The data are shown on pages 163-167.
- Please note that a subset of the data is used for some examples.
- Some of the output has been omitted to save space.
- The syntax is explained in comments in the code (which is in bold). Comments start with !.
- The values for the chi-squared tests are slightly different to those shown in the text due to differences in the algorithms in the programs used.
- Relevant results are bolded.
Chapter 11: Some confirmatory Factor Analysis Interpretation Principles
Page 136 Table 11.1
Model 1 A text file (of the faculty data) with the data ready for use in Mplus can be downloaded here.
title: page 136 Model 1 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1 - per4; f2 by per8 per5 per6 per7; f1 with f2 @0; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 48.757 Degrees of Freedom 20 P-Value 0.0003 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.959 TLI 0.943 Loglikelihood H0 Value -1231.770 H1 Value -1207.392 Information Criteria Number of Free Parameters 16 Akaike (AIC) 2495.540 Bayesian (BIC) 2537.223 Sample-Size Adjusted BIC 2486.691 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.120 90 Percent C.I. 0.077 0.163 Probability RMSEA <= .05 0.006 SRMR (Standardized Root Mean Square Residual) Value 0.238 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER1 1.000 0.000 0.000 1.291 0.950 PER2 1.052 0.073 14.353 1.358 0.882 PER3 0.803 0.093 8.589 1.036 0.686 PER4 1.018 0.072 14.148 1.314 0.877 F2 BY PER8 1.000 0.000 0.000 1.703 0.793 PER5 1.134 0.101 11.245 1.931 0.934 PER6 1.083 0.100 10.800 1.843 0.908 PER7 1.026 0.091 11.221 1.746 0.933 F1 WITH F2 0.000 0.000 0.000 0.000 0.000 Variances F1 1.667 0.266 6.264 1.000 1.000 F2 2.899 0.614 4.718 1.000 1.000 Residual Variances PER1 0.181 0.062 2.923 0.181 0.098 PER2 0.529 0.099 5.331 0.529 0.223 PER3 1.206 0.180 6.684 1.206 0.529 PER4 0.521 0.096 5.434 0.521 0.232 PER5 0.544 0.123 4.436 0.544 0.127 PER6 0.724 0.137 5.298 0.724 0.176 PER7 0.456 0.101 4.496 0.456 0.130 PER8 1.706 0.264 6.456 1.706 0.371
Model 2
title: page 136 Model 2 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per2 per1 per3 per4; f2 by per6 per5 per7 per8; f1 with f2 @0; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 48.757 Degrees of Freedom 20 P-Value 0.0003 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.959 TLI 0.943 Loglikelihood H0 Value -1231.770 H1 Value -1207.392 Information Criteria Number of Free Parameters 16 Akaike (AIC) 2495.540 Bayesian (BIC) 2537.223 Sample-Size Adjusted BIC 2486.691 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.120 90 Percent C.I. 0.077 0.163 Probability RMSEA <= .05 0.006 SRMR (Standardized Root Mean Square Residual) Value 0.238 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER2 1.000 0.000 0.000 1.358 0.882 PER1 0.950 0.066 14.353 1.291 0.950 PER3 0.763 0.094 8.130 1.036 0.686 PER4 0.968 0.078 12.440 1.314 0.877 F2 BY PER6 1.000 0.000 0.000 1.843 0.908 PER5 1.048 0.066 15.780 1.931 0.934 PER7 0.948 0.060 15.718 1.746 0.933 PER8 0.924 0.086 10.800 1.703 0.793 F1 WITH F2 0.000 0.000 0.000 0.000 0.000 Variances F1 1.845 0.334 5.529 1.000 1.000 F2 3.397 0.581 5.848 1.000 1.000 Residual Variances PER1 0.181 0.062 2.923 0.181 0.098 PER2 0.529 0.099 5.331 0.529 0.223 PER3 1.206 0.180 6.684 1.206 0.529 PER4 0.521 0.096 5.434 0.521 0.232 PER5 0.544 0.123 4.436 0.544 0.127 PER6 0.724 0.137 5.298 0.724 0.176 PER7 0.456 0.101 4.496 0.456 0.130 PER8 1.706 0.264 6.456 1.706 0.371
Model 3
