Mplus Textbook Examples
Applied Latent Class Analysis
Chapter 1 Latent Class Analysis by Leo A. Goodman
Table 2 on page 11 using data set https://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat.
Model H0:
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are s m freq; weight is freq (freq); categorical are s m; Missing are all (-9999) ; classes = cl(1); Analysis: Type = mixture; model: %overall%
TESTS OF MODEL FIT
Loglikelihood
H0 Value -5190.578
Information Criteria
Number of Free Parameters 8 Akaike (AIC) 10397.157 Bayesian (BIC) 10440.473 Sample-Size Adjusted BIC 10415.059 (n* = (n + 2) / 24)
Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes
Pearson Chi-Square
Value 45.985 Degrees of Freedom 15 P-Value 0.0001
Likelihood Ratio Chi-Square
Value 47.418 Degrees of Freedom 15 P-Value 0.0000
Model H1: We have to specify two of the parameters in order for the model to be identifiable. It does not matter which of the two parameters to be fixed. Please see the discussion for detail on page 32.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat; Variable: Names are s m freq; usevariables are s m freq; weight is freq (freq); categorical are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; model: %overall% [s$1-s$5*]; [m$2 m$3*]; [m$1@-15]; %cl#1% [s$1-s$5*]; [m$1-m$2*]; [m$3@15];
TESTS OF MODEL FIT Loglikelihood H0 Value -5168.243 Information Criteria Number of Free Parameters 15 Akaike (AIC) 10366.485 Bayesian (BIC) 10447.704 Sample-Size Adjusted BIC 10400.051 (n* = (n + 2) / 24) Entropy 0.450 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 2.743 Degrees of Freedom 8 P-Value 0.9494 Likelihood Ratio Chi-Square Value 2.746 Degrees of Freedom 8 P-Value 0.9493
Table 3 on page 13, the observed and estimated frequencies under H0 and H1 model. To display the frequencies, we request TECH10 in the output.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are s m freq; weight is freq (freq); categorical are s m; Missing are all (-9999) ; classes = cl(1); Analysis: Type = mixture; model: %overall% output tech10;
RESPONSE PATTERN FREQUENCIES AND CHI-SQUARE CONTRIBUTIONS Response Frequency Standard Chi-square Contribution Pattern Observed Estimated Residual Pearson Loglikelihood Deleted 1 64.00 48.45 2.27 4.99 35.62 2 57.00 45.31 1.76 3.02 26.17 3 57.00 53.08 0.55 0.29 8.13 4 72.00 71.02 0.12 0.01 1.98 5 36.00 49.01 1.89 3.45 -22.21 6 21.00 40.13 3.06 9.12 -27.20 7 94.00 95.01 0.11 0.01 -2.02 8 94.00 88.85 0.56 0.30 10.59 9 105.00 104.08 0.09 0.01 1.85 10 141.00 139.26 0.15 0.02 3.51 11 97.00 96.10 0.09 0.01 1.80 12 71.00 78.70 0.89 0.75 -14.61 13 58.00 57.13 0.12 0.01 1.74 14 54.00 53.43 0.08 0.01 1.15 15 65.00 62.59 0.31 0.09 4.92 16 77.00 83.74 0.76 0.54 -12.92 17 54.00 57.79 0.51 0.25 -7.32 18 54.00 47.32 0.98 0.94 14.26 19 46.00 61.40 2.00 3.86 -26.56 20 40.00 57.41 2.34 5.28 -28.91 21 60.00 67.25 0.90 0.78 -13.70 22 94.00 89.99 0.44 0.18 8.21 23 78.00 62.10 2.06 4.07 35.56 24 71.00 50.85 2.87 7.98 47.40
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat; Variable: Names are s m freq; usevariables are s m freq; weight is freq (freq); categorical are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; model: %overall% [s$1-s$5*]; [m$2 m$3*]; [m$1@-15]; %cl#1% [s$1-s$5*]; [m$1-m$2*]; [m$3@15]; output: tech10;
RESPONSE PATTERN FREQUENCIES AND CHI-SQUARE CONTRIBUTIONS Response Frequency Standard Chi-square Contribution Pattern Observed Estimated Residual Pearson Loglikelihood Deleted 1 64.00 62.22 0.23 0.05 3.61 2 57.00 59.21 0.29 0.08 -4.33 3 57.00 58.21 0.16 0.03 -2.40 4 72.00 70.03 0.24 0.06 4.00 5 36.00 36.08 0.01 0.00 -0.15 6 21.00 21.26 0.06 0.00 -0.52 7 94.00 98.18 0.43 0.18 -8.17 8 94.00 92.04 0.21 0.04 3.96 9 105.00 105.26 0.03 0.00 -0.52 10 141.00 139.03 0.17 0.03 3.97 11 97.00 93.13 0.41 0.16 7.89 12 71.00 74.36 0.40 0.15 -6.57 13 58.00 56.26 0.24 0.05 3.53 14 54.00 52.55 0.20 0.04 2.95 15 65.00 62.26 0.35 0.12 5.60 16 77.00 83.80 0.76 0.55 -13.04 17 54.00 58.61 0.61 0.36 -8.85 18 54.00 48.52 0.80 0.62 11.56 19 46.00 45.34 0.10 0.01 1.32 20 40.00 41.21 0.19 0.04 -2.38 21 60.00 61.27 0.17 0.03 -2.51 22 94.00 91.14 0.31 0.09 5.81 23 78.00 77.18 0.10 0.01 1.65 24 71.00 72.86 0.22 0.05 -3.67
Table 5a on page 15 using data https://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat from table 4 on page 14.
