

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Multiple Population Growth Modeling Specific	ations
Let y_{git} denote the outcome for population (group) g , in timepoint t ,	ndividual <i>i</i> , and
Level 1: $y_{eti} = \eta_{e0i} + \eta_{e1i} x_t + \varepsilon_{oti}$,	(65)
Level 2a: $\eta_{e0i} = \alpha_{e0} + \gamma_{e0} w_{ei} + \zeta_{e0i}$,	(66)
Level 2b: $\eta_{g1i} = \alpha_{g1} + \gamma_{g1} w_{gi} + \zeta_{g1i}$,	(67)
Measurement invariance (level-1 equation): time-invariance slopes 1, x_t Structural differences (level-2): α_g , γ_g , $V(\zeta_g)$ Alternative parameterization:	riant intercept 0 and
Level 1: $y_{ati} = v + \eta_{a0i} + \eta_{a1i} x_t + \varepsilon_{ati}$	(68)
with α_{10} fixed at zero in level 2a.	
Analysis steps:	
1. Separate growth analysis for each group	
2. Joint analysis of all groups, free structural parameter	rs
3. Join analysis of all groups, tests of structural parame	eter invariance
••••••••••••••••••••••••••••••••••••••	1

Birth									Age	ı										
Year Cohort	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	31
57								82	83	84	85	86	87	88	89	90	91	92	93	94
58							82	83	84	85	86	87	88	89	90	91	92	93	94	
59						82	83	84	85	86	87	88	89	90	91	92	93	94		
60					82	83	84	85	86	87	88	89	90	91	92	93	94			
61				82	83	84	85	86	87	88	89	90	91	92	93	94				
62			82	83	84	85	86	87	88	89	90	91	92	93	94					
63		82	83	84	85	86	87	88	89	90	91	92	93	94						
64	82	83	84	85	86	87	88	89	90	91	92	93	94							

• Data – two co frequency of h and 1989	horts leavy	born drink	in 19 king i	61 ai n the	nd 19 year	62 m s 198	easu 3, 19	red on 984, 19	the 88,
 Development not year of me 	of hea asure	avy d ment	rinki , is o	ng ac f inte	ross rest	chror	nolog	gical ago	e,
Cohort/Year		198	3	198	34	198	8	1989	
1961 (older)		2	2	2	3	2	7	28	
1962 (younger)		2	1	2	22	2	6	27	
Cohort/Age	21	22	23	24	25	26	27	28	
1961 (older)		83	84				88	89	
1962 (vounger)	83	84				88	89		

Multiple Group Modeling Of Multiple Cohorts (Continued)

• Time scores	calcula	ted fo	or ag	e, not	t year	ofn	neasu	rement	
Age	21	22	23	24	25	26	27	28	
Time score	0	1	2	3	4	5	6	7	
Cohort 1961 tin Cohort 1962 tin	ne scor ne scor	res 1 res (2 6 0 1 1	57 56					
• Can test the o invariance	legree	of m	easur	emer	nt and	l stru	ctura	1	
• Test of fu	ll inva	riance	e						
• Growt held e	h facto qual ac	or mea	ans, v coho:	variar rts	nces,	and c	covar	iances	
Residu cohort	ial vari s	ance	s of s	hared	d age	s held	d equ	al across	3
									1

Input For Multiple Group Modeling Of Multiple Cohorts

TITLE:	Multiple Group Modeling Of Multiple Cohorts	
DATA:	FILE IS cohort.dat;	
VARIABLE:	NAMES ARE cohort hd83 hd84 hd88 hd89; MISSING ARE *; USEV = hd83 hd84 hd88 hd89; GROUPING IS cohort (61 = older 62 = younger);	
MODEL:	<pre>i s hd83@0 hd84@1 hd88@5 hd89@6; [i] (1); [s] (2); i (3); s (4); i WITH s (5);</pre>	
		174

Input For Multiple Group Modeling
Of Multiple Cohorts (Continued)

