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Abstract: Dummy variables are variables that take
the values of only 0 or 1. They may be explanatory
or outcome variables; however, the focus of this
article is explanatory or independent variable
construction and usage. Typically, dummy variables
are used in the following applications: time series
analysis with seasonality or regime switching;
analysis of qualitative data, such as survey
responses; categorical representation, and
representation of value levels. Target domains may
be economic forecasting, bio-medical research,
credit scoring, response modeling, and other fields.
Dummy variables may serve as inputs in traditional
regression methods or new modeling paradigms,
such as genetic algorithms, neural networks, or
Boolean network models. Coding techniques include
"1-of-N" and "thermometer" encoding. Statistical
properties of dummy variables in each of the
traditional usage and application contexts are
discussed, and a more detailed introduction of a
Boolean network model is presented. Because
conversion of categorical data to dummy variables
often requires time-consuming and tedious re-
coding, a SAS macro is offered to facilitate the
creation of dummy variables and improve
productivity.

1. Introduction to Dummy Variables

Dummy variables are independent variables
which take the value of either O or 1. Just as a
"dummy" is a stand-in for a real person, in
guantitative analysis, a dummy variable is a
numeric stand-in for a qualitative fact or a logical
proposition. For example, a model to estimate
demand for electricity in a geographical area might
include the average temperature, the average
number of daylight hours, the total number of
structure square feet, numbers of businesses,
numbers of residences, and so forth. It might be
more useful, however, if the model could produce
appropriate results for each month or each season.
Using the number of the month, such as 12 for
December, would be silly, because that implies that
the demand for electricity is going to be very
different between December and January, which is
month 1. It also implies that Winter occurs during
the same months everywhere, which would preclude
the use of the model for the opposite polar
hemisphere. Thus, another way to represent

gualitative concepts such as season, male or
female, smoker or non-smoker, etc., is required for
many models to make sense.

In a regression model, a dummy variable with a
value of 0 will cause its coefficient to disappear from
the equation. Conversely, the value of 1 causes
the coefficient to function as a supplemental
intercept, because of the identity property of
multiplication by 1.  This type of specification in a
linear regression model is useful to define subsets
of observations that have different intercepts and/or
slopes without the creation of separate models. In
logistic regression models, encoding all of the
independent variables as dummy variables allows
easy interpretation and calculation of the odds
ratios, and increases the stability and significance of
the coefficients. Examples of these results are in
Section 3. In addition to the direct benefits to
statistical analysis, representing information in the
form of dummy variables is makes it easier to turn
the model into a decision tool.  Consider a risk
manager who needs to assign credit limits to
businesses. The age of the business is almost
always significant in assessing risk. If the risk
manager has to assign a different credit limit for
each year in business, it becomes extremely
complicated and difficult to use because some
businesses are several hundred years old. Bi-
variate analysis of the relationship between age of
business and default usually yields a small humber
of groups that are far more statistically significant
than each year evaluated separately.

Synonyms for dummy variables are design
variables [Hosmer and Lemeshow, 1989] , Boolean
indicators, and proxies [Kennedy, 1981]. Related
concepts are binning [Tukey, 1977] or ranking,
because belonging to a bin or rank could be
formulated into a dummy variable. Bins or ranks
can also function as sets and dummy variables can
represent non-probabilistic set membership. Set
theory is usually explained in texts on computer
science or symbolic logic. See [Arbib, et. al., 1981]
or [MacLane, 1986].

Dummy variables based on set membership can
help when there are too few observations, and thus,
degrees of freedom, to have a dummy variable for
every category or some categories are too rare to
be statistically significant. Dummy variables can
represent mixed or combined categories using
logical operations, such as:



a. a business in the wholesale or retail trades;

b. a business in the retail trades and that is
less than 3 years old;

c. a business that has had a prior bankruptcy or
payments placed for collection, but not both
(exclusive or).

In a., two categories from the same variable,
industry group are combined, using a logical or.
Two categories, industry and age of business are
combined using the logical and operator. The
exclusive or (XOR) operator is not part of many
programming languages, including the SAS
lanaguage. However, the discussion of Boolean
networks in Section 4 includes a programmable
definition of XOR.

