Table 4.1 on pages 94-95.
Model A.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse; cluster is id; Analysis: type = random twolevel; model: %within% alcuse;
Loglikelihood H0 Value -335.078 H0 Scaling Correction Factor 1.167 for MLR H1 Value -335.078 H1 Scaling Correction Factor 1.167 for MLR Information Criteria Number of Free Parameters 3 Akaike (AIC) 676.156 Bayesian (BIC) 686.672 Sample-Size Adjusted BIC 677.162 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 SRMR (Standardized Root Mean Square Residual) Value for Within 0.000 Value for Between 0.000 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Variances ALCUSE 0.562 0.083 6.787 0.000 Between Level Means ALCUSE 0.922 0.096 9.633 0.000 Variances ALCUSE 0.564 0.106 5.315 0.000
Model B.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14; within is age_14; cluster is id; Analysis: type = random twolevel; model: %within% s| alcuse on age_14; %between% s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -318.306 H0 Scaling Correction Factor 1.119 for MLR Information Criteria Number of Free Parameters 6 Akaike (AIC) 648.611 Bayesian (BIC) 669.643 Sample-Size Adjusted BIC 650.623 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Residual Variances ALCUSE 0.337 0.066 5.106 0.000 Between Level S WITH ALCUSE -0.069 0.074 -0.921 0.357 Means ALCUSE 0.651 0.105 6.198 0.000 S 0.271 0.062 4.334 0.000 Variances ALCUSE 0.625 0.162 3.861 0.000 S 0.151 0.056 2.722 0.006
Model C.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 coa coaxage; within is age_14 coaxage; between is coa; cluster is id; define: coaxage = coa*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on coaxage; %between% alcuse on coa; s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -310.601 Information Criteria Number of Free Parameters 8 Akaike (AIC) 637.203 Bayesian (BIC) 665.245 Sample-Size Adjusted BIC 639.886 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level ALCUSE ON COAXAGE -0.050 0.125 -0.398 0.690 Residual Variances ALCUSE 0.337 0.053 6.403 0.000 Between Level ALCUSE ON COA 0.744 0.195 3.822 0.000 S WITH ALCUSE -0.059 0.066 -0.903 0.366 Means S 0.293 0.084 3.482 0.000 Intercepts ALCUSE 0.316 0.131 2.416 0.016 Variances S 0.151 0.056 2.671 0.008 Residual Variances ALCUSE 0.488 0.128 3.815 0.000
Model D.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 coa peer coaxage pbyage; within is age_14 coaxage pbyage; between is coa peer; cluster is id; define: coaxage = coa*age_14; pbyage = peer*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on coaxage pbyage; %between% alcuse on coa peer; s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -294.345 Information Criteria Number of Free Parameters 10 Akaike (AIC) 608.691 Bayesian (BIC) 643.744 Sample-Size Adjusted BIC 612.044 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level ALCUSE ON COAXAGE -0.014 0.125 -0.112 0.911 PBYAGE -0.150 0.086 -1.749 0.080 Residual Variances ALCUSE 0.337 0.053 6.403 0.000 Between Level ALCUSE ON COA 0.579 0.162 3.564 0.000 PEER 0.694 0.112 6.225 0.000 S WITH ALCUSE -0.006 0.055 -0.111 0.911 Means S 0.429 0.114 3.777 0.000 Intercepts ALCUSE -0.317 0.148 -2.138 0.033 Variances S 0.139 0.055 2.538 0.011 Residual Variances ALCUSE 0.241 0.093 2.602 0.009
Model E.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 coa peer pbyage; within is age_14 pbyage; between is coa peer; cluster is id; define: pbyage = peer*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on pbyage; %between% alcuse on coa peer; s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -294.352 Information Criteria Number of Free Parameters 9 Akaike (AIC) 606.703 Bayesian (BIC) 638.251 Sample-Size Adjusted BIC 609.722 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level ALCUSE ON PBYAGE -0.151 0.085 -1.791 0.073 Residual Variances ALCUSE 0.337 0.053 6.403 0.000 Between Level ALCUSE ON COA 0.571 0.146 3.906 0.000 PEER 0.695 0.111 6.248 0.000 S WITH ALCUSE -0.006 0.055 -0.111 0.911 Means S 0.425 0.106 4.022 0.000 Intercepts ALCUSE -0.314 0.146 -2.148 0.032 Variances S 0.139 0.055 2.539 0.011 Residual Variances ALCUSE 0.241 0.093 2.602 0.009
Model F.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 coa cpeer cpbyage; within is age_14 cpbyage; between is coa cpeer; cluster is id; define: cpbyage = cpeer*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on cpbyage; %between% alcuse on coa cpeer; s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -294.352 Information Criteria Number of Free Parameters 9 Akaike (AIC) 606.703 Bayesian (BIC) 638.251 Sample-Size Adjusted BIC 609.722 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level ALCUSE ON CPBYAGE -0.151 0.085 -1.792 0.073 Residual Variances ALCUSE 0.337 0.053 6.401 0.000 Between Level ALCUSE ON COA 0.571 0.146 3.906 0.000 CPEER 0.695 0.111 6.249 0.000 S WITH ALCUSE -0.006 0.055 -0.109 0.913 Means S 0.271 0.061 4.417 0.000 Intercepts ALCUSE 0.394 0.104 3.804 0.000 Variances S 0.139 0.055 2.537 0.011 Residual Variances ALCUSE 0.241 0.093 2.600 0.009
Model G.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 ccoa cpeer cpbyage; within is age_14 cpbyage; between is ccoa cpeer; cluster is id; define: cpbyage = cpeer*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on cpbyage; %between% alcuse on ccoa cpeer; s alcuse; s with alcuse;
TESTS OF MODEL FIT Loglikelihood H0 Value -294.352 Information Criteria Number of Free Parameters 9 Akaike (AIC) 606.703 Bayesian (BIC) 638.251 Sample-Size Adjusted BIC 609.722 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level ALCUSE ON CPBYAGE -0.151 0.085 -1.792 0.073 Residual Variances ALCUSE 0.337 0.053 6.401 0.000 Between Level ALCUSE ON CCOA 0.571 0.146 3.906 0.000 CPEER 0.695 0.111 6.249 0.000 S WITH ALCUSE -0.006 0.055 -0.109 0.913 Means S 0.271 0.061 4.417 0.000 Intercepts ALCUSE 0.651 0.080 8.166 0.000 Variances S 0.139 0.055 2.537 0.011 Residual Variances ALCUSE 0.241 0.093 2.600 0.009
Test of equation 4.18 on page 123 using model F.
Data: File is alcohol1_pp.dat ; Variable: Names are id age coa male age_14 alcuse peer cpeer ccoa; Missing are all (-9999) ; usevariables are alcuse age_14 coa cpeer cpbyage; within is age_14 cpbyage; between is coa cpeer; cluster is id; define: cpbyage = cpeer*age_14; Analysis: type = random twolevel; estimator = ml; model: %within% s| alcuse on age_14; alcuse on cpbyage; %between% alcuse on coa cpeer; s alcuse; s with alcuse; [alcuse] (p1); [s] (p2); model test: p1 = 0; p2 = 0;
TESTS OF MODEL FIT Wald Test of Parameter Constraints Value 51.029 Degrees of Freedom 2 P-Value 0.0000
[more output omitted]