This page is still under construction!!
The examples on this page is done using Mplus 4.2.
Page 16 mplus16.dat The data are shown on page 16, and the probabilities are shown at the bottom of page 15. Also, we have included all of the output for this analysis only. For all other analyses, we will limit the output presented only to relevant parts.
data: file is "D:\work\mplus_examples\mplus16.dat"; variable: names are a b c wt; usevar a b c; freqweight is wt ; classes = grp(2); categorical = a b c; analysis: type = mixture;RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.333 0.038 8.660 Category 2 0.667 0.038 17.320 B Category 1 0.200 0.033 6.124 Category 2 0.800 0.033 24.495 C Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 2 A Category 1 0.667 0.038 17.320 Category 2 0.333 0.038 8.660 B Category 1 0.700 0.037 18.708 Category 2 0.300 0.037 8.018 C Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000
Page 33, Table 3.2 data file
Model: Complete Independence
data: file is "D:\work\mplus_examples\mplus31.raw"; variable: names are coorp uds acc purpose wt; freqweight is wt ; classes = grp(1); categorical = coorp uds acc purpose; analysis: type = mixture;TESTS OF MODEL FIT Loglikelihood H0 Value -2872.230 H0 Scaling Correction Factor 1.000 for MLR Information Criteria Number of Free Parameters 6 Akaike (AIC) 5756.459 Bayesian (BIC) 5787.010 Sample-Size Adjusted BIC 5767.951 (n* = (n + 2) / 24) Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 368.666 Degrees of Freedom 29 P-Value 0.0000 Likelihood Ratio Chi-Square Value 257.260 Degrees of Freedom 29 P-Value 0.0000
Model: Two-class Model
data: file is "D:\work\mplus_examples\mplus31.raw"; variable: names are coorp uds acc purpose wt; freqweight is wt ; classes = grp(2); categorical = coorp uds acc purpose; analysis: type = mixture;TESTS OF MODEL FIT Loglikelihood H0 Value -2783.268 H0 Scaling Correction Factor 1.033 for MLR Information Criteria Number of Free Parameters 13 Akaike (AIC) 5592.536 Bayesian (BIC) 5658.729 Sample-Size Adjusted BIC 5617.436 (n* = (n + 2) / 24) Entropy 0.703 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 93.253 Degrees of Freedom 22 P-Value 0.0000 Likelihood Ratio Chi-Square Value 79.337 Degrees of Freedom 22 P-Value 0.0000
Model: Three-class Model
This three-class model is not quite stable, probably because of the small number of categorical manifest variables. At the bottom of page 32, it is pointed out that one of the parameters is actually found to be zero. It is pointed then that “in such circumstances it is customary to reclaim this degree of freedom for testing the model.” To this end, we run the model fixing the parameter, which is prob(P=3|grp=3).
data: file is "D:\work\mplus_examples\mplus31.raw"; variable: names are coorp uds acc purpose wt; freqweight is wt ; classes = grp(3); categorical = coorp uds acc purpose; analysis: type = mixture; model: %grp#3% [coorp$1] (c1); [coorp$2] (c2); model constraint: c1 + c2 = 15;TESTS OF MODEL FIT Loglikelihood H0 Value -2754.545 H0 Scaling Correction Factor 1.026 for MLR Information Criteria Number of Free Parameters 19 Akaike (AIC) 5547.091 Bayesian (BIC) 5643.834 Sample-Size Adjusted BIC 5583.483 (n* = (n + 2) / 24) Entropy 0.667 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 23.532 Degrees of Freedom 16 P-Value 0.1002 Likelihood Ratio Chi-Square Value 21.892 Degrees of Freedom 16 P-Value 0.1467
Table 3.3 on page 35 based on the three-class model in previous example. Notice that the classes defined below are in different order from the book. The Class I labeled as “Ideal” is Latent Class 3, Class II labeled as “Believers” is Latent Class 1 and the Class III labeled as “Skeptics” is Latent Class 2.
data: file is "D:\work\mplus_examples\mplus31.raw"; variable: names are coorp uds acc purpose wt; freqweight is wt ; classes = grp(3); categorical = coorp uds acc purpose; analysis: type = mixture; model: %grp#3% [coorp$1] (c1); [coorp$2] (c2); model constraint: c1 + c2 = 15;RESULTS IN PROBABILITY SCALE Latent Class 1 COORP Category 1 0.690 0.040 17.266 Category 2 0.255 0.037 6.823 Category 3 0.055 0.020 2.787 UDS Category 1 0.313 0.159 1.974 Category 2 0.687 0.159 4.330 ACC Category 1 0.648 0.051 12.690 Category 2 0.352 0.051 6.901 PURPOSE Category 1 0.912 0.045 20.264 Category 2 0.072 0.027 2.677 Category 3 0.017 0.028 0.607 Latent Class 2 COORP Category 1 0.641 0.045 14.357 Category 2 0.256 0.040 6.469 Category 3 0.103 0.026 3.978 UDS Category 1 0.753 0.041 18.504 Category 2 0.247 0.041 6.065 ACC Category 1 0.031 0.071 0.441 Category 2 0.969 0.071 13.654 PURPOSE Category 1 0.143 0.105 1.365 Category 2 0.225 0.044 5.064 Category 3 0.633 0.093 6.808 Latent Class 3 COORP Category 1 0.943 0.019 48.772 Category 2 0.057 0.019 2.942 Category 3 0.000 0.000 0.000 UDS Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 ACC Category 1 0.613 0.025 24.429 Category 2 0.387 0.025 15.424 PURPOSE Category 1 0.888 0.022 40.039 Category 2 0.053 0.012 4.276 Category 3 0.059 0.016 3.581
Page 40, Table 3.4.
Unrestricted three-class model – (almost unrestricted, see the analysis in previous example)
data: file is "D:\work\mplus_examples\mplus31.raw"; variable: names are coorp uds acc purpose wt; freqweight is wt ; classes = grp(3); categorical = coorp uds acc purpose; analysis: type = mixture; model: %grp#3% [coorp$1] (c1); [coorp$2] (c2); model constraint: c1 + c2 = 15;TESTS OF MODEL FIT Loglikelihood H0 Value -2754.545 H0 Scaling Correction Factor 1.026 for MLR Information Criteria Number of Free Parameters 19 Akaike (AIC) 5547.091 Bayesian (BIC) 5643.834 Sample-Size Adjusted BIC 5583.483 (n* = (n + 2) / 24) Entropy 0.667 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 23.532 Degrees of Freedom 16 P-Value 0.1002 Likelihood Ratio Chi-Square Value 21.892 Degrees of Freedom 16 P-Value 0.1467
Specific value and equality restrictions
title: page 40 - specific value restrictions and equality restrictions data: file is "d:\test\mplus31.dat"; variable: names are p a u c wt; weight is wt (frequency); classes = grp(3); categorical = p a u c; analysis: type = mixture; model: %overall% %grp#1% [a$1] (a11) [p$1] (p11) [p$2] (p21) ! the next two lines deal with the restriction in group 2 of the latent ! variable. You cannot specify probabilities, so you have to work with ! thresholds. A threshold of -15 equals a probability of 0. (15 is ! a default value in MPlus). %grp#2% [a$1@-15]; ! The code from here to the output command gives the restrictions ! for group 3 of the latent variable. %grp#3% [u$1@15]; [a$1] (a13) [p$1] (p13) [p$2] (p23) ! the next four lines set the probability of ideal responding ! "impatient or hostile" to 0. The last category is the reference ! category and you can't make any specifications for that category ! (which is the one that we want to set to 0), so we label the ! probability for category one and two and then add them together ! to sum to 1 (meaning the probability in category three would be ! 0). [c$1] (c1); [c$2] (c2); model constraint: c1 + c2 = 15; a11 = a13; p11 = p13; p21 = p23; ! this output also gives the results shown in Table 3.5 on page 43
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2757.056 127215 9 -2757.930 285380 1 -2757.941 939021 8 -2758.235 253358 2 -2763.091 608496 4 -2763.557 93468 3 -2767.090 903420 5 -2769.596 unperturbed 0 -2773.270 462953 7 -2774.439 415931 10 -2784.372 195873 6 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2756.394 127215 9 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2756.394 Information Criteria Number of Free Parameters 14 Akaike (AIC) 5540.788 Bayesian (BIC) 5612.072 Sample-Size Adjusted BIC 5567.603 (n* = (n + 2) / 24) Entropy 0.673 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 27.028 Degrees of Freedom 21 P-Value 0.1699 Likelihood Ratio Chi-Square Value 25.589 Degrees of Freedom 21 P-Value 0.2225 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 267.50607 0.22255 2 189.70657 0.15783 3 744.78736 0.61962 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 267.50596 0.22255 2 189.70674 0.15783 3 744.78730 0.61962 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 182 0.15141 2 215 0.17887 3 805 0.66972 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 1 0.963 0.037 0.000 2 0.052 0.785 0.163 3 0.101 0.018 0.882 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds P$1 2.062 0.126 16.358 P$2 2.886 0.175 16.494 A$1 0.479 0.095 5.017 U$1 -0.678 0.632 -1.074 C$1 0.766 0.168 4.552 C$2 2.793 0.352 7.946 Latent Class 2 Thresholds P$1 -2.088 1.064 -1.963 P$2 -0.670 0.409 -1.640 A$1 -15.000 0.000 0.000 U$1 1.181 0.207 5.698 C$1 0.614 0.188 3.256 C$2 2.163 0.269 8.028 Latent Class 3 Thresholds P$1 2.062 0.126 16.358 P$2 2.886 0.175 16.494 A$1 0.479 0.095 5.017 U$1 15.000 0.000 0.000 C$1 2.806 0.357 7.869 C$2 15.000 0.000 0.000 Categorical Latent Variables Means GRP#1 -1.024 0.293 -3.496 GRP#2 -1.368 0.182 -7.509 RESULTS IN PROBABILITY SCALE Latent Class 1 P Category 1 0.887 0.013 70.310 Category 2 0.060 0.009 6.336 Category 3 0.053 0.009 6.035 A Category 1 0.617 0.023 27.399 Category 2 0.383 0.023 16.978 U Category 1 0.337 0.141 2.387 Category 2 0.663 0.141 4.704 C Category 1 0.683 0.036 18.731 Category 2 0.260 0.034 7.617 Category 3 0.058 0.019 3.019 Latent Class 2 P Category 1 0.110 0.104 1.056 Category 2 0.228 0.045 5.060 Category 3 0.661 0.091 7.230 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 U Category 1 0.765 0.037 20.541 Category 2 0.235 0.037 6.304 C Category 1 0.649 0.043 15.109 Category 2 0.248 0.037 6.673 Category 3 0.103 0.025 4.138 Latent Class 3 P Category 1 0.887 0.013 70.310 Category 2 0.060 0.009 6.336 Category 3 0.053 0.009 6.035 A Category 1 0.617 0.023 27.399 Category 2 0.383 0.023 16.978 U Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 C Category 1 0.943 0.019 49.201 Category 2 0.057 0.019 2.974 Category 3 0.000 0.000 0.000 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 P Category > 1 0.016 0.017 0.938 Category > 2 0.029 0.013 2.219 A Category > 1 0.000 0.000 10.482 U Category > 1 6.420 4.356 1.474 C Category > 1 0.859 0.224 3.833 Category > 2 0.533 0.248 2.145 Latent Class 1 Compared to Latent Class 3 P Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 U Category > 1 ********* ******* 1.583 C Category > 1 7.693 3.070 2.506 Category > 2 ********* 0.000 999.000 Latent Class 2 Compared to Latent Class 3 P Category > 1 63.475 67.677 0.938 Category > 2 35.005 15.778 2.219 A Category > 1 ********* ******* 10.482 U Category > 1 ********* ******* 4.824 C Category > 1 8.957 3.676 2.437 Category > 2 ********* 0.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.303E-02 (ratio of smallest to largest eigenvalue)
Page 47 data file
title: page 48 - Table 4.2 data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(1); categorical = w a i v; analysis: type = mixture;
THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2346.675 Information Criteria Number of Free Parameters 4 Akaike (AIC) 4701.349 Bayesian (BIC) 4722.332 Sample-Size Adjusted BIC 4709.625 (n* = (n + 2) / 24) Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 798.963 Degrees of Freedom 11 P-Value 0.0000 Likelihood Ratio Chi-Square Value 262.266 Degrees of Freedom 11 P-Value 0.0000 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 1402.00000 1.00000 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 1402.00000 1.00000 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 1402 1.00000 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 1 1.000 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 3.297 0.144 22.896 A$1 2.504 0.101 24.783 I$1 0.565 0.056 10.173 V$1 -0.922 0.059 -15.574 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.964 0.005 194.705 Category 2 0.036 0.005 7.201 A Category 1 0.924 0.007 130.925 Category 2 0.076 0.007 10.708 I Category 1 0.638 0.013 49.672 Category 2 0.362 0.013 28.225 V Category 1 0.285 0.012 23.616 Category 2 0.715 0.012 59.366 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.992E-01 (ratio of smallest to largest eigenvalue)
Page 51
Proctor’s model
title: page 51 - Table 4.4 - Proctor's Model data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(5); categorical = w a i v; analysis: type = mixture; model: %overall% [w$1 a$1 i$1 v$1] (p5); %grp#1% [w$1 a$1 i$1 v$1] (p1); %grp#2% [w$1 a$1 i$1] (p1); [v$1] (p5); %grp#3% [w$1 a$1] (p1); [i$1 v$1] (p5); %grp#4% [w$1] (p1); [a$1 i$1 v$1] (p5); model constraint: p1 = -p5; ! The group in the overall statement is ! group 5. It is specified here because in ! MPlus you cannot specify anything regarding ! the last category. Because there is only one ! label, each of the values in the square brackets ! is set equal to one another. The rest of the ! groups are set up according to the subscripts ! on the letters on pages 49-50 (4.1), which match ! the response patterns in Table 4.3 on page 48. ! In the model constraint statement, p1 is set ! equal to -p5 because p5 is really for group 2, ! but since you can't specify group 2 (b/c it is ! the reference category), it is coded as 1, so the ! minus sign indicates that it should be group 2.
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2284.691 903420 5 -2284.694 608496 4 -2284.705 462953 7 -2284.716 93468 3 -2284.804 285380 1 -2285.281 195873 6 -2289.136 939021 8 -2295.433 127215 9 -3411.273 415931 10 -3411.297 253358 2 -3411.402 unperturbed 0 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2284.639 903420 5 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2284.639 Information Criteria Number of Free Parameters 5 Akaike (AIC) 4579.277 Bayesian (BIC) 4605.506 Sample-Size Adjusted BIC 4589.623 (n* = (n + 2) / 24) Entropy 0.794 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 137.461 Degrees of Freedom 10 P-Value 0.0000 Likelihood Ratio Chi-Square Value 138.194 Degrees of Freedom 10 P-Value 0.0000 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 340.63236 0.24296 2 597.15714 0.42593 3 409.25098 0.29191 4 26.77394 0.01910 5 28.18558 0.02010 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 340.63249 0.24296 2 597.15699 0.42593 3 409.25052 0.29190 4 26.77447 0.01910 5 28.18554 0.02010 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 313 0.22325 2 581 0.41441 3 438 0.31241 4 43 0.03067 5 27 0.01926 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 1 0.921 0.077 0.003 0.000 0.000 2 0.026 0.940 0.031 0.002 0.002 3 0.084 0.059 0.852 0.003 0.002 4 0.018 0.027 0.391 0.537 0.027 5 0.000 0.002 0.031 0.042 0.925 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 3.043 0.083 36.451 A$1 3.043 0.083 36.451 I$1 3.043 0.083 36.451 V$1 3.043 0.083 36.451 Latent Class 2 Thresholds W$1 3.043 0.083 36.451 A$1 3.043 0.083 36.451 I$1 3.043 0.083 36.451 V$1 -3.043 0.083 -36.451 Latent Class 3 Thresholds W$1 3.043 0.083 36.451 A$1 3.043 0.083 36.451 I$1 -3.043 0.083 -36.451 V$1 -3.043 0.083 -36.451 Latent Class 4 Thresholds W$1 3.043 0.083 36.451 A$1 -3.043 0.083 -36.451 I$1 -3.043 0.083 -36.451 V$1 -3.043 0.083 -36.451 Latent Class 5 Thresholds W$1 -3.043 0.083 -36.451 A$1 -3.043 0.083 -36.451 I$1 -3.043 0.083 -36.451 V$1 -3.043 0.083 -36.451 Categorical Latent Variables Means GRP#1 2.492 0.215 11.584 GRP#2 3.053 0.212 14.421 GRP#3 2.676 0.215 12.444 GRP#4 -0.051 0.373 -0.138 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 A Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 I Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 V Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 Latent Class 2 W Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 A Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 I Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 V Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 Latent Class 3 W Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 A Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 I Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 V Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 Latent Class 4 W Category 1 0.955 0.004 263.231 Category 2 0.045 0.004 12.548 A Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 I Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 V Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 Latent Class 5 W Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 A Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 I Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 V Category 1 0.045 0.004 12.548 Category 2 0.955 0.004 263.231 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.002 0.000 5.988 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.002 0.000 5.988 V Category > 1 0.002 0.000 5.988 Latent Class 1 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.002 0.000 5.988 I Category > 1 0.002 0.000 5.988 V Category > 1 0.002 0.000 5.988 Latent Class 1 Compared to Latent Class 5 W Category > 1 0.002 0.000 5.988 A Category > 1 0.002 0.000 5.988 I Category > 1 0.002 0.000 5.988 V Category > 1 0.002 0.000 5.988 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.002 0.000 5.988 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.002 0.000 5.988 I Category > 1 0.002 0.000 5.988 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 0.002 0.000 5.988 A Category > 1 0.002 0.000 5.988 I Category > 1 0.002 0.000 5.988 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.002 0.000 5.988 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 0.002 0.000 5.988 A Category > 1 0.002 0.000 5.988 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 5 W Category > 1 0.002 0.000 5.988 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.256E-02 (ratio of smallest to largest eigenvalue)