The four applications of dummy variables
discussed here are: 1) regime switching (or
seasonality); 2) categorical representation; 3)
interval level representation, and, 4) Boolean
operators. The rest of this article is organized
around answering the following questions: (Section
2) What is the information content of dummy
variables and how is it measured?; (Section 3) How
can dummy variables add predictive power and
stability to traditional regression analysis?; (Section
4) How are dummy variables used in non-
parametric analysis and dynamic systems?; and,
(Section 5) How can developers use the SAS®
language to make dummy variable coding easy?
Section 6 is a summary.

2. An Information Theoretic Interpretation of
the Statistical Properties of Dummy
Variables

Any definition of any dummy variable implies a
logical proposition with a value of true or false, a
statement of fact, and the respective information
value of that fact. Here are some typical examples
of facts about businesses, followed by hypothetical
variable names, that can be represented by dummy
variables:

a. Business is at least 3 years old and less than 8
years old. (BUSAGEZ2);

b. Business has experienced a prior bankruptcy
(BNKRPIND);

c. Business is in the top quartile in its industry with
respect to its Quick Ratio (TOPQUICK);

d. Business is a retailer of Children's Apparel
(CHILDAPP);

e. Business is located in the Northeast Region
(NEREGN).

As dummy variables, these five variables would
have the value of 1 if any statement is true, and O if

it is false.  The creation of each variable requires
considerable pre-processing, with TOPQUICK
requiring the most complicated processing,
because, at some point, population norms for the
quick ratio would have to be established to
determine quartile breaks. Variable BUSAGE2 just
needs the current year and the year the business
started; BNKRPIND needs bankruptcy history on the
case; CHILDAPP needs the SIC (Standard Industrial
Classification) code; and NEREGN needs the state.
The impact of these variables on further analysis
depends on the application. For example,
BUSAGE?2 might be a derogatory indicator for credit
risk but a positive indicator for mail-order response.

The information value of these variables
depends on the overall proportion of observations
having these dummy variables containing ones.
The mean, py of a dummy variable is always in the
interval [0,1], and represents the proportion, or
percentage of cases that have a value of 1 for that
variable. Therefore, it is also the probability that a
1 will be observed. It is possible to calculate the
variance and standard deviation, [}y , of a dummy
variable, but these moments do not have the same
meaning as those for continuous-valued data. This
is because, if g is known for a dummy variable, so
is [ because there are only two possible (X - Mg )
values. The distribution of any dummy variable can
be classified as a Binomial distribution of n Bernoulli
trials. Some helpful tables on distributions and their
moments are in Appendix B of [Mood, et. al., 1977] .
The long expression for calculating the Standard
Deviation is ((Ka (1 - Ha ))*+ (1 - Ha)(O - Ha)*)”
Sometimes statistics texts refer to (1- p) as g, and
the standard deviation reduces to (pq) *

What is the information content of a dummy
variable? If pg =1 or gy = 0, there is no
uncertainty - an observer will know what to expect
100% of the time. Therefore, there is no benefit in
further observation nor will this variable be
significant in prediction, estimation, or detection of
any other information. As g moves up or down to
0.5, the information content increases, because
there is less certainty about the value of the
variable.  This is discussed further with more
examples in [Garavaglia 1994].

A set of dummy variables can also be thought of
as a string of bits (a common name for binary digits
in computer science). One of the roles of basic
Information Theory [Shannon and Weaver, 1948] is
to provide a methodology for determining how many
bits are needed to represent specific information
which will be transmitted over a channel where
noise may interfere with the transmission. The
term entropy is the measure of information in a
message as a function of the amount of uncertainty



as to what is in the message. The formula for
entropy is
H=-0 pilog p;, where p; is the probability of a state
i of a system, and H is the traditional symbol for
entropy. An example of a system is a set of
dummy variables. In the special case of one
dummy variable:

=-(plogp +(1-p) log (1-p)).
Figure 1 shows the relationship between the
standard deviation and entropy for one dummy
variable: they both peak at pgq = 0.5.
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Figure 1 - Entropy and Standard Deviation

3. Impact on Regression Analysis: Two
Examples - Linear and Logistic

In this section, the general use of dummy
variables in linear and logistic regression are
covered in the context of being part of the
continuum from basic signal processing to non-
parametric methods to dynamical systems. There
are many additional considerations and the
interested reader is advised to consult the
references.