title: page 136 Model 3 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1* per2 - per4; f2 by per5* per6 - per8; f1 with f2 @0; f1@1 f2@1; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 48.757 Degrees of Freedom 20 P-Value 0.0003 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.959 TLI 0.943 Loglikelihood H0 Value -1231.770 H1 Value -1207.392 Information Criteria Number of Free Parameters 16 Akaike (AIC) 2495.540 Bayesian (BIC) 2537.223 Sample-Size Adjusted BIC 2486.691 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.120 90 Percent C.I. 0.077 0.163 Probability RMSEA <= .05 0.006 SRMR (Standardized Root Mean Square Residual) Value 0.238 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER1 1.291 0.103 12.529 1.291 0.950 PER2 1.358 0.123 11.058 1.358 0.882 PER3 1.036 0.135 7.674 1.036 0.686 PER4 1.314 0.120 10.957 1.314 0.877 F2 BY PER5 1.931 0.157 12.287 1.931 0.934 PER6 1.843 0.158 11.696 1.843 0.908 PER7 1.746 0.143 12.254 1.746 0.933 PER8 1.703 0.180 9.436 1.703 0.793 F1 WITH F2 0.000 0.000 0.000 0.000 0.000 Variances F1 1.000 0.000 0.000 1.000 1.000 F2 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.181 0.062 2.923 0.181 0.098 PER2 0.529 0.099 5.331 0.529 0.223 PER3 1.206 0.180 6.684 1.206 0.529 PER4 0.521 0.096 5.434 0.521 0.232 PER5 0.544 0.123 4.436 0.544 0.127 PER6 0.724 0.137 5.298 0.724 0.176 PER7 0.456 0.101 4.496 0.456 0.130 PER8 1.706 0.264 6.456 1.706 0.371
Page 144 Table 11.4
Model 1: Independence
title: page 144 Model - Independence of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; *** WARNING in Model command All variables are uncorrelated with all other variables in the model. Check that this is what is intended. 1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 0 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 731.833 Degrees of Freedom 28 P-Value 0.0000 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.000 TLI 0.000 Loglikelihood H0 Value -1573.308 H1 Value -1207.392 Information Criteria Number of Free Parameters 8 Akaike (AIC) 3162.616 Bayesian (BIC) 3183.457 Sample-Size Adjusted BIC 3158.191 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.501 90 Percent C.I. 0.470 0.533 Probability RMSEA <= .05 0.000 SRMR (Standardized Root Mean Square Residual) Value 0.500 MODEL RESULTS Estimates S.E. Est./S.E. Variances PER1 1.847 0.261 7.071 PER2 2.374 0.336 7.071 PER3 2.280 0.322 7.071 PER4 2.248 0.318 7.071 PER5 4.274 0.604 7.071 PER6 4.122 0.583 7.071 PER7 3.506 0.496 7.071 PER8 4.605 0.651 7.071
Model 2: One factor
title: page 144 Model - one factor of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1 - per8; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 288.554 Degrees of Freedom 20 P-Value 0.0000 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.618 TLI 0.466 Loglikelihood H0 Value -1351.669 H1 Value -1207.392 Information Criteria Number of Free Parameters 16 Akaike (AIC) 2735.337 Bayesian (BIC) 2777.020 Sample-Size Adjusted BIC 2726.488 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.366 90 Percent C.I. 0.330 0.404 Probability RMSEA <= .05 0.000 SRMR (Standardized Root Mean Square Residual) Value 0.230 MODEL RESULTS Estimates S.E. Est./S.E. F1 BY PER1 1.000 0.000 0.000 PER2 0.920 0.303 3.039 PER3 1.051 0.311 3.376 PER4 1.048 0.310 3.385 PER5 3.098 0.641 4.832 PER6 2.979 0.620 4.803 PER7 2.836 0.585 4.845 PER8 2.817 0.608 4.635 Variances F1 0.378 0.162 2.335 Residual Variances PER1 1.469 0.211 6.977 PER2 2.053 0.293 7.014 PER3 1.862 0.266 6.989 PER4 1.833 0.262 6.988 PER5 0.641 0.132 4.867 PER6 0.763 0.142 5.380 PER7 0.462 0.102 4.522 PER8 1.601 0.251 6.372
Model 3: Uncorrelated factors (#3)
title: page 144 Model - two factors, uncorrelated of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1 - per4; f2 by per8 per5 per6 per7; f1 with f2 @0; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 48.757 Degrees of Freedom 20 P-Value 0.0003 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.959 TLI 0.943 Loglikelihood H0 Value -1231.770 H1 Value -1207.392 Information Criteria Number of Free Parameters 16 Akaike (AIC) 2495.540 Bayesian (BIC) 2537.223 Sample-Size Adjusted BIC 2486.691 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.120 90 Percent C.I. 0.077 0.163 Probability RMSEA <= .05 0.006 SRMR (Standardized Root Mean Square Residual) Value 0.238 MODEL RESULTS Estimates S.E. Est./S.E. F1 BY PER1 1.000 0.000 0.000 PER2 1.052 0.073 14.353 PER3 0.803 0.093 8.589 PER4 1.018 0.072 14.148 F2 BY PER8 1.000 0.000 0.000 PER5 1.134 0.101 11.245 PER6 1.083 0.100 10.800 PER7 1.026 0.091 11.221 F1 WITH F2 0.000 0.000 0.000 Variances F1 1.667 0.266 6.264 F2 2.899 0.614 4.718 Residual Variances PER1 0.181 0.062 2.923 PER2 0.529 0.099 5.331 PER3 1.206 0.180 6.684 PER4 0.521 0.096 5.434 PER5 0.544 0.123 4.436 PER6 0.724 0.137 5.298 PER7 0.456 0.101 4.496 PER8 1.706 0.264 6.456
