Table 5.2, page 145
Table 5.2 uses data file reading.dat. Note the format of this file, that it is in wide form. Here is a display of the first 10 observations.
. list id cage1 cage2 cage3 cagegrp1 cagegrp2 cagegrp3 piat1 piat2 piat3 +-----------------------------------------------------------------------------------------------+ | id cage1 cage2 cage3 cagegrp1 cagegrp2 cagegrp3 piat1 piat2 piat3 | |-----------------------------------------------------------------------------------------------| | 1 -.5 1.833333 3.833333 0 2 4 18 35 59 | | 2 -.5 2 4.083333 0 2 4 18 25 28 | | 3 -.4166665 1.916667 3.916667 0 2 4 18 23 32 | | 4 -.5 2 4.166667 0 2 4 18 31 50 | | 5 -.5 1.666667 3.75 0 2 4 18 33 53 | |-----------------------------------------------------------------------------------------------| | 6 -.5 2 4 0 2 4 18 28 31 | | 7 -.4166665 2 4 0 2 4 17 28 28 | | 8 -.5 1.916667 4.083333 0 2 4 17 29 41 | | 9 -.3333335 2.25 4.333333 0 2 4 28 26 26 | | 10 -.3333335 1.916667 3.916667 0 2 4 16 20 21 | |-----------------------------------------------------------------------------------------------|
Model A: Using AGEGRPi-6.5 as a temporal predictor, called cagegrpi (i.e., cagegrp1 cagegrp2 cagegrp3). These were created before making the data file.
Title: Table 5.2, Model A. Data: File is c:aldareading.dat ; Variable: Names are id agegrp1 agegrp2 agegrp3 age1 age2 age3 piat1 piat2 piat3 cage1 cage2 cage3 cagegrp1 cagegrp2 cagegrp3; Missing are all (-999999999) ; Usevariables are piat1 piat2 piat3 cagegrp1 cagegrp2 cagegrp3; Tscores cagegrp1-cagegrp3 ; Analysis: Type = random ; estimator = ml; Model: i s | piat1-piat3 at cagegrp1-cagegrp3 ; i with s; piat1-piat3 (1) ;
------------------------------------------------------------------------------------------------ TESTS OF MODEL FIT Loglikelihood H0 Value -909.978 Information Criteria Number of Free Parameters 6 Akaike (AIC) 1831.956 Bayesian (BIC) 1846.888 Sample-Size Adjusted BIC 1827.953 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. I WITH S 1.567 2.070 0.757 Means I 21.133 0.617 34.273 S 5.039 0.295 17.065 Intercepts PIAT1 0.000 0.000 0.000 PIAT2 0.000 0.000 0.000 PIAT3 0.000 0.000 0.000 Variances I 11.368 6.115 1.859 S 4.388 1.265 3.470 Residual Variances PIAT1 26.961 4.029 6.691 PIAT2 26.961 4.029 6.691 PIAT3 26.961 4.029 6.691
Note that the residual variances are constrained to be equal. See the Supplemental Analyses for Chapter 5 to see an example where the residual variances a permitted to freely vary.
Model B: Using AGE-6.5 as a temporal predictor, i.e., cage1 cage2 cage3.