MODEL older:		
	i s hd83@l hd84@2 hd88@6 hd89@7; hd83 (6); hd88 (7);	
MODEL younger	:	
	hd84 (6);	
	hd89 (7);	
OUTPUT:	STANDARDIZED;	
		175

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)

wiouei Results				a , 1	a. 1.
Group OLDER	Estimates	S.E.	Est./S.E.	Std	StdY
I WITH					
S	111	.010	-11.390	537	53
Residual Variar	nces				
HD83	1.141	.046	24.996	1.141	.44
HD84	1.062	.057	18.489	1.062	.45
HD88	1.028	.041	25.326	1.028	.45
HD89	.753	.053	14.107	.753	.35
Variances					
I	1.618	.068	23.651	1.000	1.00
S	.026	.002	13.372	1.000	1.00
Means					
I	1.054	.030	35.393	.828	.82
S	032	.005	-6.611	200	200

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)

GROUP YOUNGER					
Residual Varianc	ces				
HD83	1.049	.066	15.916	1.049	.393
HD84	1.141	.046	24.996	1.141	.445
HD88	1.126	.056	19.924	1.126	.491
HD89	1.028	.041	25.326	1.028	.455
					1

Preventive Interventions Randomized Trials

Prevention Science Methodology Group (PSMG)

Developmental Epidemiological Framework:

- Determining the levels and variation in risk and protective factors as well as developmental paths within a defined population in the absence of intervention
- Directing interventions at these risk and protective factors in an effort to change the developmental trajectories in a defined population
- Evaluating variation in intervention impact across risk levels and contexts on proximal and distal outcomes, thereby empirically testing the developmental model

Aggressive Classroom Behavior: The GBG Intervention

Muthén & Curran (1997, Psychological Methods)

The Johns Hopkins Prevention Center carried out a schoolbased preventive intervention randomized trial in Baltimore public schools starting in grade 1. One of the interventions tested was the Good Behavior Game intervention, a classroom based behavior management strategy promoting good behavior. It was designed specifically to reduce aggressive behavior of first graders and was aimed at longer term impact on aggression through middle school.

One first grade classroom in a school was randomly assigned to receive the Good Behavior Game intervention and another matched classroom in the school was treated as control. After an initial assessment in fall of first grade, the intervention was administered during the first two grades.

180

Aggressive Classroom Behavior: The GBG Intervention (Continued)

The outcome variable of interest was teacher ratings (TOCA-R) of each child's aggressive behavior (breaks rules, harms property, fights, etc.) in the classroom through grades 1 - 6. Eight teacher ratings were made from fall and spring for the first two grades and every spring in grades 3 - 6.

The most important scientific question was whether the Good Behavior Game reduces the slope of the aggression trajectory across time. It was also of interest to know whether the intervention varies in impact for children who started out as high aggressive versus low aggressive.

Analyses in Muthén-Curran (1997) were based on data for 75 boys in the GBG group who stayed in the intervention condition for two years and 111 boys in the control group.

181

The GBG Aggression Example: Analysis Results

Muthén & Curran (1997):

- Step 1: Control group analysis
- Step 2: Treatment group analysis
- Step 3: Two-group analysis w/out interactions
- Step 4: Two-group analysis with interactions
- Step 5: Sensitivity analysis of final model
- Step 6: Power analysis

Input Excerpts For Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects

TITLE:	Aggressive behavior intervention growth model n = 111 for control group n = 75 for tx group
MODEL:	<pre>i = ',5 for tx group i s q y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11; i t y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11; [y1-y8] (1); !alternative growth model [i@0]; !parameterization i (2); s (3); i WITH s (4); [s] (5); [q] (6);</pre>
	t@0 q@0; q WITH i@0 s@0 t@0; y1-y7 PWITH y2-y8;
	t ON i; 185

