Table 6.2 on page 203 using wages_pp.dat.
Model A: EXPER, HGC-9, BLACK*EXPER, UE-7.
Title: Model A; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper black hgc_9 ue_7; Missing are all (-9999) ; within = exper hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; lnw on hgc_9; lnw on ue_7;
%between% s1 with lnw; s1 on black;
Notice that the deviance is -2*Loglikelihood. That is
-2*(-2415.260) = 4830.52.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2415.260
Information Criteria
Number of Free Parameters 9 Akaike (AIC) 4848.519 Bayesian (BIC) 4909.398 Sample-Size Adjusted BIC 4880.799 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E.
Within Level LNW ON HGC_9 0.040 0.006 6.318 UE_7 -0.012 0.002 -7.299
Residual Variances LNW 0.095 0.001 100.260
Between Level S1 ON BLACK -0.018 0.005 -3.871 S1 WITH LNW -0.003 0.001 -3.825 Means LNW 1.749 0.013 138.977 Intercepts S1 0.044 0.003 15.884 Variances LNW 0.051 0.004 13.279 Residual Variances S1 0.002 0.000 7.821
Model B: Model A + GED as fixed and random effect
The calculation of deviance is the same as shown in the previous example: -2*(-2402.759) = 4805.518.
Title: Model B; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; s2 | lnw on ged; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s2 with lnw;
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2402.759
Information Criteria
Number of Free Parameters 13 Akaike (AIC) 4831.518 Bayesian (BIC) 4919.454 Sample-Size Adjusted BIC 4878.144 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E.
Within Level LNW ON HGC_9 0.038 0.006 6.032 UE_7 -0.012 0.002 -7.053
Residual Variances LNW 0.094 0.001 100.223
Between Level S1 ON BLACK -0.018 0.005 -3.845 S1 WITH S2 -0.002 0.001 -1.832 LNW -0.003 0.001 -3.377 S2 WITH LNW 0.002 0.009 0.265 Means LNW 1.734 0.013 135.239 S2 0.061 0.021 2.867 Intercepts S1 0.043 0.003 15.513 Variances LNW 0.044 0.004 10.421 S2 0.028 0.017 1.636 Residual Variances S1 0.002 0.000 7.770
Model C: Model B without random effect of GED
Title: Model C; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; lnw on ged; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw;
The deviance is -2*(-2409.162) = 4818.324.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2409.162
Information Criteria
Number of Free Parameters 10 Akaike (AIC) 4838.324 Bayesian (BIC) 4905.968 Sample-Size Adjusted BIC 4874.190 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level LNW ON GED 0.059 0.016 3.700 HGC_9 0.039 0.006 6.133 UE_7 -0.012 0.002 -7.044 Residual Variances LNW 0.095 0.001 100.185 Between Level S1 ON BLACK -0.019 0.005 -3.933 S1 WITH LNW -0.003 0.001 -3.958 Means LNW 1.734 0.013 129.538 Intercepts S1 0.043 0.003 15.715 Variances LNW 0.051 0.004 13.084 Residual Variances S1 0.002 0.000 7.830
Model D: A + POSTEXP as fixed and random effect
Title: Model D; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model: %within% s1 | lnw on exper; s2 | lnw on postexp; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s2 with lnw;
The deviance is -2*(-2408.689) = 4817.378.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2408.689
Information Criteria
Number of Free Parameters 13 Akaike (AIC) 4843.377 Bayesian (BIC) 4931.314 Sample-Size Adjusted BIC 4890.004 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LNW ON HGC_9 0.040 0.007 6.129 UE_7 -0.012 0.002 -7.170 Residual Variances LNW 0.095 0.001 100.126 Between Level S1 ON BLACK -0.019 0.005 -4.116 S1 WITH LNW -0.002 0.001 -3.193 S2 0.000 0.001 -0.066 S2 WITH LNW -0.002 0.002 -1.308 Means LNW 1.749 0.013 138.889 S2 0.015 0.005 3.025 Intercepts S1 0.041 0.003 13.912 Variances LNW 0.051 0.004 13.219 S2 0.001 0.001 0.590 Residual Variances S1 0.001 0.000 6.622
Model E: Model D without random effect of POSTEXP