Suppose we are trying to determine the effects of
research and development (RnD) and advertising
(ADV) on a firm's profit (PFT). If data is available
for a number of years, we can try linear regression
and other techniques to determine if there is any
functional form underlying the relationship between
R&D and advertising. When observations span a
number of time periods, varying outside factors
may influence the results for some portion of the
time span. In this example, during one period, the
company's management was extremely enthusiastic
about R&D and supported higher expenditures, and
during another period a different management
regime supported a higher advertising budget. At
all other times, there were no unusual resource
allocations. Understanding the true relationship

requires modeling to differentiate these two regimes
("R&D Boosters" versus "Advertising Boosters")
from the "control" or prevailing regime.

A sample of the data for this example is in Table
1. The data were artificially generated to facilitate
the discussion. The underlying relationship for the
"control” regime is:

PFT = -20 + 0.2 RnD + 0.5 ADV. 1)

Some random noise was added to the data to create
some small error terms. During the years 1970-
1975, the "R&D Booster" regime added $1000 per
year per observation, and, during the years 1990-
1998, the "Advertising Booster" regime added
$2,500 per year per observation. Using SAS®
PROC REG, the simple linear regression of Profits
on R&D and Advertising yielded the following
parameter estimates:

PFT = 399.324522 + 0.112988 RnD + 0.309778
ADV. )

The goodness of fit measures for all PROC REG
examples are in Table 2. Adding a dummy variable
for each non-control regime means that the R&D
regime dummy (RDDMY) would have a value of 1
for the years 1970-1975 and O, otherwise, and the
Advertising regime dummy (ADDMY) would have a
value of 1 for the years 1990-1998 and 0, otherwise.
The new set of estimators is:

PFT = 280.125098 + 0.131938 RnD - 277.404758
RDDMY + 0.402229 ADV - 945.677009 ADDMY (3)

The effect of the dummy variables is to create two
alternate intercepts representing the respective
investment boosts during the two regimes. Note
that, when the dummies were added, the goodness
of fit statistics improved.  Separate models were
estimated for each of the three regimes, with the
following results:

Control: -19.735466 + 0.200125 RnD +
0.499943 ADV 4)
R&D: -19.930811 + 0.100087 RnD + 0.499243
ADV (5)
Advertising: -19.501744 + 0.199803 RnD +
0.300014 ADV. (6)
Year R _and D Advert. Profits

1946 100 250 124

1947 149 379 198

1948 101 817 410

1949 280 987 530

1950 304 1288 686




Data from R&D Boosters Regime

1970 1000 1352 755
1971 2789 2271 1393
1972 4825 3096 2009
1973 9298 1985 1901
1974 3915 1657 1199
1975 8799 1095 1408

Data from Advertising Boosters Regime

1994 154 4863 1471
1995 266 4896 1503
1996 586 12201 3756
1997 1254 5366 1842
1998 1243 10514 3384

Table 1 - Sample of Regression Data

Note that (5) underestimates the R&D coefficient
and (6) underestimates the Advertising coefficient to
a greater degree than in (3). The dummy variables
provide valuable information about the existence of
alternate regimes. A more detailed example using a
dummy variable for the World War Il years is
covered in [Judge, et. al., 1988], which also
describes how to use dummy variables to create
alternative slopes as well as intercepts.

Equ# DF CV R? Max(Prob>|T|)
(2) 52 2271 0.8374 0.0001
(3) 52 1343  0.9454 0.0390
(4) 5  0.03952 1.0000 0.0002
(5) 8 0.0644 1.0000 0.0001
(6) 37 0.07318 1.0000 0.0001

Table 2 - Some PROC REG Goodness-of-Fit Meas.