Title: Data: File is c:aldareading.dat ; Variable: Names are id agegrp1 agegrp2 agegrp3 age1 age2 age3 piat1 piat2 piat3 cage1 cage2 cage3 cagegrp1 cagegrp2 cagegrp3; Missing are all (-999999999) ; Usevariables are piat1 piat2 piat3 cage1 cage2 cage3; Tscores cage1-cage3 ; Analysis: Type = random; estimator = ml; MODEL: i s | piat1-piat3 at cage1-cage3 ; i with s; piat1-piat3 (1) ;
------------------------------------------------------------------------------------------------ TESTS OF MODEL FIT Loglikelihood H0 Value -901.960 Information Criteria Number of Free Parameters 6 Akaike (AIC) 1815.920 Bayesian (BIC) 1830.851 Sample-Size Adjusted BIC 1811.916 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. I WITH S 2.139 1.814 1.179 Means I 21.033 0.564 37.285 S 4.549 0.262 17.397 Intercepts PIAT1 0.000 0.000 0.000 PIAT2 0.000 0.000 0.000 PIAT3 0.000 0.000 0.000 Variances I 5.910 6.045 0.978 S 3.384 1.019 3.321 Residual Variances PIAT1 27.009 4.232 6.382 PIAT2 27.009 4.232 6.382 PIAT3 27.009 4.232 6.382
Table 5.4, page 149, using the https://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.4.txt data
We thank Hemant Kher for providing the Mplus code for this example.
Model A
Title: Table 5.4, Model A, Person (wide) file Data: File is "C:aldahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.4.txt"; Variable: Names are id exp1-exp13 lnw1-lnw13 black hgc_9; Missing are all (-999) ; Usevariables are exp1-exp13 lnw1-lnw13; Tscores exp1-exp13; Analysis: Type = random; estimator = ml; MODEL: i s | lnw1-lnw13 at exp1-exp13; i with s; lnw1-lnw13 (1) ;
-----------------------------------------------------------------------------
MODEL FIT INFORMATION Number of Free Parameters 6 Loglikelihood H0 Value -2460.697 Information Criteria Akaike (AIC) 4933.394 Bayesian (BIC) 4962.128 Sample-Size Adjusted BIC 4943.073 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value I WITH S -0.003 0.001 -3.354 0.001 Means I 1.716 0.011 158.792 0.000 S 0.046 0.002 19.461 0.000 Intercepts LNW1 0.000 0.000 999.000 999.000 LNW2 0.000 0.000 999.000 999.000 LNW3 0.000 0.000 999.000 999.000 LNW4 0.000 0.000 999.000 999.000 LNW5 0.000 0.000 999.000 999.000 LNW6 0.000 0.000 999.000 999.000 LNW7 0.000 0.000 999.000 999.000 LNW8 0.000 0.000 999.000 999.000 LNW9 0.000 0.000 999.000 999.000 LNW10 0.000 0.000 999.000 999.000 LNW11 0.000 0.000 999.000 999.000 LNW12 0.000 0.000 999.000 999.000 LNW13 0.000 0.000 999.000 999.000 Variances I 0.054 0.005 10.851 0.000 S 0.002 0.000 7.845 0.000 Residual Variances LNW1 0.095 0.002 48.916 0.000 LNW2 0.095 0.002 48.916 0.000 LNW3 0.095 0.002 48.916 0.000 LNW4 0.095 0.002 48.916 0.000 LNW5 0.095 0.002 48.916 0.000 LNW6 0.095 0.002 48.916 0.000 LNW7 0.095 0.002 48.916 0.000 LNW8 0.095 0.002 48.916 0.000 LNW9 0.095 0.002 48.916 0.000 LNW10 0.095 0.002 48.916 0.000 LNW11 0.095 0.002 48.916 0.000 LNW12 0.095 0.002 48.916 0.000 LNW13 0.095 0.002 48.916 0.000
Model B
Title: Table 5.4, Model B, Person (wide) file Data: File is "E:sandwmplushttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.4.txt"; Variable: Names are id exp1-exp13 lnw1-lnw13 black hgc_9; Missing are all (-999) ; Usevariables are exp1-exp13 lnw1-lnw13 black hgc_9; Tscores exp1-exp13; Analysis: Type = random; estimator = ml; MODEL: i s | lnw1-lnw13 at exp1-exp13; i with s; i on black hgc_9; s on black hgc_9; lnw1-lnw13 (1);
