Mplus Textbook Examples
Applied Latent Class Analysis
Chapter 11 Latent Markov Chains by Rolf Langeheine and Frank van de Pol
The data set can be downloaded following the link here.
Expected frequencies of Table 1 on page 310 based on the simple Markov model with time homogeneous transition probabilities.
data: file is chap11_dat.txt ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall% cb#1 on ca#1 (1); cc#1 on cb#1 (1); cd#1 on cc#1 (1); ce#1 on cd#1 (1);
[ca#1]; [cb#1 cc#1 cd#1 ce#1] (2);
model ca: %ca#1% [a$1@15]; %ca#2% [a$1@-15]; !for variable a; model cb: %cb#1% [b$1@15]; %cb#2% [b$1@-15]; !for variable b; model cc: %cc#1% [c$1@15]; %cc#2% [c$1@-15]; !for variable c; model cd: %cd#1% [d$1@15]; %cd#2% [d$1@-15]; !for variable d; model ce: %ce#1% [e$1@15]; %ce#2% [e$1@-15]; !for variable e; output: tech10;
RESPONSE PATTERN FREQUENCIES AND CHI-SQUARE CONTRIBUTIONS
Response Frequency Standard Chi-square Contribution Pattern Observed Estimated Residual Pearson Loglikelihood Deleted 1 891.00 553.84 15.17 205.25 847.29 2 237.00 288.85 3.14 9.31 -93.79 3 120.00 92.85 2.84 7.94 61.56 4 136.00 293.64 9.47 84.63 -209.36 5 111.00 92.85 1.90 3.55 39.64 6 80.00 48.43 4.56 20.59 80.32 7 54.00 94.39 4.20 17.28 -60.31 8 99.00 298.50 11.90 133.34 -218.53 9 119.00 92.85 2.74 7.37 59.06 10 68.00 48.43 2.83 7.91 46.17 11 51.00 15.57 8.99 80.66 121.05 12 64.00 49.23 2.12 4.43 33.59 13 52.00 94.39 4.40 19.04 -62.00 14 51.00 49.23 0.25 0.06 3.61 15 49.00 95.95 4.84 22.97 -65.86 16 172.00 303.45 7.78 56.94 -195.30 17 176.00 231.40 3.73 13.26 -96.33 18 107.00 120.69 1.26 1.55 -25.76 19 64.00 38.79 4.06 16.38 64.08 20 95.00 122.69 2.53 6.25 -48.59 21 60.00 38.79 3.42 11.59 52.33 22 75.00 20.23 12.20 148.25 196.53 23 50.00 39.44 1.69 2.83 23.73 24 165.00 124.72 3.65 13.01 92.36 25 106.00 235.23 8.63 71.00 -168.99 26 107.00 122.69 1.43 2.01 -29.28 27 67.00 39.44 4.41 19.27 71.02 28 187.00 124.72 5.65 31.10 151.49 29 92.00 239.13 9.74 90.53 -175.76 30 200.00 124.72 6.82 45.44 188.90 31 176.00 243.09 4.41 18.52 -113.68 32 1066.00 768.79 11.62 114.90 696.84
Table 2 based on the simple Markov chain model with time heterogeneous transition probabilities.
data: file is d:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/chap11.dat ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall% cb#1 on ca#1 ; cc#1 on cb#1 ; cd#1 on cc#1 ; ce#1 on cd#1 ; [ca#1 cb#1 cc#1 cd#1 ce#1] ; model ca: %ca#1% [a$1@15]; %ca#2% [a$1@-15]; !for variable a; model cb: %cb#1% [b$1@15]; %cb#2% [b$1@-15]; !for variable b; model cc: %cc#1% [c$1@15]; %cc#2% [c$1@-15]; !for variable c; model cd: %cd#1% [d$1@15]; %cd#2% [d$1@-15]; !for variable d; model ce: %ce#1% [e$1@15]; %ce#2% [e$1@-15]; !for variable e;
FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON THE ESTIMATED MODEL Latent Class Variable Class CA 1 2237.99976 0.43482 2 2909.00024 0.56518 CB 1 2531.99976 0.49194 2 2615.00000 0.50806 CC 1 2594.99976 0.50418 2 2552.00000 0.49582 CD 1 2520.00000 0.48961 2 2627.00000 0.51039 CE 1 2353.99976 0.45735 2 2793.00000 0.54265
LATENT TRANSITION PROBABILITIES BASED ON THE ESTIMATED MODEL CA Classes (Rows) by CB Classes (Columns) 1 2 1 0.718 0.282 2 0.318 0.682 CB Classes (Rows) by CC Classes (Columns) 1 2 1 0.715 0.285 2 0.300 0.700 CC Classes (Rows) by CD Classes (Columns) 1 2 1 0.704 0.296 2 0.272 0.728 CD Classes (Rows) by CE Classes (Columns) 1 2 1 0.686 0.314 2 0.238 0.762
Table 3 on page 315.