Item-specific error rates
title: page 51 - Table 4.4 - Item Specific Error Rates data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(5); categorical = w a i v; analysis: type = mixture; model: %overall% [w$1] (q1); [a$1] (q2); [i$1] (q3); [v$1] (q4); %grp#1% [w$1] (p1); [a$1] (p2); [i$1] (p3); [v$1] (p4); %grp#2% [w$1] (p1); [a$1] (p2); [i$1] (p3); [v$1] (q4); %grp#3% [w$1] (p1); [a$1] (p2); [i$1] (q3); [v$1] (q4); %grp#4% [w$1] (p1); [a$1] (q2); [i$1] (q3); [v$1] (q4); model constraint: p1 = -q1; p2 = -q2; p3 = -q3; p4 = -q4;
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2239.056 93468 3 -2239.783 285380 1 -2240.521 253358 2 -2244.311 608496 4 -2284.936 415931 10 -2286.090 195873 6 -2286.373 unperturbed 0 -2286.493 903420 5 -2309.477 939021 8 -2346.675 462953 7 -2346.675 127215 9 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2233.791 93468 3 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2233.791 Information Criteria Number of Free Parameters 8 Akaike (AIC) 4483.582 Bayesian (BIC) 4525.547 Sample-Size Adjusted BIC 4500.134 (n* = (n + 2) / 24) Entropy 0.781 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 36.672 Degrees of Freedom 7 P-Value 0.0000 Likelihood Ratio Chi-Square Value 36.499 Degrees of Freedom 7 P-Value 0.0000 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 398.99988 0.28459 2 641.78414 0.45776 3 284.58376 0.20298 4 46.33341 0.03305 5 30.29881 0.02161 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 398.99988 0.28459 2 641.78402 0.45776 3 284.58389 0.20298 4 46.33340 0.03305 5 30.29881 0.02161 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 399 0.28459 2 579 0.41298 3 355 0.25321 4 40 0.02853 5 29 0.02068 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 1 1.000 0.000 0.000 0.000 0.000 2 0.000 0.872 0.105 0.023 0.000 3 0.000 0.376 0.617 0.003 0.005 4 0.000 0.076 0.125 0.791 0.008 5 0.000 0.004 0.003 0.022 0.970 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 4.206 0.230 18.322 A$1 3.661 0.287 12.758 I$1 1.307 0.119 10.951 V$1 15.384 0.000 0.000 Latent Class 2 Thresholds W$1 4.206 0.230 18.322 A$1 3.661 0.287 12.758 I$1 1.307 0.119 10.951 V$1 -15.384 0.000 0.000 Latent Class 3 Thresholds W$1 4.206 0.230 18.322 A$1 3.661 0.287 12.758 I$1 -1.307 0.119 -10.951 V$1 -15.384 0.000 0.000 Latent Class 4 Thresholds W$1 4.206 0.230 18.322 A$1 -3.661 0.287 -12.758 I$1 -1.307 0.119 -10.951 V$1 -15.384 0.000 0.000 Latent Class 5 Thresholds W$1 -4.206 0.230 -18.322 A$1 -3.661 0.287 -12.758 I$1 -1.307 0.119 -10.951 V$1 -15.384 0.000 0.000 Categorical Latent Variables Means GRP#1 2.578 0.201 12.851 GRP#2 3.053 0.202 15.080 GRP#3 2.240 0.218 10.276 GRP#4 0.425 0.319 1.330 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.985 0.003 296.605 Category 2 0.015 0.003 4.421 A Category 1 0.975 0.007 139.052 Category 2 0.025 0.007 3.574 I Category 1 0.787 0.020 39.338 Category 2 0.213 0.020 10.641 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 2 W Category 1 0.985 0.003 296.605 Category 2 0.015 0.003 4.421 A Category 1 0.975 0.007 139.052 Category 2 0.025 0.007 3.574 I Category 1 0.787 0.020 39.338 Category 2 0.213 0.020 10.641 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 3 W Category 1 0.985 0.003 296.605 Category 2 0.015 0.003 4.421 A Category 1 0.975 0.007 139.052 Category 2 0.025 0.007 3.574 I Category 1 0.213 0.020 10.641 Category 2 0.787 0.020 39.338 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 4 W Category 1 0.985 0.003 296.605 Category 2 0.015 0.003 4.421 A Category 1 0.025 0.007 3.574 Category 2 0.975 0.007 139.052 I Category 1 0.213 0.020 10.641 Category 2 0.787 0.020 39.338 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 5 W Category 1 0.015 0.003 4.421 Category 2 0.985 0.003 296.605 A Category 1 0.025 0.007 3.574 Category 2 0.975 0.007 139.052 I Category 1 0.213 0.020 10.641 Category 2 0.787 0.020 39.338 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.073 0.017 4.188 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.001 0.000 1.742 I Category > 1 0.073 0.017 4.188 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 0.000 0.000 2.178 A Category > 1 0.001 0.000 1.742 I Category > 1 0.073 0.017 4.188 V Category > 1 0.000 0.000 999.000 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.073 0.017 4.188 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.001 0.000 1.742 I Category > 1 0.073 0.017 4.188 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 0.000 0.000 2.178 A Category > 1 0.001 0.000 1.742 I Category > 1 0.073 0.017 4.188 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.001 0.000 1.742 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 0.000 0.000 2.178 A Category > 1 0.001 0.000 1.742 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 5 W Category > 1 0.000 0.000 2.178 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.225E-02 (ratio of smallest to largest eigenvalue)
True-type-specific error rates
title: page 51 - Table 4.4 - True-type-specific error rates data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(5); categorical = w a i v; analysis: type = mixture; model: %overall% [w$1 a$1 i$1 v$1] (5); ! last line on page 53 %grp#1% [w$1 a$1 i$1 v$1] (p1); %grp#2% [w$1 a$1 i$1] (p2); [v$1] (q2); %grp#3% [w$1 a$1] (p3); [i$1 v$1] (q3); %grp#4% [w$1] (p4); [a$1 i$1 v$1] (q4); model constraint: p2 = -q2; p3 = -q3; p4 = -q4; p1 = -15; ! This last constraint is set to -15 instead of -q5 because when you run ! the model with p1 = - q5;, you find that the parameter is 0. Hence, you ! see the note in the text indicating that this parameter is set to 0 and the ! number of degrees of freedom increases from 6 to 7. ! In the labeling above, the numbers indicate the number of the latent class, ! p indicates the probability of responding "yes" to the item (a 1 in the subscripts ! in the text), and q indicates the probability of responding "no" to the item ! (a 2 in the subscripts).
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2261.052 285380 1 -2261.103 unperturbed 0 -2262.554 93468 3 -2262.895 127215 9 -2267.259 608496 4 -2269.834 903420 5 -2271.668 253358 2 -2279.663 415931 10 -2280.679 939021 8 -2292.788 462953 7 -2351.977 195873 6 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2260.050 285380 1 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2260.050 Information Criteria Number of Free Parameters 8 Akaike (AIC) 4536.101 Bayesian (BIC) 4578.066 Sample-Size Adjusted BIC 4552.653 (n* = (n + 2) / 24) Entropy 0.836 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 86.381 Degrees of Freedom 7 P-Value 0.0000 Likelihood Ratio Chi-Square Value 89.018 Degrees of Freedom 7 P-Value 0.0000 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 21.86222 0.01559 2 555.51624 0.39623 3 517.52214 0.36913 4 6.37973 0.00455 5 300.71967 0.21449 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 21.86229 0.01559 2 555.51638 0.39623 3 517.52211 0.36913 4 6.37967 0.00455 5 300.71956 0.21449 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 27 0.01926 2 579 0.41298 3 483 0.34451 4 0 0.00000 5 313 0.22325 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 1 0.810 0.000 0.167 0.023 0.000 2 0.000 0.912 0.083 0.002 0.004 3 0.000 0.030 0.953 0.009 0.008 4 0.000 0.000 0.000 0.000 0.000 5 0.000 0.042 0.016 0.000 0.941 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 -15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 2 Thresholds W$1 3.664 0.238 15.390 A$1 3.664 0.238 15.390 I$1 3.664 0.238 15.390 V$1 -3.664 0.238 -15.390 Latent Class 3 Thresholds W$1 2.152 0.099 21.746 A$1 2.152 0.099 21.746 I$1 -2.152 0.099 -21.746 V$1 -2.152 0.099 -21.746 Latent Class 4 Thresholds W$1 1.564 0.221 7.070 A$1 -1.564 0.221 -7.070 I$1 -1.564 0.221 -7.070 V$1 -1.564 0.221 -7.070 Latent Class 5 Thresholds W$1 4.985 0.796 6.259 A$1 4.985 0.796 6.259 I$1 4.985 0.796 6.259 V$1 4.985 0.796 6.259 Categorical Latent Variables Means GRP#1 -2.621 0.253 -10.377 GRP#2 0.614 0.084 7.331 GRP#3 0.543 0.089 6.105 GRP#4 -3.853 2.289 -1.683 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 2 W Category 1 0.975 0.006 168.031 Category 2 0.025 0.006 4.309 A Category 1 0.975 0.006 168.031 Category 2 0.025 0.006 4.309 I Category 1 0.975 0.006 168.031 Category 2 0.025 0.006 4.309 V Category 1 0.025 0.006 4.309 Category 2 0.975 0.006 168.031 Latent Class 3 W Category 1 0.896 0.009 97.029 Category 2 0.104 0.009 11.280 A Category 1 0.896 0.009 97.029 Category 2 0.104 0.009 11.280 I Category 1 0.104 0.009 11.280 Category 2 0.896 0.009 97.029 V Category 1 0.104 0.009 11.280 Category 2 0.896 0.009 97.029 Latent Class 4 W Category 1 0.827 0.032 26.120 Category 2 0.173 0.032 5.465 A Category 1 0.173 0.032 5.465 Category 2 0.827 0.032 26.120 I Category 1 0.173 0.032 5.465 Category 2 0.827 0.032 26.120 V Category 1 0.173 0.032 5.465 Category 2 0.827 0.032 26.120 Latent Class 5 W Category 1 0.993 0.005 184.802 Category 2 0.007 0.005 1.264 A Category 1 0.993 0.005 184.802 Category 2 0.007 0.005 1.264 I Category 1 0.993 0.005 184.802 Category 2 0.007 0.005 1.264 V Category 1 0.993 0.005 184.802 Category 2 0.007 0.005 1.264 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 ********* 0.000 999.000 V Category > 1 83825.578 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 ********* 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 ********* 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 ********* 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 2 Compared to Latent Class 3 W Category > 1 0.221 0.057 3.887 A Category > 1 0.221 0.057 3.887 I Category > 1 0.003 0.001 3.872 V Category > 1 4.534 1.166 3.887 Latent Class 2 Compared to Latent Class 4 W Category > 1 0.123 0.040 3.057 A Category > 1 0.005 0.002 3.097 I Category > 1 0.005 0.002 3.097 V Category > 1 8.159 2.669 3.057 Latent Class 2 Compared to Latent Class 5 W Category > 1 3.749 3.137 1.195 A Category > 1 3.749 3.137 1.195 I Category > 1 3.749 3.137 1.195 V Category > 1 5701.205 ******* 1.211 Latent Class 3 Compared to Latent Class 4 W Category > 1 0.556 0.134 4.137 A Category > 1 0.024 0.006 4.114 I Category > 1 1.800 0.435 4.137 V Category > 1 1.800 0.435 4.137 Latent Class 3 Compared to Latent Class 5 W Category > 1 16.995 14.027 1.212 A Category > 1 16.995 14.027 1.212 I Category > 1 1257.531 979.903 1.283 V Category > 1 1257.531 979.903 1.283 Latent Class 4 Compared to Latent Class 5 W Category > 1 30.586 25.360 1.206 A Category > 1 698.762 575.895 1.213 I Category > 1 698.762 575.895 1.213 V Category > 1 698.762 575.895 1.213 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.226E-03 (ratio of smallest to largest eigenvalue)
Lazarsfeld’s latent distance model
Page 56
title: page 56 - Table 4.5 - Error Rates and Scale-Type Proportions Estimated Under Lazarsfeld's Latent Distance Model data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(5); categorical = w a i v; analysis: type = mixture; model: %overall% ! group 5 (second subscript) [w$1] (q1); [a$1] (2); [i$1] (3); [v$1] (q4); %grp#1% [w$1] (p1); [a$1] (1); [i$1] (4); [v$1] (p4); %grp#2% [w$1] (p1); [a$1] (1); [i$1] (4); [v$1] (q4); %grp#3% [w$1] (p1); [a$1] (1); [i$1] (3); [v$1] (q4); %grp#4% [w$1] (p1); [a$1] (2); [i$1] (3); [v$1] (q4); model constraint: p1 = -q1; p4 = -q4;
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2241.097 253358 2 -2247.678 285380 1 -2267.091 93468 3 -2271.942 unperturbed 0 -2273.677 195873 6 -2273.847 903420 5 -2273.870 415931 10 -2274.709 127215 9 -2275.289 608496 4 -2301.882 939021 8 -2346.675 462953 7 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2222.920 253358 2 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2222.920 Information Criteria Number of Free Parameters 10 Akaike (AIC) 4465.841 Bayesian (BIC) 4518.298 Sample-Size Adjusted BIC 4486.531 (n* = (n + 2) / 24) Entropy 0.774 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 12.339 Degrees of Freedom 5 P-Value 0.0304 Likelihood Ratio Chi-Square Value 14.758 Degrees of Freedom 5 P-Value 0.0114 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 398.99995 0.28459 2 670.75157 0.47842 3 217.39038 0.15506 4 67.86897 0.04841 5 46.98914 0.03352 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 398.99992 0.28459 2 670.75160 0.47842 3 217.39038 0.15506 4 67.86894 0.04841 5 46.98917 0.03352 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 399 0.28459 2 575 0.41013 3 339 0.24180 4 40 0.02853 5 49 0.03495 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 1 1.000 0.000 0.000 0.000 0.000 2 0.000 0.913 0.062 0.025 0.000 3 0.000 0.415 0.521 0.064 0.000 4 0.000 0.090 0.113 0.795 0.001 5 0.000 0.030 0.010 0.003 0.957 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 6.072 0.997 6.087 A$1 3.569 0.504 7.084 I$1 1.292 0.122 10.611 V$1 15.771 0.000 0.000 Latent Class 2 Thresholds W$1 6.072 0.997 6.087 A$1 3.569 0.504 7.084 I$1 1.292 0.122 10.611 V$1 -15.771 0.000 0.000 Latent Class 3 Thresholds W$1 6.072 0.997 6.087 A$1 3.569 0.504 7.084 I$1 -1.621 0.887 -1.829 V$1 -15.771 0.000 0.000 Latent Class 4 Thresholds W$1 6.072 0.997 6.087 A$1 -0.471 0.337 -1.399 I$1 -1.621 0.887 -1.829 V$1 -15.771 0.000 0.000 Latent Class 5 Thresholds W$1 -6.072 0.997 -6.087 A$1 -0.471 0.337 -1.399 I$1 -1.621 0.887 -1.829 V$1 -15.771 0.000 0.000 Categorical Latent Variables Means GRP#1 2.139 0.158 13.581 GRP#2 2.658 0.189 14.049 GRP#3 1.532 0.276 5.559 GRP#4 0.368 0.528 0.696 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.998 0.002 435.546 Category 2 0.002 0.002 1.005 A Category 1 0.973 0.013 72.411 Category 2 0.027 0.013 2.041 I Category 1 0.784 0.021 38.107 Category 2 0.216 0.021 10.470 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 2 W Category 1 0.998 0.002 435.546 Category 2 0.002 0.002 1.005 A Category 1 0.973 0.013 72.411 Category 2 0.027 0.013 2.041 I Category 1 0.784 0.021 38.107 Category 2 0.216 0.021 10.470 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 3 W Category 1 0.998 0.002 435.546 Category 2 0.002 0.002 1.005 A Category 1 0.973 0.013 72.411 Category 2 0.027 0.013 2.041 I Category 1 0.165 0.122 1.351 Category 2 0.835 0.122 6.836 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 4 W Category 1 0.998 0.002 435.546 Category 2 0.002 0.002 1.005 A Category 1 0.384 0.080 4.820 Category 2 0.616 0.080 7.724 I Category 1 0.165 0.122 1.351 Category 2 0.835 0.122 6.836 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 5 W Category 1 0.002 0.002 1.005 Category 2 0.998 0.002 435.546 A Category 1 0.384 0.080 4.820 Category 2 0.616 0.080 7.724 I Category 1 0.165 0.122 1.351 Category 2 0.835 0.122 6.836 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.054 0.048 1.124 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.018 0.009 1.910 I Category > 1 0.054 0.048 1.124 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 0.000 0.000 0.501 A Category > 1 0.018 0.009 1.910 I Category > 1 0.054 0.048 1.124 V Category > 1 0.000 0.000 999.000 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.054 0.048 1.124 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.018 0.009 1.910 I Category > 1 0.054 0.048 1.124 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 0.000 0.000 0.501 A Category > 1 0.018 0.009 1.910 I Category > 1 0.054 0.048 1.124 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.018 0.009 1.910 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 0.000 0.000 0.501 A Category > 1 0.018 0.009 1.910 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 5 W Category > 1 0.000 0.000 0.501 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.209E-02 (ratio of smallest to largest eigenvalue)
Page 58
Intrinsically unscalable
title: page 58 - Table 4.6 - Intrinsically Unscalable data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(6); categorical = w a i v; analysis: type = mixture; model: %overall% %grp#1% [w$1@15 a$1@15 i$1@15 v$1@15]; %grp#2% [w$1@15 a$1@15 i$1@15]; [v$1@-15]; %grp#3% [w$1@15 a$1@15]; [i$1@-15 v$1@-15]; %grp#4% [w$1@15]; [a$1@-15 i$1@-15 v$1@-15]; %grp#5% [w$1@-15 a$1@-15 i$1@-15 v$1@-15]; ! group 6, which is coded in %overall%, is the ! unscalable portion, which has no restrictions. ! The @ symbols are used to fix the thresholds. ! You fix the thresholds and not the probabilities ! in MPlus.