-----------------------------------------------------------------------------
MODEL FIT INFORMATION Number of Free Parameters 10 Loglikelihood H0 Value -2436.876 Information Criteria Akaike (AIC) 4893.751 Bayesian (BIC) 4941.641 Sample-Size Adjusted BIC 4909.883 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value I ON BLACK 0.015 0.024 0.643 0.520 HGC_9 0.035 0.008 4.430 0.000 S ON BLACK -0.018 0.005 -3.312 0.001 HGC_9 0.001 0.002 0.742 0.458 I WITH S -0.003 0.001 -3.378 0.001 Intercepts LNW1 0.000 0.000 999.000 999.000 LNW2 0.000 0.000 999.000 999.000 LNW3 0.000 0.000 999.000 999.000 LNW4 0.000 0.000 999.000 999.000 LNW5 0.000 0.000 999.000 999.000 LNW6 0.000 0.000 999.000 999.000 LNW7 0.000 0.000 999.000 999.000 LNW8 0.000 0.000 999.000 999.000 LNW9 0.000 0.000 999.000 999.000 LNW10 0.000 0.000 999.000 999.000 LNW11 0.000 0.000 999.000 999.000 LNW12 0.000 0.000 999.000 999.000 LNW13 0.000 0.000 999.000 999.000 I 1.717 0.013 136.842 0.000 S 0.049 0.003 18.722 0.000 Residual Variances LNW1 0.095 0.002 48.913 0.000 LNW2 0.095 0.002 48.913 0.000 LNW3 0.095 0.002 48.913 0.000 LNW4 0.095 0.002 48.913 0.000 LNW5 0.095 0.002 48.913 0.000 LNW6 0.095 0.002 48.913 0.000 LNW7 0.095 0.002 48.913 0.000 LNW8 0.095 0.002 48.913 0.000 LNW9 0.095 0.002 48.913 0.000 LNW10 0.095 0.002 48.913 0.000 LNW11 0.095 0.002 48.913 0.000 LNW12 0.095 0.002 48.913 0.000 LNW13 0.095 0.002 48.913 0.000 I 0.052 0.005 10.629 0.000 S 0.002 0.000 7.648 0.000
Model C
Title: Table 5.4, Model A, Person (wide) file Data: File is "E:sandwmplushttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.4.txt"; Variable: Names are id exp1-exp13 lnw1-lnw13 black hgc_9; Missing are all (-999) ; Usevariables are exp1-exp13 lnw1-lnw13 black hgc_9; Tscores exp1-exp13; Analysis: Type = random; estimator = ml; MODEL: i s | lnw1-lnw13 at exp1-exp13; i with s; i on hgc_9; s on black; lnw1-lnw13 (1);
-----------------------------------------------------------------------------
MODEL FIT INFORMATION Number of Free Parameters 8 Loglikelihood H0 Value -2437.352 Information Criteria Akaike (AIC) 4890.704 Bayesian (BIC) 4929.015 Sample-Size Adjusted BIC 4903.609 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value I ON HGC_9 0.038 0.006 5.961 0.000 S ON BLACK -0.016 0.005 -3.572 0.000 I WITH S -0.003 0.001 -3.406 0.001 Intercepts LNW1 0.000 0.000 999.000 999.000 LNW2 0.000 0.000 999.000 999.000 LNW3 0.000 0.000 999.000 999.000 LNW4 0.000 0.000 999.000 999.000 LNW5 0.000 0.000 999.000 999.000 LNW6 0.000 0.000 999.000 999.000 LNW7 0.000 0.000 999.000 999.000 LNW8 0.000 0.000 999.000 999.000 LNW9 0.000 0.000 999.000 999.000 LNW10 0.000 0.000 999.000 999.000 LNW11 0.000 0.000 999.000 999.000 LNW12 0.000 0.000 999.000 999.000 LNW13 0.000 0.000 999.000 999.000 I 1.721 0.011 160.860 0.000 S 0.049 0.003 19.416 0.000 Residual Variances LNW1 0.095 0.002 48.925 0.000 LNW2 0.095 0.002 48.925 0.000 LNW3 0.095 0.002 48.925 0.000 LNW4 0.095 0.002 48.925 0.000 LNW5 0.095 0.002 48.925 0.000 LNW6 0.095 0.002 48.925 0.000 LNW7 0.095 0.002 48.925 0.000 LNW8 0.095 0.002 48.925 0.000 LNW9 0.095 0.002 48.925 0.000 LNW10 0.095 0.002 48.925 0.000 LNW11 0.095 0.002 48.925 0.000 LNW12 0.095 0.002 48.925 0.000 LNW13 0.095 0.002 48.925 0.000 I 0.052 0.005 10.636 0.000 S 0.002 0.000 7.691 0.000
Table 5.7, page 163
Model A: Initial growth model, using Person (wide) unemp.dat data file.