Model 4: Correlated factors (#4)
title: page 144 Model - two factors, correlated of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1 - per4; f2 by per8 per5 per6 per7; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 31.682 Degrees of Freedom 19 P-Value 0.0339 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.982 TLI 0.973 Loglikelihood H0 Value -1223.232 H1 Value -1207.392 Information Criteria Number of Free Parameters 17 Akaike (AIC) 2480.465 Bayesian (BIC) 2524.753 Sample-Size Adjusted BIC 2471.062 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.082 90 Percent C.I. 0.023 0.130 Probability RMSEA <= .05 0.146 SRMR (Standardized Root Mean Square Residual) Value 0.059 MODEL RESULTS Estimates S.E. Est./S.E. F1 BY PER1 1.000 0.000 0.000 PER2 1.048 0.073 14.320 PER3 0.806 0.093 8.678 PER4 1.018 0.071 14.241 F2 BY PER8 1.000 0.000 0.000 PER5 1.125 0.099 11.339 PER6 1.076 0.099 10.913 PER7 1.021 0.090 11.373 F2 WITH F1 0.926 0.261 3.544 Variances F1 1.669 0.266 6.279 F2 2.932 0.616 4.758 Residual Variances PER1 0.178 0.061 2.948 PER2 0.540 0.100 5.422 PER3 1.195 0.179 6.683 PER4 0.519 0.095 5.459 PER5 0.564 0.124 4.557 PER6 0.728 0.137 5.318 PER7 0.450 0.100 4.478 PER8 1.674 0.260 6.438
Page 148 Table 11.5
title: page 148 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per12 ; model: f1 by per4 per1 - per3; f2 by per5 - per8; f3 by per9 - per12; f4 by f1* f2 f3; ! this statement makes it ! a second order model and has f1, f2 and f3 ! predicting f4.; f4@1; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 12 Number of independent variables 0 Number of continuous latent variables 4 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 PER9 PER10 PER11 PER12 Continuous latent variables F1 F2 F3 F4 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 69.640 Degrees of Freedom 51 P-Value 0.0424 Chi-Square Test of Model Fit for the Baseline Model Value 889.592 Degrees of Freedom 66 P-Value 0.0000 CFI/TLI CFI 0.977 TLI 0.971 Loglikelihood H0 Value -1949.113 H1 Value -1914.293 Information Criteria Number of Free Parameters 27 Akaike (AIC) 3952.225 Bayesian (BIC) 4022.565 Sample-Size Adjusted BIC 3937.292 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.060 90 Percent C.I. 0.012 0.094 Probability RMSEA <= .05 0.300 SRMR (Standardized Root Mean Square Residual) Value 0.062 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER4 1.000 0.000 0.000 1.323 0.882 PER1 0.969 0.068 14.355 1.283 0.944 PER2 1.027 0.081 12.600 1.358 0.882 PER3 0.790 0.096 8.237 1.045 0.692 F2 BY PER5 1.000 0.000 0.000 1.928 0.933 PER6 0.956 0.061 15.758 1.844 0.908 PER7 0.905 0.053 17.041 1.745 0.932 PER8 0.888 0.078 11.358 1.712 0.798 F3 BY PER9 1.000 0.000 0.000 1.070 0.577 PER10 1.296 0.264 4.907 1.387 0.716 PER11 0.927 0.197 4.709 0.991 0.663 PER12 0.740 0.196 3.772 0.792 0.480 F4 BY F1 0.920 0.155 5.939 0.695 0.695 F2 1.160 0.214 5.424 0.602 0.602 F3 1.059 0.212 4.993 0.990 0.990 Variances F4 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.202 0.060 3.376 0.202 0.109 PER2 0.529 0.098 5.404 0.529 0.223 PER3 1.187 0.178 6.670 1.187 0.521 PER4 0.497 0.092 5.388 0.497 0.221 PER5 0.555 0.122 4.543 0.555 0.130 PER6 0.722 0.136 5.319 0.722 0.175 PER7 0.460 0.101 4.573 0.460 0.131 PER8 1.675 0.260 6.445 1.675 0.364 PER9 2.298 0.374 6.152 2.298 0.668 PER10 1.831 0.360 5.080 1.831 0.488 PER11 1.256 0.224 5.605 1.256 0.561 PER12 2.091 0.320 6.523 2.091 0.769 F1 0.904 0.232 3.890 0.516 0.516 F2 2.372 0.470 5.046 0.638 0.638 F3 0.022 0.225 0.100 0.020 0.020 R-SQUARE Observed Variable R-Square PER1 0.891 PER2 0.777 PER3 0.479 PER4 0.779 PER5 0.870 PER6 0.825 PER7 0.869 PER8 0.636 PER9 0.332 PER10 0.512 PER11 0.439 PER12 0.231 Latent Variable R-Square F1 0.484 F2 0.362 F3 0.980