The principles behind using dummy variables in
logistic regression are similar, with regard to the
design of the regime-switching. However, the
exact interpretation of the coefficients now involves
the calculation of the odds ratio. With a dummy
variable's coefficient by , the odds ratio is simply
exp(byg). The odds ratio of a real-valued variable's
coefficient b, , is exp(cb;), which makes it
dependent on the real-valued variable itself and
non-linear. This non-linearity makes the resulting
model difficult to interpret. Creating a logistic
regression model using exclusively dummy
variables provides 3 distinct advantages:

1. The odds are easier to calculate and
understand for each predictor

2. The binary logic of the predictors is more
consistent with the binary outcome and decision
making

3. The use of dummy variables to represent
intervals or levels tends to increase the likelihood of

events, resulting in a generally more powerful and
stable model.

Advantages 1. and 2. allow the statement to be
made: "if x is true the odds of y are z , all other
factors held constant.” The advantage of 3. is that
the coefficients and their corresponding odds ratios
produce more useable models, although there is
some loss in the goodness-of-fit measures.
However, with the loss of detail, ranking measures
such as the concordance of predicted probabilities
with observed responses may suffer.

Intuitively, increasing the overall probability of
an observation, by grouping an interval of values
into a single dummy variable should increase the
value, significance and contribution of the variable.
Good real world examples that demonstrate this
from both a statistical goodness-of-fit standpoint and
show usable results, however, are difficult to find,
and credible simulated data is difficult to produce.
As a compromise, a real-world business dataset
from Dun & Bradstreet's database will show the
result of representing the age of business as a
dummy variable versus a continuous-valued
variable with less dramatic but measurable
contrasts.  The following example is a regression
of payment behavior (prompt or not prompt) on age
of business and industry group dummies (see Table
4). In general, the older the business, the more
likely it is to pay invoices promptly. Relevant data
from the SAS® PROC LOGISTIC is in Table 3.
The first regression uses the continuous variable
CONYRS. Although the significance is high, the
odds ratio is about even, and really doesn't convey
any meaning. The second regression uses the
dummy variable OLDER, having the value 1 if the
company is at least 26 years old. The odds ratio
shows that an older company has a much better
odds of prompt payment behavior. An additional
example of the difference between continuous and
dummy independent variables in logistic regression
can be found in Hosmer and Lemeshow (1984).

Another way to use independent dummy
variables in linear or logistic regression is to
represent the continuous variable in a set of levels.
For age-of-business in the above example, a
number



Par anet er wal d Pr > St andar di zed Odds
Variable Estimate Chi - Squar e Chi - Squar e Esti mate Rati o
Regression #1 - Continuous-val ued Age of Business
I NTERCPT 1. 1690 1170. 0722 0. 0001 . .
CONYRS  0.0151 84.8774 0. 0001 0. 121006 1.015
SI CMANF 0. 3304 6. 0482 0. 0139 0. 030267 1.391
SI CSVCS 0. 2700 3.9437 0. 0470 0. 023887 1. 310
SI CWHOL 0. 3683 30. 8717 0. 0001 0. 067973 1. 445
Regression #2 Single Dunmy Variable for Age of Business >= 26
I NTERCPT 1. 2399 1390. 8279 0. 0001 . .
OLDER 0.2934 50. 2675 0. 0001 0.077388 1.341
SI CVANF 0. 3449 6. 6145 0. 0101 0. 031598 1.412
SI CSVCS 0. 2763 4.1436 0. 0418 0. 024449 1.318
SI CWHOL 0. 3661 30. 5663 0. 0001 0. 067575 1.442
Regression #3 Interval Level Dummy Variables for Age of Business
I NTERCPT  1.2390 1389. 0309 0. 0001 . .
CONBKT4 0. 1431 7.2738 0. 0070 0. 032935 1.154
CONBKT5 0.2413 19. 6529 0. 0001 0. 055018 1.273
CONBKT6 0. 5466 82. 4710 0. 0001 0. 120895 1.727
SI CVANF 0. 3445 6. 5847 0. 0103 0. 031558 1.411
Sl CSVCS 0. 2809 4.2738 0. 0387 0. 024856 1.324
SI CWHOL 0. 3737 31. 7602 0. 0001 0. 068977 1.453
Akai ke Information Criterion
Regression AIC. Intercept Only Int. + Covariates Reduction in AIC
Regr essi on #1 15582. 908 15455. 222 127. 686
Regr essi on #2 15582. 908 15500. 191 82. 717
Regr essi on #3 15582. 908 15464. 222 118. 686