Title: Table 5.7, Model A, Person (wide) file Data: File is c:aldaunemp.dat ; Variable: Names are id cesd1 cesd2 cesd3 months1 months2 months3 unemp1 unemp2 unemp3 ubym1 ubym2 ubym3; Missing are all (-999999999) ; Usevariables are cesd1 cesd2 cesd3 months1 months2 months3 ; Tscores months1-months3 ; Analysis: Type = random; estimator = ml; MODEL: i s | cesd1-cesd3 at months1-months3 ; i with s; cesd1-cesd3 (1) ;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2189.403 Information Criteria Number of Free Parameters 6 Akaike (AIC) 4390.806 Bayesian (BIC) 4410.382 Sample-Size Adjusted BIC 4391.375 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. I WITH S -2.335 1.329 -1.757 Means I 17.187 0.845 20.332 S -0.387 0.085 -4.533 Variances I 78.573 15.179 5.176 S 0.325 0.176 1.850 Residual Variances CESD1 66.008 6.574 10.041 CESD2 66.008 6.574 10.041 CESD3 66.008 6.574 10.041
Model A (again): Initial growth model, using person period ("long") unemp_pp.dat data file.
Title: Table 5.7, Model A, Person Period (long) file Data: File is c:aldaunemp_pp.dat ; Variable: Names are id months cesd unemp; Missing are all (-999999999) ; Usevariables are months cesd ; cluster = id; within = months ; Analysis: Type = random twolevel ; mconvergence = .000001; estimator = ml; model: %within% s | cesd on months; %between% cesd with s;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2566.569 Information Criteria Number of Free Parameters 6 Akaike (AIC) 5145.137 Bayesian (BIC) 5172.217 Sample-Size Adjusted BIC 5153.166 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. Within Level Residual Variances CESD 68.848 6.602 10.428 Between Level CESD WITH S -3.058 1.385 -2.208 Means CESD 17.669 0.776 22.782 S -0.422 0.083 -5.083 Variances CESD 86.852 14.963 5.804 S 0.355 0.184 1.925
Model B: Main effect of unemployment using person period ("long") unemp_pp.dat data file.
Title: Table 5.7, Model B, Person Period (long) file Data: File is c:aldaunemp_pp.dat ; Variable: Names are id months cesd unemp; Missing are all (-999999999) ; Usevariables are months cesd unemp; cluster = id; within = months unemp; Analysis: Type = random missing twolevel ; mconvergence = .000001; estimator = ml; model: %within% cesd on unemp; s | cesd on months; %between% cesd with s;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2553.802 Information Criteria Number of Free Parameters 7 Akaike (AIC) 5121.603 Bayesian (BIC) 5153.196 Sample-Size Adjusted BIC 5130.970 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. Within Level CESD ON UNEMP 5.111 0.996 5.133 Residual Variances CESD 62.388 6.013 10.375 Between Level CESD WITH S -3.894 1.370 -2.842 Means CESD 12.666 1.247 10.157 S -0.202 0.093 -2.163 Variances CESD 93.518 14.820 6.310 S 0.465 0.180 2.585
Model C: Effect of unemployment on initial status and growth rate.