Model M0: Null model
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(1); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall%
TESTS OF MODEL FIT Loglikelihood H0 Value -543.650 Information Criteria Number of Free Parameters 4 Akaike (AIC) 1095.300 Bayesian (BIC) 1108.801 Sample-Size Adjusted BIC 1096.125 (n* = (n + 2) / 24) Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 104.107 Degrees of Freedom 11 P-Value 0.0000 Likelihood Ratio Chi-Square Value 81.084 Degrees of Freedom 11 P-Value 0.0000
Model M1: Two-class model
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(2); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1-d$1];
TESTS OF MODEL FIT Loglikelihood H0 Value -504.468 Information Criteria Number of Free Parameters 9 Akaike (AIC) 1026.935 Bayesian (BIC) 1057.313 Sample-Size Adjusted BIC 1028.793 (n* = (n + 2) / 24) Entropy 0.719 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 2.720 Degrees of Freedom 6 P-Value 0.8431 Likelihood Ratio Chi-Square Value 2.720 Degrees of Freedom 6 P-Value 0.8431
Model M3: Three-class model. Notice that this model is not identifiable until we provide at least one constraint on it. In this example, we set the threshold for variable c to be 15 for class 2.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; ! starts = 50 2; model: %overall% %cl#2% [c$1@15];
TESTS OF MODEL FIT Loglikelihood H0 Value -503.301 Information Criteria Number of Free Parameters 13 Akaike (AIC) 1032.602 Bayesian (BIC) 1076.481 Sample-Size Adjusted BIC 1035.286 (n* = (n + 2) / 24) Entropy 0.560 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 0.423 Degrees of Freedom 2 P-Value 0.8096 Likelihood Ratio Chi-Square Value 0.387 Degrees of Freedom 2 P-Value 0.8241
Table 5b on page 16, a continuation of Table 5a.
Model M3: Three-class model with constraints defined on page 41.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1 - d$1@-15]; %cl#3% [a$1 - d$1@15];
TESTS OF MODEL FIT Loglikelihood H0 Value -504.248 Information Criteria Number of Free Parameters 6 Akaike (AIC) 1020.497 Bayesian (BIC) 1040.748 Sample-Size Adjusted BIC 1021.735 (n* = (n + 2) / 24) Entropy 0.884 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 2.282 Degrees of Freedom 9 P-Value 0.9862 Likelihood Ratio Chi-Square Value 2.281 Degrees of Freedom 9 P-Value 0.9862
Model M4: Three-class model with constraints defined on page 41 and page 42.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1 - d$1@-15]; %cl#2% [b$1 c$1] (1); %cl#3% [a$1 - d$1@15];
TESTS OF MODEL FIT Loglikelihood H0 Value -504.303 Information Criteria Number of Free Parameters 5 Akaike (AIC) 1018.607 Bayesian (BIC) 1035.483 Sample-Size Adjusted BIC 1019.639 (n* = (n + 2) / 24) Entropy 0.884 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 2.421 Degrees of Freedom 10 P-Value 0.9920 Likelihood Ratio Chi-Square Value 2.391 Degrees of Freedom 10 P-Value 0.9924
Model M5: Three-class model with constraints defined on page 42.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1 - d$1@-15]; %cl#2% [a$1] (p1); [b$1 c$1] (2); [d$1] (p2); %cl#3% [a$1 - d$1@15]; model constraint: p1 = -p2;
TESTS OF MODEL FIT Loglikelihood H0 Value -504.469 Information Criteria Number of Free Parameters 4 Akaike (AIC) 1016.937 Bayesian (BIC) 1030.438 Sample-Size Adjusted BIC 1017.763 (n* = (n + 2) / 24) Entropy 0.880 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 2.846 Degrees of Freedom 11 P-Value 0.9926 Likelihood Ratio Chi-Square Value 2.722 Degrees of Freedom 11 P-Value 0.9939
Table 6 on page 18 based on model M1.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(2); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1-d$1];
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 155.68279 0.72075 2 60.31721 0.27925
RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.714 0.042 17.045 Category 2 0.286 0.042 6.841 B Category 1 0.330 0.051 6.461 Category 2 0.670 0.051 13.140 C Category 1 0.354 0.049 7.220 Category 2 0.646 0.049 13.175 D Category 1 0.132 0.039 3.406 Category 2 0.868 0.039 22.325 Latent Class 2 A Category 1 0.993 0.025 39.267 Category 2 0.007 0.025 0.269 B Category 1 0.940 0.067 13.985 Category 2 0.060 0.067 0.896 C Category 1 0.927 0.068 13.716 Category 2 0.073 0.068 1.088 D Category 1 0.769 0.098 7.833 Category 2 0.231 0.098 2.351