Table 3 - Selected PROC LOGISTIC Output

of dummy variables were created to  signify
separate age ranges, namely:

CONBKT1 =0 to 2 years
CONBKT2 = 3to 7 years
CONBKT3 = 8 to 15 years
CONBKT4 = 16 to 20 years
CONBKTS5 = 21 to 25 years
CONBKT®6 = 26+ years.

Logically, a monotonic relationship is expected, i. e,
the older the company, the lower the risk. Two
caveats: 1) care must be taken not to overlap
values, and 2) one dummy variable must be
excluded from the regression if a constant or
intercept is estimated to prevent less than full rank
matrices (this example excluded CONBKT1).

The results of this regression in Table 3 show
that three categories are significant, and the older
the group, the stronger the coefficient and the better
the odds of prompt payment. This technique is
used as common practice in developing credit
scoring models, because it provides more
discrimination for rank ordering of risk and a
useable odds ratio.

4. From Dummy Variables to Genetic
Algorithms, and Neural Networks, and
Boolean Networks

Data that is represented entirely with dummy
variables opens up opportunities for new types of
modeling and quantitative models of dynamical
systems such as financial markets and also non-
guantitative domains, such as social behavior.
These modeling techniques are non-parametric and
the models are usually developed using iterative
methods. One common thread in genetic
algorithms, neural networks, and Boolean networks
is that they imitate, on a very simplistic scale, the
biological processes of adaptation and evolution and
the characteristics of distributed information and
parallelism. Another interesting fact is that these
three ideas are not at all new: genetic algorithms
were introduced in the early 1960s by John Holland
at University of Michigan; artificial neural networks
can be traced back to the article by McCulloch and
Pitts (1943); and, Boolean networks were introduced
by Stuart A. Kauffman in the late 1960s. The
benefits of these types of models are that the
functional form need not be pre-defined,
predictive/discrimination performance is superior in
highly complex and non-linear applications, and
they can be applied to solving a wide range of
problems. In addition, the fundamentals of these
models are extremely simple. Much of the
theoretical research is involved with finding the
fastest paths to the optimal state of these systems
or special variants to




|Variable Name Industry Represented

| SICAGRI Agriculture, Mining, Fishing

SICCONS Construction

SICMANF Manufacturing

SICTRCM Transportation, Communications
Utilities

SICWHOL Wholesalers

SICRETL Retail

SICFNCL Financial Services

SICSVCS Business and Personal Services

Table 4 - Industry Group Dummy Variables

solve specific problems. A frequent criticism is that
often the only measure of efficacy is performance
and reliable goodness-of-fit measures are not
available.

In Genetic Algorithms (GAs) sets of binary digits
called strings undergo the "genetic" processes of
reproduction, crossover, and mutation as if they
were genes in chromosomes. Atrtificial
chromosomes that are more "fit" have a higher
probability of survival in the population.

The business data example from the previous
section will be used to illustrate GAs. Suppose we
know something about business “fithess" in that
older companies and certain industries are more
desirable credit risks. The goal is to discover and
select companies with a mix of desirable
characteristics. The available data is the set of 6
age categories (CONBKT1-CONBKT6) and the
industry indicators (see Table 4). Instead of looking
at the promptness performance indicator for the
fithess measure, the fitness algorithm is:

fitness =

(1 * conbkt1)+(2 * conbkt2)+ (4 * conbkt3)+(8 * conbkt4)+(16 *
conbkt5)+

(32 * conbkt6) + 2(sicmanf + sicsvcs + sicwhol)

- (sicagri + siccons + sictrem + sicfncl + sicretl);

This algorithm gives the older categories more
points with a maximum of 32 points, the better
industries group 2 points, and subtracts 1 point for
the weaker industries. Thus, the minimum fitness
score is 0 and the maximum fitness score is 34 (the
best age category = 32 points plus 2 points for a
favorable industry group).