Title: Model E; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; lnw on postexp; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw;
The deviance is -2*(-2410.353) = 4820.706.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2410.353
Information Criteria
Number of Free Parameters 10 Akaike (AIC) 4840.707 Bayesian (BIC) 4908.350 Sample-Size Adjusted BIC 4876.573 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LNW ON POSTEXP 0.014 0.004 3.188 HGC_9 0.040 0.006 6.228 UE_7 -0.012 0.002 -7.243 Residual Variances LNW 0.095 0.001 100.231 Between Level S1 ON BLACK -0.019 0.005 -4.076 S1 WITH LNW -0.003 0.001 -4.009 Means LNW 1.750 0.013 138.737 Intercepts S1 0.041 0.003 13.515 Variances LNW 0.051 0.004 13.269 Residual Variances S1 0.002 0.000 7.844
Model F: Model A with fixed and random effects of GED and POSTEXP
Title: Model F; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; s2 | lnw on ged; s3 | lnw on postexp; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s1 with s3; s2 with lnw; s2 with s3; s3 with lnw;
The deviance is -2*(-2394.677) =4789.354.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2394.677
Information Criteria
Number of Free Parameters 18 Akaike (AIC) 4825.354 Bayesian (BIC) 4947.113 Sample-Size Adjusted BIC 4889.913 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LNW ON HGC_9 0.039 0.006 6.142 UE_7 -0.012 0.002 -7.029 Residual Variances LNW 0.094 0.001 99.722 Between Level S1 ON BLACK -0.020 0.005 -4.132 S1 WITH LNW -0.002 0.001 -2.354 S2 0.003 0.003 0.899 S3 -0.001 0.001 -0.895 S2 WITH LNW 0.012 0.010 1.255 S3 -0.004 0.004 -0.908 S3 WITH LNW -0.006 0.003 -2.066 Means LNW 1.739 0.013 134.314 S2 0.041 0.027 1.531 S3 0.009 0.006 1.584 Intercepts S1 0.041 0.003 14.058 Variances LNW 0.041 0.004 10.347 S2 0.016 0.018 0.880 S3 0.003 0.002 1.635 Residual Variances S1 0.001 0.000 6.515
Model G: Model F without random effect of POSTEXP
Title: Model G; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; s2 | lnw on ged; lnw on postexp; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s2 with lnw;
The deviance is -2*(-2401.344) =4802.688.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2401.344
Information Criteria
Number of Free Parameters 14 Akaike (AIC) 4830.688 Bayesian (BIC) 4925.390 Sample-Size Adjusted BIC 4880.901 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level LNW ON POSTEXP 0.009 0.005 1.703 HGC_9 0.038 0.006 6.029 UE_7 -0.012 0.002 -7.068 Residual Variances LNW 0.094 0.001 100.184 Between Level S1 ON BLACK -0.019 0.005 -3.945 S1 WITH LNW -0.003 0.001 -3.325 S2 -0.002 0.001 -1.926 S2 WITH LNW 0.003 0.009 0.290 Means LNW 1.739 0.013 131.905 S2 0.043 0.024 1.758 Intercepts S1 0.041 0.003 13.347 Variances LNW 0.043 0.004 10.345 S2 0.028 0.017 1.642 Residual Variances S1 0.002 0.000 7.798
Model H: Model F without random effect of GED
Title: Model H; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; s2 | lnw on postexp; lnw on ged; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s2 with lnw;
The deviance is -2*(-2406.320) =4812.64.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2406.320
Information Criteria
Number of Free Parameters 14 Akaike (AIC) 4840.639 Bayesian (BIC) 4935.340 Sample-Size Adjusted BIC 4890.852 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LNW ON GED 0.042 0.018 2.377 HGC_9 0.039 0.007 6.036 UE_7 -0.012 0.002 -7.020 Residual Variances LNW 0.095 0.001 100.089 Between Level S1 ON BLACK -0.019 0.005 -4.074 S1 WITH LNW -0.002 0.001 -3.201 S2 0.000 0.001 0.006 S2 WITH LNW -0.002 0.002 -1.247 Means LNW 1.739 0.014 126.940 S2 0.009 0.005 1.602 Intercepts S1 0.041 0.003 14.058 Variances LNW 0.050 0.004 13.043 S2 0.001 0.002 0.489 Residual Variances S1 0.001 0.000 6.627
Model I: Model A with GED and GED*EXPER as fixed and random effects
With Mplus version 2.13, we are unable to make the calculation converge for the model.