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects

Tests Of Model Fit

Chi-Square Test of Model Fit	
Value	64.553
Degrees of Freedom	50
P-Value	.0809
RMSEA (Root Mean Square Error Of	Approximation)
Estimate	.056
90 Percent C.I.	.000 .092

Regression Among Random Effects (Continued)						
Group (Control	Grou	p Tx			
Observed		Observed				
Variable	R-Square	Variable	R-Square			
Yl	.644	Yl	.600			
Y2	.642	Y2	.623			
¥3	.663	¥3	.568			
Y4	.615	¥4	.464			
Y5	.637	Y5	.425			
Y6	.703	Y6	.399			
¥7	.812	¥7	.703			
Y8	.818	¥8	.527			

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

T ON	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	999.000	999.000
Residual Variand	ces				
Yl	.444	.088	5.056	.444	.356
Y2	.449	.079	5.714	.449	.358
Y3	.414	.069	6.026	.414	.337
Y4	.522	.080	6.551	.522	.385
Y5	.512	.079	6.469	.512	.363
Y6	.422	.074	5.677	.422	.297
¥7	.264	.083	3.186	.264	.188
Y8	.291	.094	3.097	.291	.182
Т	.000	.000	.000	999.000	999.000
Variances					
I	.803	.109	7.330	1.000	1.000
S	.004	.001	3.869	1.000	1.000
Q	.000	.000	.000	999.000	999.000 ¹⁸

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

Means	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	.000	.000
S	.086	.021	4.035	1.285	1.285
Q	005	.002	-3.005	999.000	999.000
Intercepts					
Yl	2.041	.078	26.020	2.041	1.828
Y2	2.041	.078	26.020	2.041	1.823
¥3	2.041	.078	26.020	2.041	1.841
¥4	2.041	.078	26.020	2.041	1.753
Y5	2.041	.078	26.020	2.041	1.718
Yб	2.041	.078	26.020	2.041	1.711
¥7	2.041	.078	26.020	2.041	1.724
Y8	2.041	.078	26.020	2.041	1.612
Т	.000	.000	.000	999.000	999.000
					19

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

		Estimates	S.E.	Est./S.E.	Std	StdYX
г	ON					
I		052	.015	-3.347	-1.000	-1.000
Resid	dual Varia	nces				
Y1	L	.535	.141	3.801	.535	.400
Y2	2	.439	.122	3.595	.439	.377
Y3	3	.501	.108	4.653	.501	.432
Y4	1	.701	.132	5.332	.701	.536
Y5	5	.736	.133	5.545	.736	.575
Ye	5	.805	.152	5.288	.805	.601
Y7	7	.245	.104	2.364	.245	.297
ΥS	3	.609	.182	3.351	.609	.473
Т		.000	.000	.000	.000	.000
Varia	ances					
I		.803	.109	7.330	1.000	1.000
S		.004	.001	3.869	1.000	1.000
Q		.000	.000	.000	999.000	999.000

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

Means	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	.000	.000
S	.086	.021	4.035	1.285	1.285
Q	005	.002	-3.005	999.000	999.000
Intercepts					
Yl	2.041	.078	26.020	2.041	1.764
Y2	2.041	.078	26.020	2.041	1.893
ҮЗ	2.041	.078	26.020	2.041	1.895
Y4	2.041	.078	26.020	2.041	1.785
Y5	2.041	.078	26.020	2.041	1.805
Yб	2.041	.078	26.020	2.041	1.764
Y7	2.041	.078	26.020	2.041	2.248
Х8	2.041	.078	26.020	2.041	1.799
Т	016	.013	-1.225	341	341
					19