Title: Table 5.7, Model C, Person Period (long) file Data: File is C:aldaunemployment_pp.dat ; Define: monBYun = months * unemp; Variable: Names are id months cesd unemp; Missing are all (-999999999) ; Usevariables are months cesd unemp monBYun; cluster = id; within = months unemp monBYun; Analysis: Type = random missing twolevel ; mconvergence = .000001; estimator = ml; model: %within% cesd on unemp monBYun; s | cesd on months; %between% cesd with s;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2551.523 Information Criteria Number of Free Parameters 8 Akaike (AIC) 5119.047 Bayesian (BIC) 5155.153 Sample-Size Adjusted BIC 5129.752 (n* = (n + 2) / 24) MODEL RESULTS Estimates S.E. Est./S.E. Within Level CESD ON UNEMP 8.529 1.880 4.538 MONBYUN -0.465 0.217 -2.140 Residual Variances CESD 62.031 5.966 10.398 Between Level CESD WITH S -3.873 1.359 -2.850 Means CESD 9.617 1.891 5.086 S 0.162 0.194 0.836 Variances CESD 93.712 14.777 6.342 S 0.451 0.177 2.544
Model D: Allowing unemployment to have both fix and random effects.
We thank Hemant Kher for providing the Mplus code for this example.
NOTE: The results obtained from Mplus do not match those shown in the text.
Regarding these differences, Professor Bengt Muthen says:
"Notice that there are some numerical issues with the model – the variance-covariance matrix of the random effects is singular. Just a little more information about Mplus. If you add the technical option output:tech8; you will see the details of the convergence process. The default algorithm EMA quickly reaches the ML estimates but fails because the variance covariance matrix for the random effects is singular. At that point Mplus switches to the EM algorithm which slowly approaches the singularity, but Mplus will deliberately avoid the full convergence to avoid the singularity. In this part of the algorithm the solution is driven by the logcriterion convergence criterion. So essentially all software packages differ because the ML solution is inadmissible, so they report their own version of "approximately" ML solution."
Title: Table 5.7, Model D, Person Period (long) file Unemp and Unemp*Months (monBYun) have fixed as well as random effects Data: File is "C:aldaunemployment_pp.dat"; Define: monBYun = months * unemp; Variable: Names are id months cesd unemp; Missing are all (-999999999) ; Usevariables are cesd unemp monBYun; cluster = id; within = unemp monBYun; Analysis: Type = random missing twolevel ; logcriterion=0.0000001; miter=10000; estimator = ml; model: %within% s1 | cesd on unemp; s2 | cesd on monBYun; %between% cesd with s1; cesd with s2; s1 with s2; output: sampstat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2547.651 Information Criteria Number of Free Parameters 10 Akaike (AIC) 5115.302 Bayesian (BIC) 5160.434 Sample-Size Adjusted BIC 5128.683 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Residual Variances CESD 59.013 6.030 9.787 0.000 Between Level CESD WITH S1 6.539 11.457 0.571 0.568 S2 0.647 2.252 0.287 0.774 S1 WITH S2 -5.625 2.656 -2.118 0.034 Means CESD 11.195 0.795 14.080 0.000 S1 6.927 0.933 7.421 0.000 S2 -0.303 0.114 -2.668 0.008 Variances CESD 45.261 12.558 3.604 0.000 S1 44.973 21.099 2.132 0.033 S2 0.754 0.264 2.859 0.004
Table 5.8, page 175 using https://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.8.txt
We thank Hemant Kher for providing the Mplus code for this example.
Model A: Centered at 7.