The population is 11,551 cases, all fitness
scored. Table 5 has the distribution of fitness
scores, and each fitness group's relative contribution
to the total fithess of the population, which is defined
as the weighted sum of all the possible fithess
scores. The iterative process first randomly selects
candidates for reproduction according to the fithess
contribution, e. g., cases in the score of 31 group
have the highest likelihood of being chosen, initially.

Fitness No. Obs. Percent Fitness%

0 268 2.3 0.00%

1 1237 10.7 0.55%

2 246 2.1 1.09%

3 1638 14.2 1.64%

4 249 2.2 2.19%

5 503 4.4 2.73%

7 1702 14.7 3.83%

8 336 2.9 4.37%

9 709 6.1 4.92%
15 1610 13.9 8.20%
16 257 2.2 8.74%
17 562 4.9 9.29%
31 1456 126  16.94%
32 247 21  17.49%
33 531 46 18.03%
183 11551 99.9 100.00%

Table 5 - Genetic Algorithm Fitness
Suppose a random draw process produces this
"happy couple.”

{0,0,0,0,0,0,0,1,0,0,0,0,0,1,0} = a business at least
26 years old in the retail industry (score = 31)
{0,0,0,0,0,0,1,0,0,0,0,0,1,0,0} = a business in the
20-25 year group in the wholesale industry (score =
18)

The process of producing offspring involves taking a
substring of genes from each parent, and creating
two new strings each with a portion of each parent.

The crossover point (see vertical bar) in most
applications is selected randomly, but because two
major characteristics are represented, the crossover
point will be at the break between the age and
industry groups. Thus the new members of the
population are:

{0,0,0,0,0,0,0,2, | 0,0,0,0,1,0,0} = a business at
least 26 years old in the wholesale industry (score =
34)

{0,0,0,0,0,0,1,0, | 0,0,0,0,0,1,0} = a business in the
20-25 year group in the retail industry (score = 15)

Although the average fitness of the two offspring is
the same as for the parents, the chances of a best
fithess case being selected for the next generation
have now improved slightly. An additional
elementary operation that could be performed in
creating a new generation is mutation, which
randomly selects an element in the string and
reverses it. Continuing in this manner, it would take
many generations to evolve into the optimal
population. One technique for "cutting to the
chase" and boosting the selection process is to
select according to templates or "schemata." For



example, since it is known that the oldest business
categories produce the highest fithess levels, a
selection template of {0,0,0,**********1 where
the *s are wild cards, would greatly increase the
likelihood of a higher fitness candidate, because
only older businesses would filter through.

In some neural network applications, continuous
valued variables are better choices, because the
number of hidden units available can capture the
information provided by the data. However,
representing information as vectors of dummy
variables expands the selection of neural network
paradigms. Almost any neural network model, from
Adaptive Resonance Theory (ART1) to the Self-
Organizing Map can accept binary inputs, but only a
subset of these can accept real-valued inputs. The
precise impact of the data representation method in
any given neural network paradigm depends on
many factors, including the number of hidden
nodes, the distribution of the values, and so forth.
Readers who need general and introductory
information on neural networks should consult the
information on the Neural Networks FAQ Web Site
at ftp://ftp.sas.com/pub/neural/FAQ.html . For
those who are seeking theoretical foundations and
precise methodologies, [White, et. al., 1992] and
[Golden, 1996] are good choices.

In a feed-forward neural network with supervised
learning, the neural network is trained using a
desired outcome for each training case. Given an
example with a large number of training cases,
which allow enough degrees of freedom for a large
number of hidden units, a continuous-valued
variable might be expected to provide better
performance because the hidden units could
“model” different complex regions of the data space.
As a test, the business data set was used to train
two feed-forward networks, one using the groups
CONBKT1-CONBKT6 and the other using the
variable CONYRS. With 9 hidden units, the neural
network with the 6 groups generated 136 connection
weights, and the neural network with CONYRS
generated only 91 hidden units (both networks
include a bias input unit). Then, to “level the playing
field,” the network with CONYRS was given enough
additional hidden units to generate about the same
number of total connection weights (141). The
results of these three networks from a validation
data set were essentially, a “photo finish.”  All three
had the identical misclassification rate (about
19.2%), and about the same Mean Squared Error
(about 0.156). The flexibility and “un-messy”
dummy variables did not cause the predictive power
of the neural network to suffer.