Table 7 based on model M3.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1 - d$1@-15]; %cl#3% [a$1 - d$1@15];
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 10.77942 0.04990 2 167.49620 0.77545 3 37.72438 0.17465
RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 B Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 C Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 D Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 2 A Category 1 0.796 0.037 21.616 Category 2 0.204 0.037 5.550 B Category 1 0.420 0.041 10.178 Category 2 0.580 0.041 14.081 C Category 1 0.437 0.041 10.712 Category 2 0.563 0.041 13.774 D Category 1 0.175 0.032 5.431 Category 2 0.825 0.032 25.641 Latent Class 3 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 B Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 C Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 D Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000
Table 8 on page 21 based on model M5.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [a$1 - d$1@-15]; %cl#2% [a$1] (p1); [b$1 c$1] (2); [d$1] (p2); %cl#3% [a$1 - d$1@15]; model constraint: p1 = -p2;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 11.77754 0.05453 2 167.01151 0.77320 3 37.21095 0.17227
RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 B Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 C Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 D Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 Latent Class 2 A Category 1 0.811 0.022 36.549 Category 2 0.189 0.022 8.498 B Category 1 0.433 0.030 14.406 Category 2 0.567 0.030 18.876 C Category 1 0.433 0.030 14.406 Category 2 0.567 0.030 18.876 D Category 1 0.189 0.022 8.498 Category 2 0.811 0.022 36.549 Latent Class 3 A Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 B Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 C Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 D Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000
Table A1. on page 33 using data set https://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat.
Model H1′: with constraints defined on page 32.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat; Variable: Names are s m freq; usevariables are s m freq; weight is freq (freq); categorical are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; model: %overall% [s$1-s$5*]; [m$1-m$3*]; %cl#1% [s$1] (p1); [s$2] (p2); [s$3] (p3); [s$4] (p4); [s$5] (p5); [m$1] (q1); [m$2] (q2); [m$3] (q3); model constraint: p1 + p2 + p3 + p4 + p5 = 15; q1 + q2 + q3 = 15;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 501.44281 0.30207 2 1158.55719 0.69793
RESULTS IN PROBABILITY SCALE Latent Class 1 S Category 1 0.253 0.036 7.011 Category 2 0.244 0.035 6.999 Category 3 0.208 0.034 6.196 Category 4 0.224 0.037 6.046 Category 5 0.070 0.038 1.831 Category 6 0.000 0.000 0.000 M Category 1 0.386 0.048 8.049 Category 2 0.409 0.050 8.188 Category 3 0.205 0.045 4.552 Category 4 0.000 0.000 0.000 Latent Class 2 S Category 1 0.117 0.015 7.816 Category 2 0.106 0.015 6.979 Category 3 0.158 0.017 9.424 Category 4 0.234 0.019 12.622 Category 5 0.198 0.018 11.314 Category 6 0.187 0.017 10.757 M Category 1 0.098 0.020 4.946 Category 2 0.343 0.026 13.189 Category 3 0.224 0.022 10.340 Category 4 0.336 0.027 12.311
Model H1”: with constraints defined on page 32. In Mplus 3, the CATEGORICAL option in the Variable statement is used to refer a binary or an ordered categorical variable. With ordered categorical variable, the thresholds should be in increasing order. The constraint on the second category of variable socioeconomic status does not follow this rule. One way to get around of this is to recode this variable. This is done using DEFINE statement shown in the first approach. The other way is to declare variable s as nominal variable and request TECH7 for displaying the distribution information. This is shown as the second approach.