Title: Table 5.8, Model A, Person Period (long) file Data: File is "C:aldahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.8.txt"; Define: uerate7 = uerate-7; hgc_9=hgc-9; Variable: Names are id lnw exper black hgc uerate ue_c1 ue_mean ue_p_c ue1; Usevariables are lnw exper black uerate7 hgc_9; cluster = id; within = exper uerate7 hgc_9; between = black; Analysis: Type = random missing twolevel ; mconv=0.0000001; estimator = ml; model: %within% lnw on hgc_9 uerate7; s | lnw on exper; %between% lnw with s; s on black;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2415.260 Information Criteria Number of Free Parameters 9 Akaike (AIC) 4848.519 Bayesian (BIC) 4909.398 Sample-Size Adjusted BIC 4880.799 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level LNW ON HGC_9 0.040 0.006 6.287 0.000 UERATE7 -0.012 0.002 -6.663 0.000 Residual Variances LNW 0.095 0.002 48.909 0.000 Between Level S ON BLACK -0.018 0.004 -4.055 0.000 LNW WITH S -0.003 0.001 -3.474 0.001 Means LNW 1.749 0.011 153.413 0.000 Intercepts S 0.044 0.003 16.907 0.000 Variances LNW 0.051 0.005 10.531 0.000 Residual Variances S 0.002 0.000 7.676 0.000
Model B: Within-person centering.
Title: Table 5.8, Model B, Person Period (long) file Data: File is "C:aldahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.8.txt"; Variable: Names are id lnw exper black hgc uerate ue_c1 ue_mean ue_p_c ue1; ! Note: ue_mean=person's mean uerate ! Note: ue_p_c =uerate centered around the person's mean uerate Usevariables are lnw exper black ue_mean ue_p_c hgc_9; cluster = id; within = exper ue_mean ue_p_c hgc_9; between = black; Define: hgc_9=hgc-9; Analysis: Type = random twolevel ; mconv=0.0000001; estimator = ml; model: %within% lnw on hgc_9 ue_mean ue_p_c; s | lnw on exper; %between% lnw with s; s on black; output: sampstat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2413.489 Information Criteria Number of Free Parameters 10 Akaike (AIC) 4846.978 Bayesian (BIC) 4914.622 Sample-Size Adjusted BIC 4882.845 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level LNW ON HGC_9 0.040 0.006 6.323 0.000 UE_MEAN -0.018 0.004 -4.999 0.000 UE_P_C -0.010 0.002 -4.719 0.000 Residual Variances LNW 0.095 0.002 48.907 0.000 Between Level S ON BLACK -0.019 0.004 -4.214 0.000 LNW WITH S -0.003 0.001 -3.588 0.000 Means LNW 1.874 0.030 63.194 0.000 Intercepts S 0.045 0.003 16.971 0.000 Variances LNW 0.051 0.005 10.537 0.000 Residual Variances S 0.002 0.000 7.673 0.000
Model C: Time-1 centered.
Title: Table 5.8, Model C, Person Period (long) file Data: File is "C:aldahttps://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.8.txt"; Variable: Names are id lnw exper black hgc uerate ue_c1 ue_mean ue_p_c ue1; ! Note: ue_c1 =uerate centered around the person's 1st value of uerate ! Note: ue1 =the first uerate value for the person Usevariables are lnw exper black ue1 ue_c1 hgc_9; cluster = id; within = exper ue1 ue_c1 hgc_9; between = black; Define: hgc_9=hgc-9; Analysis: Type = random twolevel ; mconv=0.0000001; estimator = ml; Model: %within% lnw on hgc_9 ue1 ue_c1; s | lnw on exper; %between% lnw with s; s on black; Output: sampstat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -2412.921 Information Criteria Number of Free Parameters 10 Akaike (AIC) 4845.842 Bayesian (BIC) 4913.485 Sample-Size Adjusted BIC 4881.708 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level LNW ON HGC_9 0.040 0.006 6.287 0.000 UE1 -0.016 0.003 -6.107 0.000 UE_C1 -0.010 0.002 -5.294 0.000 Residual Variances LNW 0.095 0.002 48.922 0.000 Between Level S ON BLACK -0.018 0.004 -4.086 0.000 LNW WITH S -0.003 0.001 -3.463 0.001 Means LNW 1.869 0.026 71.797 0.000 Intercepts S 0.045 0.003 17.043 0.000 Variances LNW 0.050 0.005 10.498 0.000 Residual Variances S 0.002 0.000 7.682 0.000
Table 5.10, page 184 using https://stats.idre.ucla.edu/wp-content/uploads/2016/02/ALDACh5Table5.10.txt
We thank Hemant Kher for providing the Mplus code for this example.