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2234.693 195873 6 -2235.407 939021 8 -2236.547 608496 4 -2237.463 253358 2 -2238.227 903420 5 -2239.604 93468 3 -2240.706 unperturbed 0 -2242.429 285380 1 -2260.803 415931 10 -2264.477 462953 7 -2267.448 127215 9 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2225.804 195873 6 THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE CONDITION NUMBER IS 0.238D-17. PROBLEM INVOLVING PARAMETER 7. THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2225.804 Information Criteria Number of Free Parameters 9 Akaike (AIC) 4469.608 Bayesian (BIC) 4516.818 Sample-Size Adjusted BIC 4488.229 (n* = (n + 2) / 24) Entropy 0.785 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 17.526 Degrees of Freedom 6 P-Value 0.0075 Likelihood Ratio Chi-Square Value 20.525 Degrees of Freedom 6 P-Value 0.0022 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 256.11841 0.18268 2 283.72303 0.20237 3 0.00000 0.00000 4 5.75672 0.00411 5 25.98006 0.01853 6 830.42177 0.59231 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 256.11832 0.18268 2 283.72303 0.20237 3 0.00000 0.00000 4 5.75674 0.00411 5 25.98006 0.01853 6 830.42185 0.59231 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 310 0.22111 2 543 0.38730 3 0 0.00000 4 0 0.00000 5 27 0.01926 6 522 0.37233 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 6 1 0.826 0.000 0.000 0.000 0.000 0.174 2 0.000 0.523 0.000 0.000 0.000 0.477 3 0.000 0.000 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000 0.000 0.000 5 0.000 0.000 0.000 0.000 0.962 0.038 6 0.000 0.000 0.000 0.011 0.000 0.989 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 15.000 0.000 0.000 Latent Class 2 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 3 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 4 Thresholds W$1 15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 5 Thresholds W$1 -15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 6 Thresholds W$1 3.514 0.264 13.310 A$1 2.321 0.241 9.627 I$1 -0.296 0.251 -1.181 V$1 -1.571 0.123 -12.732 Categorical Latent Variables Means GRP#1 -1.176 0.171 -6.870 GRP#2 -1.074 0.335 -3.210 GRP#3 -19.453 0.289 -67.392 GRP#4 -4.972 1.782 -2.790 GRP#5 -3.465 0.218 -15.861 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 2 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 3 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 4 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 5 W Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 6 W Category 1 0.971 0.007 130.965 Category 2 0.029 0.007 3.901 A Category 1 0.911 0.020 46.389 Category 2 0.089 0.020 4.556 I Category 1 0.426 0.061 6.951 Category 2 0.574 0.061 9.348 V Category 1 0.172 0.018 9.788 Category 2 0.828 0.018 47.098 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 6 W Category > 1 0.000 0.000 3.788 A Category > 1 0.000 0.000 4.148 I Category > 1 0.000 0.000 3.987 V Category > 1 0.000 0.000 8.104 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 6 W Category > 1 0.000 0.000 3.788 A Category > 1 0.000 0.000 4.148 I Category > 1 0.000 0.000 3.987 V Category > 1 ********* ******* 8.104 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 6 W Category > 1 0.000 0.000 3.788 A Category > 1 0.000 0.000 4.148 I Category > 1 ********* ******* 3.987 V Category > 1 ********* ******* 8.104 Latent Class 4 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 6 W Category > 1 0.000 0.000 3.788 A Category > 1 ********* ******* 4.148 I Category > 1 ********* ******* 3.987 V Category > 1 ********* ******* 8.104 Latent Class 5 Compared to Latent Class 6 W Category > 1 ********* ******* 3.788 A Category > 1 ********* ******* 4.148 I Category > 1 ********* ******* 3.987 V Category > 1 ********* ******* 8.104 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.238E-17 (ratio of smallest to largest eigenvalue)
Procotor-Goodman
title: page 58 - Table 4.6 - Proctor Goodman data: file is "d:\test\mplus47.txt"; variable: names are w a i v wt; weight is wt (frequency); classes = grp(6); categorical = w a i v; analysis: type = mixture; model: %overall% %grp#1% [w$1 a$1 i$1 v$1] (p5); %grp#2% [w$1 a$1 i$1 v$1] (p1); %grp#3% [w$1 a$1 i$1] (p1); [v$1] (p5); %grp#4% [w$1 a$1] (p1); [i$1 v$1] (p5); %grp#5% [w$1] (p1); [a$1 i$1 v$1] (p5); model constraint: p1 = -p5;
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2238.899 285380 1 -2240.730 93468 3 -2242.227 903420 5 -2243.101 253358 2 -2243.170 unperturbed 0 -2246.006 127215 9 -2254.780 939021 8 -2257.568 608496 4 -2273.301 195873 6 -2284.021 415931 10 -2285.583 462953 7 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2225.858 285380 1 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2225.858 Information Criteria Number of Free Parameters 10 Akaike (AIC) 4471.716 Bayesian (BIC) 4524.173 Sample-Size Adjusted BIC 4492.406 (n* = (n + 2) / 24) Entropy 0.707 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 16.251 Degrees of Freedom 5 P-Value 0.0062 Likelihood Ratio Chi-Square Value 20.633 Degrees of Freedom 5 P-Value 0.0010 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 29.57421 0.02109 2 8.15422 0.00582 3 106.27651 0.07580 4 281.73036 0.20095 5 28.66118 0.02044 6 947.60353 0.67589 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 29.57421 0.02109 2 8.15422 0.00582 3 106.27650 0.07580 4 281.73046 0.20095 5 28.66115 0.02044 6 947.60346 0.67589 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 29 0.02068 2 1 0.00071 3 4 0.00285 4 355 0.25321 5 40 0.02853 6 973 0.69401 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 6 1 0.913 0.000 0.011 0.027 0.049 0.000 2 0.006 0.544 0.392 0.058 0.000 0.000 3 0.013 0.004 0.857 0.126 0.001 0.000 4 0.004 0.000 0.014 0.678 0.004 0.300 5 0.033 0.000 0.006 0.310 0.570 0.080 6 0.000 0.008 0.100 0.028 0.003 0.861 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 -2.894 0.182 -15.863 A$1 -2.894 0.182 -15.863 I$1 -2.894 0.182 -15.863 V$1 -2.894 0.182 -15.863 Latent Class 2 Thresholds W$1 2.894 0.182 15.863 A$1 2.894 0.182 15.863 I$1 2.894 0.182 15.863 V$1 2.894 0.182 15.863 Latent Class 3 Thresholds W$1 2.894 0.182 15.863 A$1 2.894 0.182 15.863 I$1 2.894 0.182 15.863 V$1 -2.894 0.182 -15.863 Latent Class 4 Thresholds W$1 2.894 0.182 15.863 A$1 2.894 0.182 15.863 I$1 -2.894 0.182 -15.863 V$1 -2.894 0.182 -15.863 Latent Class 5 Thresholds W$1 2.894 0.182 15.863 A$1 -2.894 0.182 -15.863 I$1 -2.894 0.182 -15.863 V$1 -2.894 0.182 -15.863 Latent Class 6 Thresholds W$1 26.329 0.000 0.000 A$1 3.493 0.330 10.572 I$1 1.445 0.156 9.277 V$1 -0.443 0.166 -2.674 Categorical Latent Variables Means GRP#1 -3.467 0.221 -15.685 GRP#2 -4.755 2.033 -2.339 GRP#3 -2.188 0.764 -2.864 GRP#4 -1.213 0.185 -6.573 GRP#5 -3.498 0.318 -10.988 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 A Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 I Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 V Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 Latent Class 2 W Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 A Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 I Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 V Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 Latent Class 3 W Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 A Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 I Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 V Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 Latent Class 4 W Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 A Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 I Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 V Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 Latent Class 5 W Category 1 0.948 0.009 104.508 Category 2 0.052 0.009 5.785 A Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 I Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 V Category 1 0.052 0.009 5.785 Category 2 0.948 0.009 104.508 Latent Class 6 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 0.970 0.009 102.538 Category 2 0.030 0.009 3.119 I Category 1 0.809 0.024 33.653 Category 2 0.191 0.024 7.931 V Category 1 0.391 0.039 9.920 Category 2 0.609 0.039 15.444 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 326.407 119.101 2.741 A Category > 1 326.407 119.101 2.741 I Category > 1 326.407 119.101 2.741 V Category > 1 326.407 119.101 2.741 Latent Class 1 Compared to Latent Class 3 W Category > 1 326.407 119.101 2.741 A Category > 1 326.407 119.101 2.741 I Category > 1 326.407 119.101 2.741 V Category > 1 1.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 326.407 119.101 2.741 A Category > 1 326.407 119.101 2.741 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 326.407 119.101 2.741 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 1 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 593.933 210.537 2.821 I Category > 1 76.661 17.166 4.466 V Category > 1 11.604 2.873 4.039 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.003 0.001 2.741 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.003 0.001 2.741 V Category > 1 0.003 0.001 2.741 Latent Class 2 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 0.003 0.001 2.741 I Category > 1 0.003 0.001 2.741 V Category > 1 0.003 0.001 2.741 Latent Class 2 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 1.820 0.726 2.506 I Category > 1 0.235 0.060 3.923 V Category > 1 0.036 0.009 4.079 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.003 0.001 2.741 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 0.003 0.001 2.741 I Category > 1 0.003 0.001 2.741 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 1.820 0.726 2.506 I Category > 1 0.235 0.060 3.923 V Category > 1 11.604 2.873 4.039 Latent Class 4 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 0.003 0.001 2.741 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 1.820 0.726 2.506 I Category > 1 76.661 17.166 4.466 V Category > 1 11.604 2.873 4.039 Latent Class 5 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 593.933 210.537 2.821 I Category > 1 76.661 17.166 4.466 V Category > 1 11.604 2.873 4.039 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.128E-02 (ratio of smallest to largest eigenvalue)