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><page-footer><page-footer>

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Multiple Indicator Growth Modeling Specifications Let y_{jti} denote the outcome for individual *i*, indicator *j*, and timepoint t, and let η_{ti} denote a latent variable construct, Level 1a (measurement part): $y_{jti} = v_{jt} + \lambda_{jt} \eta_{ti} + \varepsilon_{jti},$ Level 1b : $\eta_{ti} = \eta_{0i} + \eta_{1i} x_t + \zeta_{ti},$ Level 2a : $\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i},$ (44)(45)(46)Level 2b : $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$, (47)Measurement invariance: time-invariant indicator intercepts and slopes: (48) $\begin{array}{l} v_{j1} = v_{j2} = \ldots v_{jT} = v_j, \\ \lambda_{j1} = \lambda_{j2} = \ldots \lambda_{jT} = \lambda_j, \end{array}$ (49)where $\lambda_1 = 1$, $\alpha_0 = 0$. $V(\varepsilon_{jii})$ and $V(\zeta_{ii})$ may vary over time. Structural differences: $E(\eta_{ii})$ and $V(\eta_{ii})$ vary over time. 196

Steps In Growth Modeling With Multiple Indicators

- Exploratory factor analysis of indicators for each timepoint
- Determine the shape of the growth curve for each indicator and the sum of the indicators
- Fit a growth model for each indicator—must be the same
- Confirmatory factor analysis of all timepoints together
 - Covariance structure analysis without measurement parameter invariance
 - Covariance structure analysis with invariant loadings
 - Mean and covariance structure analysis with invariant measurement intercepts and loadings
- Growth model with measurement invariance across timepoints

197

Advantages Of Using Multiple Indicators Instead Of An Average

- Estimation of unequal weights
- Partial measurement invariance—changes across time in individual item functioning
- No confounding of time-specific variance and measurement error variance
- Smaller standard errors for growth factor parameters (more power)

Input Excerpts For TOCA Data Multiple Indicator CFA With No Measurement Invariance

TITLE:	Multiple	e indicator	CFA	with	no	measurement	invariance	2
•								
MODEL:	f12a BY	bru12						
		fig12						
		hot12						
		liel2						
		stul2						
		tcl12						
		yot12;						
	f22a BY	bru22						
		fig22						
		hot22						
		lie22						
		stu22						
		tcl22						
		yot22;						201

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance

TITLE:	Multiple	e indio	cator	CFA	with	factor	loading	invariance	2
·									
MODEL:	f12a BY	bru12							
		fig12	(1)						
		hot12	(2)						
		lie12	(3)						
		stul2	(4)						
		tcl12	(5)						
		yot12	(6);						
	f22a BY	bru22							
	1000 01	fig22	(1)						
		hot22	(2)						
		lie22	(3)						
		stu22	(4)						
		tcl22	(5)						
		yot22	(6);						203

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance

TITLE:	Multiple indicator CFA with factor loading and inte incariance	rcept
•		
MODEL:	f12a BY bru12	
	fig12 (1)	
	hot12 (2)	
	lie12 (3)	
	stu12 (4)	
	tcl12 (5)	
	yot12 (6);	
	f22a BY bru22	
	fig22 (1)	
	hot22 (2)	
	lie22 (3)	
	stu22 (4)	
	tcl22 (5)	
	yot22 (6);	205

CFA With Factor Loading And Intercept Invariance (Continued)					
MODEL:	f32a BY bru32				
	fig32 (1)				
	hot32 (2)				
	lie32 (3)				
	stu32 (4)				
	tcl32 (5)				
	yot32 (6);				
	f42a BY bru42				
	fig42 (1)				
	hot42 (2)				
	lie42 (3)				
	stu42 (4)				
	tcl42 (5)				
	yot42 (6);				

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance (Continued)

[bru12 bru22 bru32 bru42] (7); [fig12 fig22 fig32 fig42] (8); [hot12 hot22 hot32 hot42] (9); [lie12 lie22 lie32 lie42] (10); [stu12 stu22 stu32 stu42] (11); [tc112 tc122 tc132 tc142] (12); [yot12 yot22 yot32 yot42] (13);

207

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance

TITLE:	Multiple indicator CFA with factor loading and partial intercept invariance	al
MODEL:	f12a BY bru12 fig12 (1) hot12 (2) lie12 (3) stu12 (4) tcl12 (5) yot12 (6); f22a BY bru22 fig22 (1) hot22 (2) lie22 (3) stu22 (4) tcl22 (5) yot22 (6);	208