Model A: Time.
Title: Table 5.10, Model A, Person Period (long) file Data: File is "C:ALDAaldach5table5.10.txt"; Variable: Names are id treat wave day tofday time time333 time667 initial final pos; Usevariables are pos time treat; cluster = id; within = time; between = treat; Analysis: Type = random twolevel ; mconvergence = .000001; estimator = ml; model: %within% s | pos on time; %between% pos with s; pos s on treat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -6340.226 Information Criteria Number of Free Parameters 8 Akaike (AIC) 12696.452 Bayesian (BIC) 12737.448 Sample-Size Adjusted BIC 12712.036 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Residual Variances POS 1230.014 52.098 23.609 0.000 Between Level S ON TREAT 5.536 2.276 2.432 0.015 POS ON TREAT -3.109 12.329 -0.252 0.801 POS WITH S -121.138 58.866 -2.058 0.040 Intercepts POS 167.462 9.323 17.962 0.000 S -2.417 1.730 -1.398 0.162 Residual Variances POS 2109.669 419.601 5.028 0.000 S 63.600 14.224 4.471 0.000
Model B: Time – 3.33.
Title: Table 5.10, Model B, Person Period (long) file Data: File is "C:ALDAaldach5table5.10.txt"; Variable: Names are id treat wave day tofday time time333 time667 initial final pos; Usevariables are pos time333 treat; cluster = id; within = time333; between = treat; Analysis: Type = random twolevel ; mconvergence = .000001; estimator = ml; model: %within% s | pos on time333; %between% pos with s; pos s on treat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -6340.226 Information Criteria Number of Free Parameters 8 Akaike (AIC) 12696.452 Bayesian (BIC) 12737.447 Sample-Size Adjusted BIC 12712.036 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Residual Variances POS 1230.008 52.098 23.610 0.000 Between Level S ON TREAT 5.536 2.277 2.432 0.015 POS ON TREAT 15.346 11.545 1.329 0.184 POS WITH S 90.845 52.378 1.734 0.083 Intercepts POS 159.404 8.765 18.187 0.000 S -2.416 1.730 -1.397 0.162 Residual Variances POS 2008.740 367.251 5.470 0.000 S 63.604 14.225 4.471 0.000
Model C: Time – 6.67.
Title: Table 5.10, Model C, Person Period (long) file Data: File is "C:ALDAaldach5table5.10.txt"; Variable: Names are id treat wave day tofday time time333 time667 initial final pos; Usevariables are pos time667 treat; cluster = id; within = time667; between = treat; Analysis: Type = random twolevel ; mconvergence = .000001; estimator = ml; Model: %within% s | pos on time667; %between% pos with s; pos s on treat;
-----------------------------------------------------------------------------
TESTS OF MODEL FIT Loglikelihood H0 Value -6340.226 Information Criteria Number of Free Parameters 8 Akaike (AIC) 12696.452 Bayesian (BIC) 12737.448 Sample-Size Adjusted BIC 12712.036 (n* = (n + 2) / 24) MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level Residual Variances POS 1230.016 52.099 23.609 0.000 Between Level S ON TREAT 5.535 2.276 2.432 0.015 POS ON TREAT 33.797 15.156 2.230 0.026 POS WITH S 302.802 80.708 3.752 0.000 Intercepts POS 151.349 11.541 13.114 0.000 S -2.417 1.730 -1.397 0.162 Residual Variances POS 3320.892 631.560 5.258 0.000 S 63.588 14.219 4.472 0.000