameter Estimates” table dis-
plays the estimated mean and standard error of the mean
for each variable. The inferences are based on the t-
distribution. The table also displays a 95% mean confidence
interval and a t-test with the associated p-value for the hy-
pothesis that the variable mean is equal to mu0 as specified
in the MU0= option for each variable.

When the MULT option is specified, the following table dis-
plays the within-imputation, between-imputation, and total
covariance matrices:

The MIANALYZE Procedure

Within-Imputation Covariance Matrix

Intercept RunTime RunPulse

Intercept 54.13915751 -0.55774289 -0.28357515
RunTime -0.55774289 0.14976830 -0.00606467
RunPulse -0.28357515 -0.00606467 0.00205481

Between-Imputation Covariance Matrix

Intercept RunTime RunPulse

Intercept 20.62687065 -0.43718694 -0.08759224
RunTime -0.43718694 0.01073940 0.00176325
RunPulse -0.08759224 0.00176325 0.00037828

Total Covariance Matrix

Intercept RunTime RunPulse

Intercept 68.94083847 -0.71023016 -0.36110478
RunTime -0.71023016 0.19071506 -0.00772276
RunPulse -0.36110478 -0.00772276 0.00261659

Figure 9. Covariance Matrices

The “Multiple-Imputation Multivariate Inference” table dis-
plays the multivariate inference assuming proportionality of
between and within covariance matrices.

The MIANALYZE Procedure

Multiple-Imputation Multivariate Inference
Assuming Proportionality of Between/Within Covariance Matrices

Avg Relative
Increase F for H0:

in Variance Num DF Den DF Mean=Mu0 Pr > F

0.273401 3 135 2355.946171 <.0001

Figure 10. Multivariate Inference

Example 2. MIXED: PARMS= and COVB= data sets
PROC MIXED generates fixed-effect parameter estimates
and associated covariance matrix for each model fit:

proc mixed data=miout;
model Oxygen= RunTime RunPulse/solution covb;
by _Imputation_;
ods output SolutionF=mixparms CovB=mixcovb;

run;

proc print data=mixparms (obs=6);
var _Imputation_ Effect Estimate;
title ’MIXED Model Coefficients’;

run;

proc print data=mixcovb (obs=6);
var _Imputation_ Effect Col1 Col2 Col3;
title ’MIXED Covariance Matrices’;

run;
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MIXED Model Coefficients from Imputed Data Sets

Obs _Imputation_ Effect Estimate

1 1 Intercept 102.65
2 1 RunTime -3.1774
3 1 RunPulse -0.1250
4 2 Intercept 91.8277
5 2 RunTime -2.9572
6 2 RunPulse -0.07932

Figure 11. MIXED Model Coefficients

Covariance Matrices from Imputed Data Sets

Obs _Imputation_ Effect Col1 Col2 Col3

1 1 Intercept 74.4024 -0.8506 -0.3826
2 1 RunTime -0.8506 0.2219 -0.00881
3 1 RunPulse -0.3826 -0.00881 0.002798
4 2 Intercept 56.9053 -0.2360 -0.3202
5 2 RunTime -0.2360 0.1240 -0.00632
6 2 RunPulse -0.3202 -0.00632 0.002285

Figure 12. MIXED Covariance Matrices

The following MIANALYZE procedure uses PARMS= and
COVB= options and produces the same results as in the
previous regression example:

proc mianalyze parms=mixparms covb=mixcovb edf=28;
var Intercept RunTime RunPulse;

run;

Example 3. GENMOD: PARMS= and COVB= data sets
PROC GENMOD generates parameter estimates and co-
variance matrix for each model fit:

proc genmod data=miout;
model Oxygen= RunTime RunPulse/covb;
by _Imputation_;
ods output ParameterEstimates=gmparms

CovB=gmcovb;
run;

proc print data=gmparms (obs=8);
var _Imputation_ Parameter Estimate;
title ’GENMOD Model Coefficients’;

run;

proc print data=gmcovb (obs=8);
var _Imputation_ RowName Prm1 Prm2 Prm3;
title ’GENMOD Covariance Matrices’;

run;

GENMOD Model Coefficients from Imputed Data Sets

Obs _Imputation_ Parameter Estimate

1 1 Intercept 102.6503
2 1 RunTime -3.1774
3 1 RunPulse -0.1250
4 1 Scale 3.1099
5 2 Intercept 91.8277
6 2 RunTime -2.9572
7 2 RunPulse -0.0793
8 2 Scale 2.4866