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance (Continued)

£20-	DV	12.0	
132a	Βĭ	bru32	
		fig32	(1)
		hot32	(2)
		lie32	(3)
		stu32	(4)
		tcl32	(5)
		yot32	(6);
f42a	ΒY	bru42	
		fig42	(1)
		hot42	(2)
		lie42	(3)
		stu42	(4)
		tcl42	(5)
		yot42	(6);

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance (Continued)

[bru12 bru22 bru32 bru42] (7); [fig12 fig22 fig32 fig42] (8); [hot12 hot22 hot32] (9); [lie12 lie22 lie32 lie42] (10); [stu12 stu22] (11); [tcl12 tcl22 tcl32] (12); [yot12 yot22 yot32 yot42] (13);

210

Summary of Analysis Results For TOCA Measurement Invariance Models

Model	Chi-Square (d.f.)	Difference (d.f. diff.)
Measurement non-invariance	567.08 (344)	
Factor loading invariance	581.29 (362)	14.21 (18)
Factor loading and		
intercept invariance	654.59 (380)	73.30* (18)
Factor loading and partial		
intercept invariance	606.97 (376)	25.68* (14)
Factor loading and partial intercept		
invariance with a linear growth		
structure	614.74 (381)	7.77 (5)
		211
structure	614.74 (381)	7.77 (5) ²¹¹

Summary of Analysis Results For TOCA Measurement Invariance Models (Continued) Explanation of Chi-Square Differences Factor loading invariance (18) 6 factor loadings instead of 24 Factor loading and 7 intercepts plus 3 factor means (18)intercept invariance instead of 28 intercepts Factor loading and partial 4 additional intercepts intercept invariance (14)Factor loading and partial 1 growth factor mean instead intercept invariance with of 3 factor means a linear growth structure (5) 2 growth factor variances, 1 growth factor covariance, 4 factor residual variances instead of 10 factor variances/covariances 212

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure

MODEL:	f12a	ΒY	bru12	
			fig12	(1)
			hot12	(2)
			lie12	(3)
			stu12	(4)
			tcl12	(5)
			yot12	(6);
	f22a	ΒY	bru22	
			fig22	(1)
			hot22	(2)
			lie22	(3)
			stu22	(4)
			tcl22	(5)
			yot22	(6);
			-	

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure (Continued)

bru22	bru32	bru42]	(7);
fig22	fig32	fig42]	(8);
hot22	hot32]	(9);
lie22	lie32	lie42]	(10);
stu22]	(11);
tcl22	tcl32]	(12);
yot22	yot32	yot42]	(13);
E12a@0	f22a@3	l f32a@2	2 f42a@3;
ative 1	languag	ge:	
	fig22 hot22 lie22 stu22 tcl22 yot22 £12a@0	fig22 fig32 hot22 hot32 lie22 lie32 stu22 tc122 tc132 yot22 yot32 f12a@0 f22a@3	fig22 fig32 fig42] hot22 hot32] lie22 lie32 lie42] stu22] tcl22 tcl32] yot22 yot32 yot42] f12a@0 f22a@1 f32a@2

Output Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure					
	Estimates	S.E.	Est./S.E.	Std	StdYX
F12A					
BRU12	1.000	.000	.000	.190	.786
FIG12	1.097	.039	28.425	.208	.868
HOT12	.986	.037	26.586	.187	.811
LIE12	.967	.041	23.769	.184	.742
STU12	.880	.041	21.393	.167	.667
TCL12	1.034	.039	26.206	.196	.786
YOT12	.932	.039	23.647	.177	.709
Intercepts					
STU12	.331	.013	25.408	.331	1.324
STU22	.331	.013	25.408	.331	1.231
STU32	.417	.017	24.345	.417	1.592
STU42	.390	.017	23.265	.390	1.496
					2