Approach #1:
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are m freq s2; weight is freq (freq); categorical are s2 m; Missing are all (-9999) ; classes = cl(2); define: s2 = s; if (s == 2) then s2 = 1; if (s == 1) then s2 = 2; Analysis: Type = mixture; model: %overall% [s2$1-s2$5*]; [m$1-m$3*]; %cl#2% [s2$1@-15] ; [m$1@-15] ;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 1270.38005 0.76529 2 389.61995 0.23471
RESULTS IN PROBABILITY SCALE Latent Class 1 M Category 1 0.242 0.021 11.416 Category 2 0.376 0.019 19.564 Category 3 0.214 0.016 13.576 Category 4 0.168 0.023 7.257 S2 Category 1 0.193 0.018 10.821 Category 2 0.203 0.019 10.630 Category 3 0.190 0.018 10.533 Category 4 0.228 0.020 11.674 Category 5 0.118 0.017 7.029 Category 6 0.069 0.014 4.872 Latent Class 2 M Category 1 0.000 0.000 0.000 Category 2 0.320 0.052 6.217 Category 3 0.230 0.041 5.616 Category 4 0.450 0.051 8.843 S2 Category 1 0.000 0.000 0.000 Category 2 0.012 0.069 0.169 Category 3 0.118 0.055 2.146 Category 4 0.242 0.055 4.423 Category 5 0.297 0.058 5.103 Category 6 0.331 0.069 4.772
Approach #2:
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are s m freq ; weight is freq (freq); nominal are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; model: %overall% [s#1-s#5*]; [m#1-m#3*]; %cl#2% [s#2@-15] ; [m#1@-15] ; output: tech7;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL Latent Classes 1 1270.38085 0.76529 2 389.61915 0.23471
TECHNICAL 7 OUTPUT UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 1 Variable S Category 1 0.203 Category 2 0.193 Category 3 0.190 Category 4 0.228 Category 5 0.118 Category 6 0.069 M Category 1 0.242 Category 2 0.376 Category 3 0.214 Category 4 0.168 UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 2 Variable S Category 1 0.012 Category 2 0.000 Category 3 0.118 Category 4 0.242 Category 5 0.297 Category 6 0.331 M Category 1 0.000 Category 2 0.320 Category 3 0.230 Category 4 0.450
Table A2 on page 34 using data set https://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat.
Model H1”’: With constraints defined on page 35.
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are s m freq ; weight is freq (freq); nominal are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; starts = 50 4; model: %overall% [s#1-s#5*]; [m#1-m#3*]; %cl#1% [s#1] (p1); [s#2] (p2); [s#3] (p3); [s#4] (p4); [s#5] (p5); %cl#2% [s#2@-15]; model constraint: p1 + p2 + p3 + p4 + p5= 15; output: tech7;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 1004.71928 0.60525 2 655.28072 0.39475
TECHNICAL 7 OUTPUT UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 1 Variable S Category 1 0.253 Category 2 0.244 Category 3 0.208 Category 4 0.224 Category 5 0.070 Category 6 0.000 M Category 1 0.242 Category 2 0.376 Category 3 0.214 Category 4 0.168 UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 2 Variable S Category 1 0.012 Category 2 0.000 Category 3 0.118 Category 4 0.242 Category 5 0.297 Category 6 0.331 M Category 1 0.098 Category 2 0.343 Category 3 0.224 Category 4 0.336
Model H1””: With constraints defined on page 35
Data: File is c:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat ; Variable: Names are s m freq; usevariables are s m freq ; weight is freq (freq); nominal are s m; Missing are all (-9999) ; classes = cl(2); Analysis: Type = mixture; starts = 50 4; model: %overall% [s#1-s#5*]; [m#1-m#3*]; %cl#1% [m#1] (p1); [m#2] (p2); [m#3] (p3); %cl#2% [m#1@-15]; model constraint: p1 + p2 + p3 = 15; output: tech7;
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 795.59896 0.47928 2 864.40104 0.52072
TECHNICAL 7 OUTPUT UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 1 Variable S Category 1 0.203 Category 2 0.193 Category 3 0.190 Category 4 0.228 Category 5 0.118 Category 6 0.069 M Category 1 0.386 Category 2 0.409 Category 3 0.205 Category 4 0.000 UNIVARIATE SAMPLE DISTRIBUTIONS FOR CLASS 2 Variable S Category 1 0.117 Category 2 0.106 Category 3 0.158 Category 4 0.234 Category 5 0.198 Category 6 0.187 M Category 1 0.000 Category 2 0.320 Category 3 0.230 Category 4 0.450
Table A3 on page 37 using data set https://stats.idre.ucla.edu/wp-content/uploads/2016/02/page11.dat. Mplus 3 does not provide the type of calculation that is involved in creating this table. The detailed calculation is explained on page 38. We will do it in Stata instead using the results from Model H1′. The second part of the Table A3 using Model H1”’ can be produced in a similar way and we omit it here.