In a clustering neural network, such as the Self-
Organizing Map (SOM), dummy variable inputs
make the resulting clustering nodes easier to

interpret, and help to avoid unnecessary one-
observation nodes. In business data especially,
extreme values do not necessarily correlate with
singular behavior, e. g., a company that is 250
years old often behaves like a company that is 50
years old. The weight vectors can be interpreted as
the proportion of cases from each group in the
cluster. Examples of using dummy variables in
Self-Organizing Maps are in [Garavaglia and
Sharma, 1996].

A Boolean network is a type of discrete
dynamical system composed of binary-valued nodes
which are interconnected, in that all nodes both
send and receive information. The system changes
according to logical operations on nodes that are
input to other nodes in the system. At any point in
time, the Boolean network represents a state of a
dynamic system and a change from one state to the
next occurs when all binary nodes are
simultaneously updated. Here, in Figure 2, is an
example of a simple Boolean network with five
nodes, each of which is updated according to a
logical operation on two connected inputs. These
types of networks grow in complexity as they grow in
size, but they also develop one or more attractors,
which are states or sets of states that they achieve
regularly without outside influences.

The Boolean network in Figure 2 updates its
states as follows:

A =(Band D)

B=(AorC)

C =((A and (not E)) or ((not A) and E)))

(i. e., exclusive OR)

D=(CorE)

E=(BorD)

~ S
or/ \and

Figure 2 - A Simple Boolean Network

This simple dynamical system will develop
attractors very quickly; the exact nature of the
attractors depends on the initial state of the system.
Figure 3 shows the first 16 states of the system after
being initialized in state 1to A=1,B=1,C=0,D =
1, E = 0. What can Boolean networks represent?



This simple 5 node network could be 5 commodity
traders, 5 voters, 5 weather systems, or any other
dynamic environment in which there is circular
influence among parts of the system.

A last topic in the representation of data with
dummy variables is thermometer encoding. The
categorical level coding of the age of business
variable CONYRS into six dummy variables is
called 1-of-N encoding. Another way this
information could have been encoded is Table 6
This type of encoding is used almost exclusively
only in neural networks, and is best suited to
modeling analog data, such as color intensity. See
[Harnad, et. al. ,1991] for an example.

cccccc
O0O0O0OO0O0
N NNNNN
B BB BBB
K K K K K K
TTTTTT
Value 1 23 456
Age
Oto2yrs 1 0 0 0 0 O
3to7yrs 1 1 0 0 0 O
8tol5yrs 1 1 1 0 0 O
16to20yrs 1 1 1 1 0 O
21to25yrs 1 1 1 1 1 O
26+ yrs. 111111

Table 6 - Thermometer Encoding

5. Using a SAS Macro to Create Dummy
Variables from Raw Data

Recoding a categorical variable into individual
dummy variables can get tedious quickly if there are
more than a few categories. In addition, the
process is error prone. Realistically, only a subset
of the categories may be statistically significant, but
all must be analyzed in the context of their final
representation in the resulting model.  The SAS®
Language provides a meta-coding capability within
its macro-language, providing the tools for "logic
about logic," code generation, and conditional
execution of statements. Another example of code
generation is in [Liberatore, 1996].