Model J: Model I without random effect of GED*EXPER
Title: Model J; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged black hgc_9 ue_7 gedxexp; Missing are all (-9999) ; within = exper ged hgc_9 ue_7 gedxexp; between = black; cluster = id; Define: gedxexp = ged*exper; Analysis: Type = twolevel random ; estimator = MLF; Model: %within% s1 | lnw on exper; s2 | lnw on ged; lnw on gedxexp; lnw on hgc_9; lnw on ue_7; %between% s1 on black; s1 with lnw; s1 with s2; s2 with lnw;
The deviance is -2*(-2402.301) =4804.602.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2402.301
Information Criteria
Number of Free Parameters 14 Akaike (AIC) 4832.602 Bayesian (BIC) 4927.303 Sample-Size Adjusted BIC 4882.814 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E.
Within Level
LNW ON GEDXEXP 0.005 0.005 0.935 HGC_9 0.038 0.006 6.022 UE_7 -0.012 0.002 -7.070 Residual Variances LNW 0.094 0.001 100.163 Between Level S1 ON BLACK -0.018 0.005 -3.870 S1 WITH LNW -0.003 0.001 -3.357 S2 -0.002 0.001 -1.768 S2 WITH LNW 0.002 0.009 0.187 Means LNW 1.738 0.013 128.932 S2 0.046 0.028 1.634 Intercepts S1 0.042 0.003 13.057 Variances LNW 0.044 0.004 10.361 S2 0.030 0.018 1.670 Residual Variances S1 0.002 0.000 7.760
Table 6.3 on page 205, detailed output of model F.
Title: Model F; Data: File is d:aldawages_pp.dat ; Variable: Names are id lnw exper ged postexp black hispanic hgc hgc_9 uerate ue_7 ue_centert1 ue_mean ue_person_centered ue1; usev = id lnw exper ged postexp black hgc_9 ue_7; Missing are all (-9999) ; within = exper ged postexp hgc_9 ue_7; between = black; cluster = id; Analysis: Type = twolevel random ; estimator = MLF; Model:
%within% s1 | lnw on exper; s2 | lnw on ged; s3 | lnw on postexp; lnw on hgc_9; lnw on ue_7;
%between% s1 on black; s1 with lnw; s1 with s2; s1 with s3; s2 with lnw; s2 with s3; s3 with lnw;
The deviance is -2*(-2394.677) =4789.354.
TESTS OF MODEL FIT
Loglikelihood
H0 Value -2394.677
Information Criteria
Number of Free Parameters 18 Akaike (AIC) 4825.354 Bayesian (BIC) 4947.113 Sample-Size Adjusted BIC 4889.913 (n* = (n + 2) / 24)
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LNW ON HGC_9 0.039 0.006 6.142 UE_7 -0.012 0.002 -7.029 Residual Variances LNW 0.094 0.001 99.722 Between Level S1 ON BLACK -0.020 0.005 -4.132 S1 WITH LNW -0.002 0.001 -2.354 S2 0.003 0.003 0.899 S3 -0.001 0.001 -0.895 S2 WITH LNW 0.012 0.010 1.255 S3 -0.004 0.004 -0.908 S3 WITH LNW -0.006 0.003 -2.066 Means LNW 1.739 0.013 134.314 S2 0.041 0.027 1.531 S3 0.009 0.006 1.584 Intercepts S1 0.041 0.003 14.058 Variances LNW 0.041 0.004 10.347 S2 0.016 0.018 0.880 S3 0.003 0.002 1.635 Residual Variances S1 0.001 0.000 6.515
Table 6.5, page 221
Model A: no change
Title: table 6_5 Model A; Data: File is d:aldaexternal_pp.dat ; Variable: Names are id external female time grade; usev external ; !female time; Missing are all (-9999) ; ! within = female time; cluster = id; Analysis: Type = twolevel random; estimator = MLF; model: %between% external;
Loglikelihood
H0 Value -1005.127 H1 Value -1005.127
Information Criteria
Number of Free Parameters 3 Akaike (AIC) 2016.253 Bayesian (BIC) 2027.048 Sample-Size Adjusted BIC 2017.536 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E.