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

With Measurement Error In The Covariates			
TITLE:	Embedded growth model with measurement error in the covariates and sequential processes advp: mother's drinking before pregnancy advml-advm3: drinking in first trimester momalc2-momalc3: drinking in 2nd and 3rd trimesters hcirc0-hcirc36; head circumference		
MODEL:	<pre>fadvp BY advp; fadvp@0; fadvm1 BY advm1; fadvm1@0; fadvm2 BY advm2; fadvm2@0; fadvm3 BY advm3; fadvm3@0; fmomalc2 BY momalc2; fmomalc2@0; fmomalc3 BY momalc3; fmomalc3@0; i BY fadvp-fmomalc3@1; s BY fadvp@0 fadvm1@1 fadvm2*2 fadvm3*3 fmomalc2-fmomalc3*5 (1);</pre>		

Input Excerpts For Two Linked Processes With Measurement Error In The Covariates (Continued)

advp WITH advml; advml WITH advm2; advm3 WITH advm2; i s ON gender eth; s WITH i; hi BY hcircO-hcirc36@1; hs1 BY hcircO@0 hcirc8@1.196 hcirc36@1.196; hs2 BY hcircO@0 hcirc8@0 hcirc18@1 hcirc36*2; [hcircO-hcirc36@0 hi*34 hs1 hs2]; hs1 WITH hs2@0; hi WITH hs2@0; hi WITH hs1@0; hi WITH i@0; hi WITH s@0; hs1 WITH i@0; hi1 WITH s@0; hs2 WITH i@0; hs2 WITH s@0; hi-hs2 ON gender eth fadvm2;

Power Estimation For Growth Models Using Satorra & Saris (1985)

- Step 1: Create mean vector and covariance matrix for hypothesized parameter values
- Step 2: Analyze as if sample statistics and check that parameter values are recovered
- Step 3: Analyze as if sample statistics, misspecifying the model by fixing treatment effect(s) at zero
- Step 4: Use printed x^2 as an appropriate noncentrality parameter and computer power.

Muthén & Curran (1997): Artificial and real data situations.

	Input For Step 1 Of Power Calculation	
TITLE:	Power calculation for a growth model Step 1: Computing the population means and covariance matrix	
DATA:	FILE IS artific.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500;	
VARIABLE:	NAMES ARE y1-y4;	
MODEL:	i s yl@0 y2@1 y3@2 y4@3; i@.5; s@.1; i WITH s@0; y1-y4@.5;	
OUTPUT:	STANDARDIZED RESIUDAL;	
		23

Data For Step 1 Of Power Calculation (Continued)

 $\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 1 & & & \\ 0 & 1 & & \\ 0 & 0 & 1 & \\ 0 & 0 & 0 & 1 \end{array}$

Data For Step 2 Of Power Calculation (Continued)

Data From Step 1 Residual Output

0 .2 .4 .6 1 .5 1.1 .5 .7 1.4 .5 .8 1.1 1.9

Input Power Estimation For Growth Models Using Monte Carlo Studies

TITLE:	This is an example of a Monte Carlo simulation study for a linear growth model for a continuous outcome with missing data where attrition is predicted by time- invariant covariates (MAR)	
MONTECARLO:	NAMES ARE y1-y4 x1 x2; NOBSERVATIONS = 500; NREPS = 500; SEED = 4533; CUTPOINTS = x2(1); MISSING = y1-y4;	
		245

Input Power Estimation For Growth Models Using Monte Carlo Studies (Continued) MODEL POPULATION: x1-x2@1; [x1-x2@0]; i s | y1@0 y2@1 y3@2 y4@3; [i*1 s*2]; i*1; s*.2; i WITH s*.1; y1-y4*.5; i ON x1*1 x2*.5; s ON x1*.4 x2*.25; MODEL MISSING: [y1-y4@-1]; y1 ON x1*.4 x2*.2; y2 ON x1*.8 x2*.4; y3 ON x1*1.6 x2*.8; y4 ON x1*3.2 x2*1.6; 246