clear input str2 category prob_y s1 0.158 s2 0.148 s3 0.173 s4 0.231 s5 0.160 s6 0.131 m1 0.185 m2 0.363 m3 0.218 m4 0.234 end gen id = _n sort id save prob_y, replace clear input str2 category prob_y_cond_x1 s1 0.253 s2 0.244 s3 0.208 s4 0.224 s5 0.070 s6 0.000 m1 0.386 m2 0.409 m3 0.205 m4 0.000 end gen id=_n sort id merge id using prob_y gen favorably = prob_y_cond_x1*.30207/prob_y gen not_favorably=1-favorably list category favorably not_favorably
+--------------------------------+ | category favora~y not_fa~y | |--------------------------------| 1. | s1 .4836943 .5163057 | 2. | s2 .4980073 .5019927 | 3. | s3 .3631825 .6368176 | 4. | s4 .2929164 .7070836 | 5. | s5 .1321556 .8678443 | |--------------------------------| 6. | s6 0 1 | 7. | m1 .630265 .369735 | 8. | m2 .3403488 .6596512 | 9. | m3 .2840567 .7159433 | 10. | m4 0 1 | +--------------------------------+
Table A4 on page 42.
Model M2′:
Data: File is c:alcapage14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#3% [b$1@-15];
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 145.09603 0.67174 2 47.47451 0.21979 3 23.42947 0.10847
RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.806 0.074 10.908 Category 2 0.194 0.074 2.621 B Category 1 0.428 0.260 1.643 Category 2 0.572 0.260 2.199 C Category 1 0.407 0.146 2.782 Category 2 0.593 0.146 4.055 D Category 1 0.170 0.115 1.482 Category 2 0.830 0.115 7.236 Latent Class 2 A Category 1 0.995 0.038 26.397 Category 2 0.005 0.038 0.121 B Category 1 0.968 0.098 9.908 Category 2 0.032 0.098 0.327 C Category 1 0.976 0.119 8.167 Category 2 0.024 0.119 0.203 D Category 1 0.863 0.222 3.891 Category 2 0.137 0.222 0.616 Latent Class 3 A Category 1 0.288 1.296 0.222 Category 2 0.712 1.296 0.549 B Category 1 0.000 0.000 0.000 Category 2 1.000 0.000 0.000 C Category 1 0.241 0.239 1.009 Category 2 0.759 0.239 3.183 D Category 1 0.057 0.179 0.320 Category 2 0.943 0.179 5.254
Model M2”:
Data: File is c:alcapage14.dat ; Variable: Names are a b c d freq; usevariables are a b c d freq; weight is freq (freq); categorical are a b c d; classes = cl(3); Missing are all (-9999) ; Analysis: Type = mixture ; model: %overall% %cl#1% [c$1@15]; %cl#2% [b$1@0];
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES Latent Classes 1 41.63539 0.19276 2 124.96989 0.57856 3 49.39472 0.22868
RESULTS IN PROBABILITY SCALE Latent Class 1 A Category 1 0.998 0.036 27.506 Category 2 0.002 0.036 0.059 B Category 1 0.980 0.095 10.327 Category 2 0.020 0.095 0.216 C Category 1 1.000 0.000 0.000 Category 2 0.000 0.000 0.000 D Category 1 0.913 0.193 4.741 Category 2 0.087 0.193 0.450 Latent Class 2 A Category 1 0.845 0.119 7.102 Category 2 0.155 0.119 1.304 B Category 1 0.500 0.000 0.000 Category 2 0.500 0.000 0.000 C Category 1 0.449 0.114 3.945 Category 2 0.551 0.114 4.851 D Category 1 0.202 0.081 2.496 Category 2 0.798 0.081 9.858 Latent Class 3 A Category 1 0.483 0.173 2.794 Category 2 0.517 0.173 2.989 B Category 1 0.096 0.300 0.319 Category 2 0.904 0.300 3.011 C Category 1 0.269 0.183 1.475 Category 2 0.731 0.183 4.000 D Category 1 0.075 0.110 0.684 Category 2 0.925 0.110 8.376