Within Level Variances EXTERNAL 70.237 6.944 10.115 Between Level Means EXTERNAL 12.960 3.052 4.246 Variances EXTERNAL 87.282 26.660 3.274
Table 6.5, page 221 using external_pp.dat.
Model B: linear change
Title: table 6_5 Model B; Data: File is d:aldaexternal_pp.dat ; Variable: Names are id external female time grade; usev external time; Missing are all (-9999) ; within = time; cluster = id; Analysis: Type = twolevel random; estimator = MLF; model: %within% s1 | external on time; %between% s1 with external;
Loglikelihood
H0 Value -995.873
Information Criteria
Number of Free Parameters 6 Akaike (AIC) 2003.746 Bayesian (BIC) 2025.336 Sample-Size Adjusted BIC 2006.312 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E.
Within Level Residual Variances EXTERNAL 53.787 6.022 8.932 Between Level S1 WITH EXTERNAL -12.405 7.227 -1.717 Means EXTERNAL 13.290 3.866 3.437 S1 -0.131 0.577 -0.227 Variances EXTERNAL 123.174 35.791 3.441 S1 4.640 1.994 2.326
Table 6.5, page 221
Model C: quadratic change
Title: table 6_5 Model C; Data: File is d:aldaexternal_pp.dat ; Variable: Names are id external female time grade; usev external time time2; Missing are all (-9999) ; within = time time2; cluster = id; Define: time2 = time*time; Analysis: Type = twolevel random; estimator = MLF; model: %within% s1 | external on time; s2 | external on time2; %between% s1 with external; s2 with external; s1 with s2;
TESTS OF MODEL FIT
Loglikelihood
H0 Value -987.919
Information Criteria Number of Free Parameters 10 Akaike (AIC) 1995.838 Bayesian (BIC) 2031.823 Sample-Size Adjusted BIC 2000.116 (n* = (n + 2) / 24)
MODEL RESULTS Estimates S.E. Est./S.E. Within Level Residual Variances EXTERNAL 42.052 6.021 6.985 Between Level S1 WITH EXTERNAL -3.340 15.753 -0.212 S2 -4.876 3.143 -1.551 S2 WITH EXTERNAL -1.438 2.862 -0.502 Means EXTERNAL 13.962 3.809 3.666 S1 -1.142 1.499 -0.762 S2 0.202 0.348 0.581 Variances EXTERNAL 106.756 39.788 2.683 S1 24.209 16.894 1.433 S2 1.197 0.627 1.910
Table 6.5, page 221
Model D: cubic change
Title: table 6_5 Model D; Data: File is d:aldaexternal_pp.dat ; Variable: Names are id external female time grade; usev external time time2 time3; Missing are all (-9999) ; within = time time2 time3; cluster = id; Define: time2 = time*time; time3 = time2*time; Analysis: Type = twolevel random; estimator = MLF; iteration = 5000; miterations = 5000; convergence = .001; model: %within% s1 | external on time; s2 | external on time2; s3 | external on time3; %between% s1 with external; s2 with external; s3 with external; s1 with s2; s1 with s3; s2 with s3;
THE ESTIMATED BETWEEN COVARIANCE MATRIX IS NOT POSITIVE DEFINITE AS IT SHOULD BE. COMPUTATION COULD NOT BE COMPLETED. PROBLEM INVOLVING VARIABLE S3.
THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO AN ERROR IN THE COMPUTATION. CHANGE YOUR MODEL AND/OR STARTING VALUES.