Figure 13. GENMOD Model Coefficients

Covariance Matrices from Imputed Data Sets

Row
Obs _Imputation_ Name Prm1 Prm2 Prm3

1 1 Prm1 67.202199 -0.768281 -0.345611
2 1 Prm2 -0.768281 0.2004598 -0.007953
3 1 Prm3 -0.345611 -0.007953 0.0025275
4 1 Scale 3.868E-15 8.402E-16 -6.87E-17
5 2 Prm1 51.398305 -0.213201 -0.289244
6 2 Prm2 -0.213201 0.1119883 -0.005707
7 2 Prm3 -0.289244 -0.005707 0.002064
8 2 Scale -3.82E-15 1.827E-16 1.431E-17

Figure 14. GENMOD Covariance Matrices

The following MIANALYZE procedure also uses PARMS=
and COVB= options:

proc mianalyze parms=gmparms covb=gmcovb;
var Intercept RunTime RunPulse;

run;

The MIANALYZE Procedure

Multiple-Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Intercept 20.626871 48.899884 73.652129 35
RunTime 0.010739 0.135275 0.148162 529
RunPulse 0.000378 0.001856 0.002310 104

Multiple-Imputation Variance Information

Relative Fraction
Increase Missing

Variable in Variance Information

Intercept 0.506182 0.370635
RunTime 0.095268 0.090415
RunPulse 0.244585 0.211597

Figure 15. Variance Information

The MIANALYZE Procedure

Multiple-Imputation Parameter Estimates

Std Error
Variable Mean Mean 95% Confidence Limits DF

Intercept 95.565478 8.582082 78.14293 112.9880 35
RunTime -3.060741 0.384918 -3.81690 -2.3046 529
RunPulse -0.092776 0.048061 -0.18809 0.0025 104

Multiple-Imputation Parameter Estimates

t for H0:
Variable Mu0 Mean=Mu0 Pr > |t|

Intercept 0 11.135466 <.0001
RunTime 0 -7.951670 <.0001
RunPulse 0 -1.930359 0.0563

Figure 16. Parameter Estimates

The parameter estimates are identical to the estimates from
the previous regression example, but the standard errors
are slightly different because by default, PROC GENMOD
computes maximum likelihood estimates for the standard
errors.
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Example 4. GLM: PARMS= and XPXI= data sets
PROC GLM generates the parameter estimates and XPX
inverse matrix for each model fit:

proc glm data=miout;
model Oxygen= RunTime RunPulse/inverse;
by _Imputation_;
ods output ParameterEstimates=glmparms

InvXPX=glmxpxi;
run;

proc print data=glmparms (obs=6);
var _Imputation_ Parameter Estimate;
title ’GLM Model Coefficients’;

run;

proc print data=glmxpxi (obs=6);
var _Imputation_ Parameter Intercept RunTime

RunPulse;
title ’GLM X’X Inverse Matrices’;

run;

GLM Model Coefficients from Imputed Data Sets

Obs _Imputation_ Parameter Estimate

1 1 Intercept 102.6503419
2 1 RunTime -3.1773574
3 1 RunPulse -0.1249526
4 2 Intercept 91.8276618
5 2 RunTime -2.9571715
6 2 RunPulse -0.0793226

Figure 17. GLM Model Coefficients

GLM X’X Inverse Matrices

Obs _Imputation_ Parameter Intercept RunTime RunPulse

1 1 Intercept 6.9487124244 -0.079440359 -0.035736245
2 1 RunTime -0.079440359 0.0207275543 -0.000822365
3 1 RunPulse -0.035736245 -0.000822365 0.000261345
4 1 Oxygen 102.6503419 -3.177357439 -0.124952649
5 2 Intercept 8.3129028319 -0.034482111 -0.046780865
6 2 RunTime -0.034482111 0.0181124283 -0.000922977

Figure 18. GLM X’X Inverse Matrices

The following MIANALYZE procedure step uses the
PARMS= and XPXI= options and produces the same results
as in the previous regression example:

proc mianalyze parms=glmparms xpxi=glmxpxi edf=28;
var Intercept RunTime RunPulse;

run;
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