Model 1a (M): Simple Markov model with time homogeneous transition probabilities
data: file is d:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/chap11.dat ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall% cb#1 on ca#1 (1); cc#1 on cb#1 (1); cd#1 on cc#1 (1); ce#1 on cd#1 (1); [ca#1]; [cb#1 cc#1 cd#1 ce#1] (2); model ca: %ca#1% [a$1@15]; %ca#2% [a$1@-15]; !for variable a; model cb: %cb#1% [b$1@15]; %cb#2% [b$1@-15]; !for variable b; model cc: %cc#1% [c$1@15]; %cc#2% [c$1@-15]; !for variable c; model cd: %cd#1% [d$1@15]; %cd#2% [d$1@-15]; !for variable d; model ce: %ce#1% [e$1@15]; %ce#2% [e$1@-15]; !for variable e;
TESTS OF MODEL FIT Loglikelihood H0 Value -15893.523 Information Criteria Number of Free Parameters 3 Akaike (AIC) 31793.046 Bayesian (BIC) 31812.685 Sample-Size Adjusted BIC 31803.152 (n* = (n + 2) / 24) Entropy 1.000 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 1287.146 Degrees of Freedom 28 P-Value 0.0000 Likelihood Ratio Chi-Square Value 1266.023 Degrees of Freedom 28 P-Value 0.0000
Model 1b (M): Simple Markov model with time heterogeneous transition probabilities
data: file is d:alcahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/chap11.dat ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall% cb#1 on ca#1 ; cc#1 on cb#1 ; cd#1 on cc#1 ; ce#1 on cd#1 ; ! [ca#1 cb#1 cc#1 cd#1 ce#1] ; model ca: %ca#1% [a$1@15]; %ca#2% [a$1@-15]; !for variable a; model cb: %cb#1% [b$1@15]; %cb#2% [b$1@-15]; !for variable b; model cc: %cc#1% [c$1@15]; %cc#2% [c$1@-15]; !for variable c; model cd: %cd#1% [d$1@15]; %cd#2% [d$1@-15]; !for variable d; model ce: %ce#1% [e$1@15]; %ce#2% [e$1@-15]; !for variable e; TESTS OF MODEL FIT Loglikelihood H0 Value -15865.184 Information Criteria Number of Free Parameters 9 Akaike (AIC) 31748.367 Bayesian (BIC) 31807.283 Sample-Size Adjusted BIC 31778.684 (n* = (n + 2) / 24) Entropy 1.000 Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes Pearson Chi-Square Value 1239.474 Degrees of Freedom 22 P-Value 0.0000 Likelihood Ratio Chi-Square Value 1209.345 Degrees of Freedom 22 P-Value 0.0000
Model 3a (MS): MS Mover-Stayer with time homogenous transition probabilities.
Model 7a (LM): Latent Markov with time homogeneous transition probabilities.
data: file is chap11_dat.txt ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall%
cb#1 on ca#1 (1); cc#1 on cb#1 (1); cd#1 on cc#1 (1); ce#1 on cd#1 (1);
[cb#1 cc#1 cd#1 ce#1] (2);
model ca: %ca#1% [a$1] (3); %ca#2% [a$1] (4); !for variable a; model cb: %cb#1% [b$1] (3); %cb#2% [b$1] (4); !for variable b; model cc: %cc#1% [c$1] (3); %cc#2% [c$1] (4); !for variable c; model cd: %cd#1% [d$1] (3); %cd#2% [d$1] (4); !for variable d; model ce: %ce#1% [e$1] (3); %ce#2% [e$1] (4); !for variable e; output: tech10;
TESTS OF MODEL FIT
Loglikelihood
H0 Value -15378.476
Information Criteria
Number of Free Parameters 5 Akaike (AIC) 30766.952 Bayesian (BIC) 30799.683 Sample-Size Adjusted BIC 30783.795 (n* = (n + 2) / 24) Entropy 0.777
Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes
Pearson Chi-Square
Value 243.841 Degrees of Freedom 26 P-Value 0.0000
Likelihood Ratio Chi-Square
Value 235.928 Degrees of Freedom 26 P-Value 0.0000
Model 7b (LM): Latent Markov with time heterogeneous transition probabilities.
data: file is chap11_dat.txt ; variable: names are a b c d e count group; missing are all (-9999) ; usevariables are a b c d e count; weight is count (freq); categorical are a b c d e; classes = ca(2) cb(2) cc(2) cd(2) ce(2); analysis: type = mixture; model: %overall%
cb#1 on ca#1 ; cc#1 on cb#1 ; cd#1 on cc#1 ; ce#1 on cd#1 ;
[cb#1 cc#1 cd#1 ce#1] ;
model ca: %ca#1% [a$1] (3); %ca#2% [a$1] (4); !for variable a; model cb: %cb#1% [b$1] (3); %cb#2% [b$1] (4); !for variable b; model cc: %cc#1% [c$1] (3); %cc#2% [c$1] (4); !for variable c; model cd: %cd#1% [d$1] (3); %cd#2% [d$1] (4); !for variable d; model ce: %ce#1% [e$1] (3); %ce#2% [e$1] (4); !for variable e; output: tech10;
TESTS OF MODEL FIT
Loglikelihood
H0 Value -15325.635
Information Criteria
Number of Free Parameters 11 Akaike (AIC) 30673.271 Bayesian (BIC) 30745.279 Sample-Size Adjusted BIC 30710.324 (n* = (n + 2) / 24) Entropy 0.802
Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes
Pearson Chi-Square
Value 131.025 Degrees of Freedom 20 P-Value 0.0000
Likelihood Ratio Chi-Square
Value 130.246 Degrees of Freedom 20 P-Value 0.0000