Biform scale
title: page 58 - Table 4.6 - Biform Scale data: file is mplus47.txt; variable: names are w a i v wt; weight is wt (frequency); classes = grp(7); categorical = w a i v; analysis: type = mixture; starts = 50 2; model: %overall% [w$1 a$1 i$1 v$1]; %grp#1% [w$1@15 a$1@15 i$1@15 v$1@15]; %grp#2% [w$1@15 a$1@15 i$1@15]; [v$1@-15]; %grp#3% [w$1@15 a$1@15]; [i$1@-15 v$1@-15]; %grp#4% [w$1@15]; [a$1@-15 i$1@-15 v$1@-15]; %grp#5% [w$1@-15 a$1@-15 i$1@-15 v$1@-15]; !%grp#6% ![a$1@15]; ![w$1@-15 i$1@-15 v$1@-15]; %grp#6% [w$1@15 a$1@15 i$1@-15 v$1@15]; ! this model has one additional possible ! response pattern; hence, the one additional ! group. output: tech1;
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2220.174 195873 6 -2220.596 848163 47 -2222.426 260601 36 -2222.833 364676 27 -2223.137 93468 3 -2223.394 967237 48 -2224.032 851945 18 -2224.116 761633 50 -2224.212 107446 12 -2224.503 902278 21 -2224.696 372176 23 -2224.743 318230 46 -2224.810 153942 31 -2224.865 626891 32 -2224.865 68985 17 -2225.092 392418 28 -2225.112 407168 44 -2226.045 120506 45 -2226.062 253358 2 -2226.727 352277 42 -2226.779 533739 11 -2227.682 903420 5 -2229.145 unperturbed 0 -2229.795 650371 14 -2230.227 27071 15 -2230.651 285380 1 -2231.614 608496 4 -2232.092 76974 16 -2232.132 887676 22 -2232.176 370466 41 -2232.226 645664 39 -2233.017 915642 40 -2233.109 939021 8 -2233.691 207896 25 -2235.228 963053 43 -2236.956 569131 26 -2237.014 246261 38 -2237.520 966014 37 -2237.959 568859 49 -2240.819 341041 34 -2242.111 366706 29 -2247.901 573096 20 -2252.745 347515 24 -2259.445 830392 35 -2260.975 637345 19 -2261.545 749453 33 -2261.924 432148 30 -2264.532 415931 10 -2264.802 462953 7 -2265.040 399671 13 -2267.751 127215 9 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2218.922 848163 47 -2218.922 195873 6 ONE OR MORE MULTINOMIAL LOGIT PARAMETERS WERE FIXED TO AVOID SINGULARITY OF THE INFORMATION MATRIX. THE SINGULARITY IS MOST LIKELY BECAUSE THE MODEL IS NOT IDENTIFIED, OR BECAUSE OF EMPTY CELLS IN THE JOINT DISTRIBUTION OF THE CATEGORICAL LATENT VARIABLES AND ANY INDEPENDENT VARIABLES. THE FOLLOWING PARAMETERS WERE FIXED: 8 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2218.922 Information Criteria Number of Free Parameters 10 Akaike (AIC) 4457.844 Bayesian (BIC) 4510.300 Sample-Size Adjusted BIC 4478.534 (n* = (n + 2) / 24) Entropy 0.775 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 5.596 Degrees of Freedom 5 P-Value 0.3475 Likelihood Ratio Chi-Square Value 6.761 Degrees of Freedom 5 P-Value 0.2390 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 301.78714 0.21525 2 410.76166 0.29298 3 140.31783 0.10008 4 0.00000 0.00000 5 24.39940 0.01740 6 70.65999 0.05040 7 454.07397 0.32388 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 301.78716 0.21525 2 410.76182 0.29298 3 140.31775 0.10008 4 0.00000 0.00000 5 24.39941 0.01740 6 70.66001 0.05040 7 454.07385 0.32388 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 310 0.22111 2 543 0.38730 3 0 0.00000 4 0 0.00000 5 27 0.01926 6 83 0.05920 7 439 0.31312 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 6 7 1 0.974 0.000 0.000 0.000 0.000 0.000 0.026 2 0.000 0.756 0.000 0.000 0.000 0.000 0.244 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5 0.000 0.000 0.000 0.000 0.904 0.000 0.096 6 0.000 0.000 0.000 0.000 0.000 0.851 0.149 7 0.000 0.000 0.320 0.000 0.000 0.000 0.680 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 15.000 0.000 0.000 Latent Class 2 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 3 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 4 Thresholds W$1 15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 5 Thresholds W$1 -15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 6 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 15.000 0.000 0.000 Latent Class 7 Thresholds W$1 2.818 0.727 3.877 A$1 1.518 0.744 2.041 I$1 -0.407 0.205 -1.986 V$1 -2.779 0.423 -6.563 Categorical Latent Variables Means GRP#1 -0.409 0.608 -0.672 GRP#2 -0.100 0.831 -0.121 GRP#3 -1.174 1.645 -0.714 GRP#4 -21.046 0.000 0.000 GRP#5 -2.924 0.554 -5.277 GRP#6 -1.860 0.737 -2.526 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 2 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 3 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 4 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 5 W Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 6 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 7 W Category 1 0.944 0.039 24.408 Category 2 0.056 0.039 1.458 A Category 1 0.820 0.110 7.481 Category 2 0.180 0.110 1.639 I Category 1 0.400 0.049 8.124 Category 2 0.600 0.049 12.205 V Category 1 0.058 0.023 2.509 Category 2 0.942 0.023 40.389 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 6 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 1 Compared to Latent Class 7 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 0.000 0.000 4.877 V Category > 1 0.000 0.000 2.362 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 6 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 2 Compared to Latent Class 7 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 0.000 0.000 4.877 V Category > 1 ********* ******* 2.362 Latent Class 3 Compared to Latent Class 4 W Category > 1 1.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 6 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 3 Compared to Latent Class 7 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 ********* ******* 2.362 Latent Class 4 Compared to Latent Class 5 W Category > 1 0.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 4 Compared to Latent Class 6 W Category > 1 1.000 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 4 Compared to Latent Class 7 W Category > 1 0.000 0.000 1.376 A Category > 1 ********* ******* 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 ********* ******* 2.362 Latent Class 5 Compared to Latent Class 6 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 5 Compared to Latent Class 7 W Category > 1 ********* ******* 1.376 A Category > 1 ********* ******* 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 ********* ******* 2.362 Latent Class 6 Compared to Latent Class 7 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 0.000 0.000 2.362 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.586E-03 (ratio of smallest to largest eigenvalue) TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR LATENT CLASS 1 PARAMETER SPECIFICATION FOR LATENT CLASS 2 PARAMETER SPECIFICATION FOR LATENT CLASS 3 PARAMETER SPECIFICATION FOR LATENT CLASS 4 PARAMETER SPECIFICATION FOR LATENT CLASS 5 PARAMETER SPECIFICATION FOR LATENT CLASS 6 PARAMETER SPECIFICATION FOR LATENT CLASS 7 PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART LAMBDA(U) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ W 0 0 0 0 0 A 0 0 0 0 0 I 0 0 0 0 0 V 0 0 0 0 0 LAMBDA(U) GRP#6 GRP#7 ________ ________ W 0 1 A 0 2 I 0 3 V 0 4 PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART ALPHA(C) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ 1 5 6 7 8 9 ALPHA(C) GRP#6 GRP#7 ________ ________ 1 10 0 STARTING VALUES FOR LATENT CLASS 1 STARTING VALUES FOR LATENT CLASS 2 STARTING VALUES FOR LATENT CLASS 3 STARTING VALUES FOR LATENT CLASS 4 STARTING VALUES FOR LATENT CLASS 5 STARTING VALUES FOR LATENT CLASS 6 STARTING VALUES FOR LATENT CLASS 7 STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART LAMBDA(U) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ W -15.000 -15.000 -15.000 -15.000 15.000 A -15.000 -15.000 -15.000 15.000 15.000 I -15.000 -15.000 15.000 15.000 15.000 V -15.000 15.000 15.000 15.000 15.000 LAMBDA(U) GRP#6 GRP#7 ________ ________ W -15.000 -5.297 A -15.000 -4.504 I 15.000 -2.565 V -15.000 -1.078 STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART ALPHA(C) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ 1 0.000 0.000 0.000 0.000 0.000 ALPHA(C) GRP#6 GRP#7 ________ ________ 1 0.000 0.000
Biform scale with type 2 excluded
title: page 58 - Table 4.6 - Biform Scale with type 2 excluded data: file is mplus47.txt; variable: names are w a i v wt; weight is wt (frequency); classes = grp(6); categorical = w a i v; analysis: type = mixture; starts = 50 2; model: %overall% [w$1 a$1 i$1 v$1]; %grp#1% [w$1@15 a$1@15 i$1@15 v$1@15]; %grp#2% [w$1@15 a$1@15 i$1@15]; [v$1@-15]; %grp#3% [w$1@15 a$1@15]; [i$1@-15 v$1@-15]; !%grp#4% ![w$1@15]; ![a$1@-15 i$1@-15 v$1@-15]; %grp#4% [w$1@-15 a$1@-15 i$1@-15 v$1@-15]; !%grp#6% ![a$1@15]; ![w$1@-15 i$1@-15 v$1@-15]; %grp#5% [w$1@15 a$1@15 i$1@-15 v$1@15]; ! this model has one additional possible ! response pattern; hence, the one additional ! group. output: tech1;