For a real-valued variable, when the number of
levels are not known prior to analysis, a "select
clause shell" such as the coding example below, is
handy. Copying lines of code and string
substitutions can be used to change this code as
necessary.

levell = 0O;
level2 = 0;
level3 = 0;

select;

when (a<=var <b) levell =1,
when (b <=var<c) level2 =1;
when (c <=var <d) level3 =1;
otherwise;

end;

The following macro, dmycode, will produce
code to turn a categorical variable with n categories
into n dummy variables with the category value as
part of the variable name (the length may be
truncated, if necessary). It is presented with the
example of generating code to create dummy
variables for each 2-digit SIC (Standard Industrial
Classification) code. In this macro and the one that
follows, a dummy variable name is constructed from
the value of the category within the original variable,
so that the dummy variable is easily recognizable.
option nosynmbol gen m ogi c nprint
0bs=9999;

i bnanme risk '/ nesug98/research';

fil ename out

"/ nesug98/research/testsic.out’;
data sicwork; set risk.sicwork;

si c2=int (sic4/100);

| *
MACRO PARAMETERS :
dsn = input dataset nane ,

var = variable to be categorized ,
prefix = categorical variable prefix ,
flat = flatfile name with code (
referenced in file nanme statenent)

*/

%racr o dnycode ( dsn =,
var =
prefix =,
flat =

proc summary data = &Jsn nway ;

cl ass &var ;

out put out = x(keep=&var ) ;
proc print ;
* -

data null _ ;

set Xx nobs=totx end=l ast;

if last then call synput ( 'tot',
trim(left(put( totx, best. ) ) ) ) ;

call synput ( 'z' || trim( left (
put ( _n_, best. ) ) ),trim( left
(&var ) ) ) ;

data _null _;



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
‘—and —or xor or *or ‘
Figure 3 - First 16 States of 5-Node Boolean Network
file &1 at; var =,
%o i=1 %o & ot ; prefix =) ;
put " &prefix&z& =0;" ;
%end; proc summary data = &Jsn nway ;
put "SELECT ;"; cl ass &var ;
%o i=1 %o & ot ; out put out = x ( keep = &var ) ;
put " when ( &ar = &&z& ) proc print ;
&prefix&&z& =1 ;"; *
%end; data null _ ;
put " otherw se sic_oth=1;"; set x nobs=l|ast ;
put " end;" ; if n_=1then call symput ( 'nunm,
run ; trim(left(put( last, best. ) ) ) ) ;
%rend dmycode ; call synput ( 'c' || trim( left (
%mycode ( dsn = sicwork, var = sic2, put ( _n_, best. ) ) ),trim( left
prefix = sic_, flat =out ) ; ( &var ) ) ) ;
run; quit; run ;
data &dsn ;
This macro, dummy, will create dummy variables in set &dsn nobs=l ast;
a file for each category in a categorical data array ct ( &um) 9%lo k=1 %o
element, and also uses 2-digit SIC codes as an &num ; .
example. %ﬁ‘gr _ef ! Xx&&0 &k
option nosynbol gen ml ogi ¢ 0bs=99999; %sjgl Iect_' 1 %o &num;
libnanme risk '/nesug98/research'; ’ a . SN AL
| i bnane dat '/nesug98/research'; when (&ar="&Xc& " ) ct(&)=1;
data sicwork; set risk.sicwork; ot hervmse ct(&)=0;
sic2=int(sic4/100); format sic2 z2. ; Oend:
. end;
}* run ;
MACRO PARAMETERS : A Y sl cwor k o
dsn = input dataset name , umy ( dsn = sicwork , var = sic2,
var = variable to be categorized , prefix =sic_ ) |
prefix = categorical variable prefix , : .
oy proc print ;
run;
%racr o DUMWY quit;

( dsn =,



6. Summary

Dummy variables play an important role in the
analysis of data, whether they are real-valued
variables, categorical data, or analog signals. The
extreme case of representing all the variables
(independent and dependent) as dummy variables
provides a high degree of flexibility in selecting a
modeling methodology.  In addition to this benefit
of flexibility, the elementary statistics (e. g., mean
and standard deviation) for dummy variables have
interpretations for probabilistic reasoning,
information theory, set relations, and symbolic logic.
Whether the analytical technique is traditional or
experimental, highly complex information structures
can be represented by dummy variables. Examples
presented included multiple regimes, business
behavior, and dynamical systems. There are no
hard boundaries between the relationships of
dummy variables in quantative analsyis, sets and
logic, and the computer science concept of data
representation in bits. The intelligent use of
dummy variables usually makes the resulting
application easier to implement, use, and interpret.
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