Input Power Estimation For Growth Models Using Monte Carlo Studies (Continued)

ANAI	LYSIS:	TYPE = MISSING H1;
MODI	EL:	i s y1@0 y2@1 y3@2 y4@3
		[i*1 s*2]; i*1; s*.2; i WITH s*.1; y1-y4*.5; i ON x1*1 x2*.5; s ON x1*.4 x2*.25;
OUTI	PUT:	TECH9;

247

Output Excerpts Power Estimation For Growth Models Using Monte Carlo Studies

Model Results

		ESTIMATI	ES	S.E.	M. S. E.	95%	%Sig
	Population	Average	Std. Dev.	Average		Cover	Coeff
I	ON						
X1	1.000	1.0032	0.0598	0.0579	0.0036	0.936	1.000
X2	0.500	0.5076	0.1554	0.1570	0.0241	0.952	0.908
S	ON						
X1	0.400	0.3980	0.0366	0.0349	0.0013	0.936	1.000
X2	0.250	0.2469	0.0865	0.0877	0.0075	0.938	0.830
							• 10
							248

Cohort-Sequential Designs and Power

Considerations:

- Model identification
- Number of timepoints needed substantively
- Number of years of the study
- Number of cohorts: More gives longer timespan but greater risk of cohort differences
- Number of measurements per individual
- Number of individuals per cohort
- Number of individuals per age

Tentative conclusion:

Power most influenced by total timespan, not the number of measures per cohort

References (Continued)	
Muthén, B. (1991). Analysis of longitudinal data using latent variable mode with varying parameters. In L. Collins & J. Horn (Eds.), <u>Best methods for the analysis of change. Recent advances, unanswered questions, future directions</u> (pp. 1-17). Washington D.C.: American Psychological Association.	ls or
Muthén, B. (2000). Methodological issues in random coefficient growth modeling using a latent variable framework: Applications to the development of heavy drinking. In <u>Multivariate applications in substance</u> <u>use research</u> , J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsd N.J.: Erlbaum, pp. 113-140.	<u>e</u> lale,
Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement grow using latent variable modeling. <u>Learning and Individual Differences</u> . Special issue: latent growth curve analysis, 10, 73-101.	vth
Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290-300.	
Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. <u>Biometrics</u> , 55, 463-469.	252

References (Continued)	
Rao, C.R. (1958). Some statistical models for comparison of growth cur Biometrics, 14, 1-17.	ves.
Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u> . Second edition. Newbury Pa CA: Sage Publications.	ark,
Singer, J.D. (1998). Using SAS PROC MIXED to fit multilevel models,	,
hierarchical models, and individual growth models. <u>Journal of Educa</u> and Behavioral Statistics, 23, 323-355.	<u>ational</u>
Singer, J.D. & Willett, J.B. (2003). Applied longitudinal data analysis.	
Modeling change and event occurrence. New York, NY: Oxford Uni	iversity
Press.	
Snijders, T. & Bosker, R. (1999). Multilevel analysis: An introduction to	o basic
and advanced multilevel modeling. Thousand Oakes, CA: Sage	
Publications.	
Tucker, L.R. (1958). Determination of parameters of a functional relatio	on by
factor analysis. Psychometrika, 23, 19-23.	-
	253

References (Continued)

- Olsen, M.K. & Schafer, J.L. (2001). A two-part random effects model for semicontinuous longitudinal data. Journal of the American Statistical Association, 96, 730-745.
- Raudenbush, S.W. (1997). Statistical analysis and optimal design for cluster randomized trials. Psychological Methods, 2, 173-185.
- Raudenbush, S.W. & Liu, X. (2000). Statistical power and optimal design for multisite randomized trials. <u>Psychological Methods</u>, 5, 199-213.
- Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association, 94, 766-776.

Satorra, A. & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 51, 83-90.