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -2219.937 93468 3 -2219.963 107446 12 -2220.054 761633 50 -2220.185 903420 5 -2220.190 195873 6 -2220.203 851945 18 -2220.340 370466 41 -2220.496 260601 36 -2220.520 253358 2 -2220.591 352277 42 -2220.596 120506 45 -2220.738 unperturbed 0 -2220.839 848163 47 -2221.117 364676 27 -2221.465 27071 15 -2221.568 76974 16 -2222.647 902278 21 -2222.723 153942 31 -2223.341 626891 32 -2223.449 318230 46 -2223.533 372176 23 -2223.577 967237 48 -2223.843 68985 17 -2223.923 392418 28 -2224.094 407168 44 -2224.666 533739 11 -2224.675 966014 37 -2226.286 650371 14 -2226.453 341041 34 -2226.575 887676 22 -2226.900 608496 4 -2228.345 645664 39 -2229.351 285380 1 -2231.249 915642 40 -2232.057 939021 8 -2232.885 207896 25 -2235.420 366706 29 -2236.068 569131 26 -2236.725 246261 38 -2237.559 963053 43 -2237.902 568859 49 -2239.182 347515 24 -2245.539 573096 20 -2253.338 830392 35 -2257.663 749453 33 -2265.918 432148 30 -2270.350 637345 19 -2270.585 399671 13 -2272.419 415931 10 -2280.789 462953 7 -2283.710 127215 9 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -2218.922 93468 3 -2218.922 107446 12 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -2218.922 Information Criteria Number of Free Parameters 9 Akaike (AIC) 4455.844 Bayesian (BIC) 4503.055 Sample-Size Adjusted BIC 4474.465 (n* = (n + 2) / 24) Entropy 0.756 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 5.596 Degrees of Freedom 6 P-Value 0.4699 Likelihood Ratio Chi-Square Value 6.761 Degrees of Freedom 6 P-Value 0.3435 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 301.78742 0.21525 2 410.76745 0.29299 3 140.32280 0.10009 4 24.39932 0.01740 5 70.66020 0.05040 6 454.06282 0.32387 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 301.78745 0.21525 2 410.76734 0.29299 3 140.32283 0.10009 4 24.39932 0.01740 5 70.66024 0.05040 6 454.06282 0.32387 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP Class Counts and Proportions Latent Classes 1 310 0.22111 2 543 0.38730 3 0 0.00000 4 27 0.01926 5 83 0.05920 6 439 0.31312 Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column) 1 2 3 4 5 6 1 0.974 0.000 0.000 0.000 0.000 0.026 2 0.000 0.756 0.000 0.000 0.000 0.244 3 0.000 0.000 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.904 0.000 0.096 5 0.000 0.000 0.000 0.000 0.851 0.149 6 0.000 0.000 0.320 0.000 0.000 0.680 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class 1 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 15.000 0.000 0.000 Latent Class 2 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 3 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 4 Thresholds W$1 -15.000 0.000 0.000 A$1 -15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 -15.000 0.000 0.000 Latent Class 5 Thresholds W$1 15.000 0.000 0.000 A$1 15.000 0.000 0.000 I$1 -15.000 0.000 0.000 V$1 15.000 0.000 0.000 Latent Class 6 Thresholds W$1 2.818 0.727 3.877 A$1 1.518 0.744 2.041 I$1 -0.407 0.205 -1.986 V$1 -2.779 0.423 -6.563 Categorical Latent Variables Means GRP#1 -0.409 0.608 -0.672 GRP#2 -0.100 0.831 -0.121 GRP#3 -1.174 1.645 -0.714 GRP#4 -2.924 0.554 -5.277 GRP#5 -1.860 0.737 -2.525 RESULTS IN PROBABILITY SCALE Latent Class 1 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 2 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 3 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 4 W Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 5 W Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 I Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 V Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 Latent Class 6 W Category 1 0.944 0.039 24.405 Category 2 0.056 0.039 1.458 A Category 1 0.820 0.110 7.480 Category 2 0.180 0.110 1.639 I Category 1 0.400 0.049 8.124 Category 2 0.600 0.049 12.206 V Category 1 0.058 0.023 2.509 Category 2 0.942 0.023 40.389 ODDS RATIO RESULTS Latent Class 1 Compared to Latent Class 2 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 4 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 0.000 0.000 999.000 Latent Class 1 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 1 Compared to Latent Class 6 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 0.000 0.000 4.877 V Category > 1 0.000 0.000 2.362 Latent Class 2 Compared to Latent Class 3 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 4 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 2 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 0.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 2 Compared to Latent Class 6 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 0.000 0.000 4.877 V Category > 1 ********* ******* 2.362 Latent Class 3 Compared to Latent Class 4 W Category > 1 0.000 0.000 999.000 A Category > 1 0.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 1.000 0.000 999.000 Latent Class 3 Compared to Latent Class 5 W Category > 1 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 3 Compared to Latent Class 6 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 ********* ******* 2.362 Latent Class 4 Compared to Latent Class 5 W Category > 1 ********* 0.000 999.000 A Category > 1 ********* 0.000 999.000 I Category > 1 1.000 0.000 999.000 V Category > 1 ********* 0.000 999.000 Latent Class 4 Compared to Latent Class 6 W Category > 1 ********* ******* 1.376 A Category > 1 ********* ******* 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 ********* ******* 2.362 Latent Class 5 Compared to Latent Class 6 W Category > 1 0.000 0.000 1.376 A Category > 1 0.000 0.000 1.344 I Category > 1 ********* ******* 4.877 V Category > 1 0.000 0.000 2.362 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.577E-03 (ratio of smallest to largest eigenvalue) TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR LATENT CLASS 1 PARAMETER SPECIFICATION FOR LATENT CLASS 2 PARAMETER SPECIFICATION FOR LATENT CLASS 3 PARAMETER SPECIFICATION FOR LATENT CLASS 4 PARAMETER SPECIFICATION FOR LATENT CLASS 5 PARAMETER SPECIFICATION FOR LATENT CLASS 6 PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART LAMBDA(U) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ W 0 0 0 0 0 A 0 0 0 0 0 I 0 0 0 0 0 V 0 0 0 0 0 LAMBDA(U) GRP#6 ________ W 1 A 2 I 3 V 4 PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART ALPHA(C) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ 1 5 6 7 8 9 ALPHA(C) GRP#6 ________ 1 0 STARTING VALUES FOR LATENT CLASS 1 STARTING VALUES FOR LATENT CLASS 2 STARTING VALUES FOR LATENT CLASS 3 STARTING VALUES FOR LATENT CLASS 4 STARTING VALUES FOR LATENT CLASS 5 STARTING VALUES FOR LATENT CLASS 6 STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART LAMBDA(U) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ W -15.000 -15.000 -15.000 15.000 -15.000 A -15.000 -15.000 -15.000 15.000 -15.000 I -15.000 -15.000 15.000 15.000 15.000 V -15.000 15.000 15.000 15.000 -15.000 LAMBDA(U) GRP#6 ________ W -5.297 A -4.504 I -2.565 V -1.078 STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART ALPHA(C) GRP#1 GRP#2 GRP#3 GRP#4 GRP#5 ________ ________ ________ ________ ________ 1 0.000 0.000 0.000 0.000 0.000 ALPHA(C) GRP#6 ________ 1 0.000
Page 70 – this may not be the correct code. data file
title: page 70 - unrestricted, heterogeneous three-class model data: file is "d:\test\mplus69.txt"; variable: names are race p a u c wt; !usevariables are race p a u c wt; weight is wt (frequency); classes = r(2) grp(3); categorical = race p a u c; analysis: type = mixture; model: %overall% grp#1 on r#1; grp#2 on r#1; [grp#1 grp#2 r#1]; model r: %r#1% [race$1@15]; %r#2% [race$1@-15]; model grp: %grp#1% [p$1 p$2 a$1 u$1 c$1 c$2]; %grp#2% [p$1 p$2 a$1 u$1 c$1 c$2]; %grp#3% [p$1 p$2 a$1 u$1 c$1 c$2];
! You can't use grouping with type = mixture ! See example on page 378 of manual and pages 328-340 ! (white =1 black =2) ! You need the usevariables so that Mplus knows not to use ! race in the analysis. ! See also page 151 of the manual, example 7.21
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES Initial stage loglikelihood values, seeds, and initial stage start numbers: -4867.705 127215 9 -4899.600 939021 8 -4901.769 93468 3 -4906.455 285380 1 -4909.705 195873 6 -4927.386 unperturbed 0 -4929.380 903420 5 -4933.149 253358 2 -4936.477 415931 10 -4940.304 462953 7 -4980.604 608496 4 Loglikelihood values at local maxima, seeds, and initial stage start numbers: -4858.404 127215 9 THE MODEL ESTIMATION TERMINATED NORMALLY TESTS OF MODEL FIT Loglikelihood H0 Value -4858.404 Information Criteria Number of Free Parameters 23 Akaike (AIC) 9762.807 Bayesian (BIC) 9887.190 Sample-Size Adjusted BIC 9814.122 (n* = (n + 2) / 24) Entropy 0.781 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 47.978 Degrees of Freedom 48 P-Value 0.4737 Likelihood Ratio Chi-Square Value 49.077 Degrees of Freedom 48 P-Value 0.4297 MODEL RESULTS USE THE LATENT CLASS VARIABLE ORDER R GRP Latent Class Variable Patterns R GRP Class Class 1 1 1 2 1 3 2 1 2 2 2 3 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON THE ESTIMATED MODEL Latent Class Pattern 1 1 192.95286 0.11701 1 2 169.88252 0.10302 1 3 839.16486 0.50889 2 1 81.65096 0.04952 2 2 128.37271 0.07785 2 3 236.97610 0.14371 FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON THE ESTIMATED MODEL Latent Class Variable Class R 1 1202.00024 0.72893 2 446.99976 0.27107 GRP 1 274.60382 0.16653 2 298.25522 0.18087 3 1076.14099 0.65260 LATENT TRANSITION PROBABILITIES BASED ON THE ESTIMATED MODEL R Classes (Rows) by GRP Classes (Columns) 1 2 3 1 0.161 0.141 0.698 2 0.183 0.287 0.530 FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Class Pattern 1 1 192.95297 0.11701 1 2 169.88333 0.10302 1 3 839.16393 0.50889 2 1 81.65102 0.04952 2 2 128.37313 0.07785 2 3 236.97562 0.14371 FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Class Variable Class R 1 1202.00024 0.72893 2 446.99979 0.27107 GRP 1 274.60397 0.16653 2 298.25647 0.18087 3 1076.13953 0.65260 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN Class Counts and Proportions Latent Class Pattern 1 1 219 0.13281 1 2 178 0.10794 1 3 805 0.48817 2 1 86 0.05215 2 2 136 0.08247 2 3 225 0.13645 Average Latent Class Probabilities for Most Likely Latent Class Pattern (Row) by Latent Class Pattern (Column) Latent Class Variable Patterns Latent Class R GRP Pattern No. Class Class 1 1 1 2 1 2 3 1 3 4 2 1 5 2 2 6 2 3 1 2 3 4 5 6 1 0.773 0.035 0.191 0.000 0.000 0.000 2 0.038 0.657 0.305 0.000 0.000 0.000 3 0.021 0.056 0.923 0.000 0.000 0.000 4 0.000 0.000 0.000 0.808 0.051 0.140 5 0.000 0.000 0.000 0.045 0.763 0.193 6 0.000 0.000 0.000 0.027 0.090 0.883 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP FOR EACH LATENT CLASS VARIABLE Latent Class Variable Class R 1 1202 0.72893 2 447 0.27107 GRP 1 305 0.18496 2 314 0.19042 3 1030 0.62462 MODEL RESULTS Estimates S.E. Est./S.E. Latent Class Pattern 1 1 Thresholds RACE$1 15.000 0.000 0.000 P$1 -1.833 0.964 -1.901 P$2 -0.600 0.425 -1.411 A$1 -15.783 0.000 0.000 U$1 1.056 0.199 5.299 C$1 0.613 0.176 3.474 C$2 2.134 0.232 9.213 Latent Class Pattern 1 2 Thresholds RACE$1 15.000 0.000 0.000 P$1 2.147 0.318 6.747 P$2 3.134 0.694 4.519 A$1 0.566 0.262 2.165 U$1 -0.853 1.052 -0.810 C$1 0.208 0.781 0.266 C$2 2.372 0.567 4.183 Latent Class Pattern 1 3 Thresholds RACE$1 15.000 0.000 0.000 P$1 2.047 0.156 13.087 P$2 2.842 0.261 10.869 A$1 0.417 0.098 4.277 U$1 2.650 1.382 1.917 C$1 2.780 0.724 3.841 C$2 6.575 7.577 0.868 Latent Class Pattern 2 1 Thresholds RACE$1 -15.000 0.000 0.000 P$1 -1.833 0.964 -1.901 P$2 -0.600 0.425 -1.411 A$1 -15.783 0.000 0.000 U$1 1.056 0.199 5.299 C$1 0.613 0.176 3.474 C$2 2.134 0.232 9.213 Latent Class Pattern 2 2 Thresholds RACE$1 -15.000 0.000 0.000 P$1 2.147 0.318 6.747 P$2 3.134 0.694 4.519 A$1 0.566 0.262 2.165 U$1 -0.853 1.052 -0.810 C$1 0.208 0.781 0.266 C$2 2.372 0.567 4.183 Latent Class Pattern 2 3 Thresholds RACE$1 -15.000 0.000 0.000 P$1 2.047 0.156 13.087 P$2 2.842 0.261 10.869 A$1 0.417 0.098 4.277 U$1 2.650 1.382 1.917 C$1 2.780 0.724 3.841 C$2 6.575 7.577 0.868 Categorical Latent Variables GRP#1 ON R#1 -0.404 0.235 -1.719 GRP#2 ON R#1 -0.984 0.397 -2.478 Means R#1 0.989 0.055 17.856 GRP#1 -1.066 0.457 -2.329 GRP#2 -0.613 0.807 -0.760 RESULTS IN PROBABILITY SCALE Latent Class Pattern 1 1 RACE Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 P Category 1 0.138 0.115 1.204 Category 2 0.216 0.040 5.346 Category 3 0.646 0.097 6.639 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 U Category 1 0.742 0.038 19.444 Category 2 0.258 0.038 6.764 C Category 1 0.649 0.040 16.133 Category 2 0.246 0.033 7.384 Category 3 0.106 0.022 4.828 Latent Class Pattern 1 2 RACE Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 P Category 1 0.895 0.030 30.033 Category 2 0.063 0.028 2.233 Category 3 0.042 0.028 1.505 A Category 1 0.638 0.060 10.559 Category 2 0.362 0.060 5.994 U Category 1 0.299 0.220 1.356 Category 2 0.701 0.220 3.180 C Category 1 0.552 0.193 2.856 Category 2 0.363 0.155 2.337 Category 3 0.085 0.044 1.928 Latent Class Pattern 1 3 RACE Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 P Category 1 0.886 0.016 55.908 Category 2 0.059 0.012 4.797 Category 3 0.055 0.014 4.047 A Category 1 0.603 0.023 25.807 Category 2 0.397 0.023 17.002 U Category 1 0.934 0.085 10.962 Category 2 0.066 0.085 0.775 C Category 1 0.942 0.040 23.657 Category 2 0.057 0.030 1.881 Category 3 0.001 0.011 0.132 Latent Class Pattern 2 1 RACE Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 P Category 1 0.138 0.115 1.204 Category 2 0.216 0.040 5.346 Category 3 0.646 0.097 6.639 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 U Category 1 0.742 0.038 19.444 Category 2 0.258 0.038 6.764 C Category 1 0.649 0.040 16.133 Category 2 0.246 0.033 7.384 Category 3 0.106 0.022 4.828 Latent Class Pattern 2 2 RACE Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 P Category 1 0.895 0.030 30.033 Category 2 0.063 0.028 2.233 Category 3 0.042 0.028 1.505 A Category 1 0.638 0.060 10.559 Category 2 0.362 0.060 5.994 U Category 1 0.299 0.220 1.356 Category 2 0.701 0.220 3.180 C Category 1 0.552 0.193 2.856 Category 2 0.363 0.155 2.337 Category 3 0.085 0.044 1.928 Latent Class Pattern 2 3 RACE Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 P Category 1 0.886 0.016 55.908 Category 2 0.059 0.012 4.797 Category 3 0.055 0.014 4.047 A Category 1 0.603 0.023 25.807 Category 2 0.397 0.023 17.002 U Category 1 0.934 0.085 10.962 Category 2 0.066 0.085 0.775 C Category 1 0.942 0.040 23.657 Category 2 0.057 0.030 1.881 Category 3 0.001 0.011 0.132 ODDS RATIO RESULTS Latent Class Pattern 1 1 Compared to Latent Class Pattern 1 2 RACE Category > 1 1.000 0.000 999.000 P Category > 1 53.465 55.195 0.969 Category > 2 41.833 29.868 1.401 A Category > 1 ********* 0.000 999.000 U Category > 1 0.148 0.165 0.901 C Category > 1 0.667 0.558 1.197 Category > 2 1.269 0.821 1.546 Latent Class Pattern 1 1 Compared to Latent Class Pattern 1 3 RACE Category > 1 1.000 0.000 999.000 P Category > 1 48.402 47.459 1.020 Category > 2 31.246 17.368 1.799 A Category > 1 ********* 0.000 999.000 U Category > 1 4.923 7.186 0.685 C Category > 1 8.738 6.678 1.308 Category > 2 84.816 644.358 0.132 Latent Class Pattern 1 1 Compared to Latent Class Pattern 2 1 RACE Category > 1 0.000 0.000 999.000 P Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 U Category > 1 1.000 0.000 999.000 C Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 Latent Class Pattern 1 1 Compared to Latent Class Pattern 2 2 RACE Category > 1 0.000 0.000 999.000 P Category > 1 53.465 55.195 0.969 Category > 2 41.833 29.868 1.401 A Category > 1 ********* 0.000 999.000 U Category > 1 0.148 0.165 0.901 C Category > 1 0.667 0.558 1.197 Category > 2 1.269 0.821 1.546 Latent Class Pattern 1 1 Compared to Latent Class Pattern 2 3 RACE Category > 1 0.000 0.000 999.000 P Category > 1 48.402 47.459 1.020 Category > 2 31.246 17.368 1.799 A Category > 1 ********* 0.000 999.000 U Category > 1 4.923 7.186 0.685 C Category > 1 8.738 6.678 1.308 Category > 2 84.816 644.358 0.132 Latent Class Pattern 1 2 Compared to Latent Class Pattern 1 3 RACE Category > 1 1.000 0.000 999.000 P Category > 1 0.905 0.363 2.492 Category > 2 0.747 0.657 1.138 A Category > 1 0.862 0.241 3.573 U Category > 1 33.199 31.118 1.067 C Category > 1 13.097 7.172 1.826 Category > 2 66.848 488.469 0.137 Latent Class Pattern 1 2 Compared to Latent Class Pattern 2 1 RACE Category > 1 0.000 0.000 999.000 P Category > 1 0.019 0.019 0.969 Category > 2 0.024 0.017 1.401 A Category > 1 0.000 0.000 999.000 U Category > 1 6.744 7.482 0.901 C Category > 1 1.499 1.253 1.197 Category > 2 0.788 0.510 1.546 Latent Class Pattern 1 2 Compared to Latent Class Pattern 2 2 RACE Category > 1 0.000 0.000 999.000 P Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 U Category > 1 1.000 0.000 999.000 C Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 Latent Class Pattern 1 2 Compared to Latent Class Pattern 2 3 RACE Category > 1 0.000 0.000 999.000 P Category > 1 0.905 0.363 2.492 Category > 2 0.747 0.657 1.138 A Category > 1 0.862 0.241 3.573 U Category > 1 33.199 31.118 1.067 C Category > 1 13.097 7.172 1.826 Category > 2 66.848 488.469 0.137 Latent Class Pattern 1 3 Compared to Latent Class Pattern 2 1 RACE Category > 1 0.000 0.000 999.000 P Category > 1 0.021 0.020 1.020 Category > 2 0.032 0.018 1.799 A Category > 1 0.000 0.000 999.000 U Category > 1 0.203 0.297 0.685 C Category > 1 0.114 0.087 1.308 Category > 2 0.012 0.090 0.132 Latent Class Pattern 1 3 Compared to Latent Class Pattern 2 2 RACE Category > 1 0.000 0.000 999.000 P Category > 1 1.105 0.443 2.492 Category > 2 1.339 1.177 1.138 A Category > 1 1.161 0.325 3.573 U Category > 1 0.030 0.028 1.067 C Category > 1 0.076 0.042 1.826 Category > 2 0.015 0.109 0.137 Latent Class Pattern 1 3 Compared to Latent Class Pattern 2 3 RACE Category > 1 0.000 0.000 999.000 P Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 A Category > 1 1.000 0.000 999.000 U Category > 1 1.000 0.000 999.000 C Category > 1 1.000 0.000 999.000 Category > 2 1.000 0.000 999.000 Latent Class Pattern 2 1 Compared to Latent Class Pattern 2 2 RACE Category > 1 1.000 0.000 999.000 P Category > 1 53.465 55.195 0.969 Category > 2 41.833 29.868 1.401 A Category > 1 ********* 0.000 999.000 U Category > 1 0.148 0.165 0.901 C Category > 1 0.667 0.558 1.197 Category > 2 1.269 0.821 1.546 Latent Class Pattern 2 1 Compared to Latent Class Pattern 2 3 RACE Category > 1 1.000 0.000 999.000 P Category > 1 48.402 47.459 1.020 Category > 2 31.246 17.368 1.799 A Category > 1 ********* 0.000 999.000 U Category > 1 4.923 7.186 0.685 C Category > 1 8.738 6.678 1.308 Category > 2 84.816 644.358 0.132 Latent Class Pattern 2 2 Compared to Latent Class Pattern 2 3 RACE Category > 1 1.000 0.000 999.000 P Category > 1 0.905 0.363 2.492 Category > 2 0.747 0.657 1.138 A Category > 1 0.862 0.241 3.573 U Category > 1 33.199 31.118 1.067 C Category > 1 13.097 7.172 1.826 Category > 2 66.848 488.469 0.137 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.972E-04 (ratio of smallest to largest eigenvalue)
Page 73
Unrestricted, heterogeneous T-class model
Partial homogeneity models
Restricted, complete homogeneity model