Page 150 Table 11.6
title: page 150 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per8; model: f1 by per1 - per4; f2 by per5 - per8; f4 by f1* (1) f2 (1); ! this statement makes it ! a second order model and has f1 and f2 ! predicting f4. The star indicates that the ! coefficient should be estimated. The (1) labels ! the coefficient so that it can be constrained to ! be equal for both f1 and f2. The syntax will ! run without the star and you will get the correct ! number of df, but the standardized coefficients ! won't be correct b/c the unstandardized coefficient ! was set to one (by default) instead of estimated. ! The df don't change b/c it doesn't matter if the ! coefficient for f1 is set to one and then f2 is ! constrained to equal it, or if the coefficient for ! f1 is estimated and then f2 is constrained to ! equal it.; f4@1; ! the statement above sets the variance of the ! second order factor (named f4) to equal 1.; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 3 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 Continuous latent variables F1 F2 F4 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 31.682 Degrees of Freedom 19 P-Value 0.0339 Chi-Square Test of Model Fit for the Baseline Model Value 731.833 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.982 TLI 0.973 Loglikelihood H0 Value -1223.232 H1 Value -1207.392 Information Criteria Number of Free Parameters 17 Akaike (AIC) 2480.465 Bayesian (BIC) 2524.753 Sample-Size Adjusted BIC 2471.062 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.082 90 Percent C.I. 0.023 0.130 Probability RMSEA <= .05 0.146 SRMR (Standardized Root Mean Square Residual) Value 0.059 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER1 1.000 0.000 0.000 1.292 0.950 PER2 1.048 0.073 14.320 1.354 0.879 PER3 0.806 0.093 8.678 1.041 0.690 PER4 1.018 0.071 14.241 1.315 0.877 F2 BY PER5 1.000 0.000 0.000 1.926 0.932 PER6 0.956 0.061 15.656 1.842 0.907 PER7 0.908 0.053 17.039 1.748 0.934 PER8 0.889 0.078 11.339 1.712 0.798 F4 BY F1 1.021 0.140 7.291 0.790 0.790 F2 1.021 0.140 7.291 0.530 0.530 Variances F4 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.178 0.061 2.948 0.178 0.097 PER2 0.540 0.100 5.422 0.540 0.228 PER3 1.195 0.179 6.683 1.195 0.524 PER4 0.519 0.095 5.459 0.519 0.231 PER5 0.564 0.124 4.557 0.564 0.132 PER6 0.728 0.137 5.318 0.728 0.177 PER7 0.450 0.100 4.478 0.450 0.128 PER8 1.674 0.260 6.438 1.674 0.363 F1 0.627 0.272 2.305 0.376 0.376 F2 2.668 0.519 5.142 0.719 0.719 R-SQUARE Observed Variable R-Square PER1 0.903 PER2 0.772 PER3 0.476 PER4 0.769 PER5 0.868 PER6 0.823 PER7 0.872 PER8 0.637 Latent Variable R-Square F1 0.624 F2 0.281
Page 156 Table 12.1 data set
title: page 156 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson-1.txt"; variable: names are id type per1 - per12; usevar per1-per12 type ; grouping is type (2 = gs 3 = fac); ! the values in () are necessary; model: f1 by per1* per2 - per4; f2 by per5* per6 - per8; f3 by per9* per10 - per12; ! the stars tell Mplus to estimate the parameter, ! by default, the parameter of the first variable ! listed is set to one. We don't need this b/c ! we have set the variances of the factors to ! equal one (see below); f1@1 f2@1 f3@1; ! setting the variance of the ! factors to equal one so that all of the ! parameters are estimated; model fac: f1 by per1* per2 - per4; f2 by per5* per6 - per8; f3 by per9* per10 - per12; ! You need this second model statement (with a name) ! because, by default, Mplus will constrain the ! parameter estimates to be the same in both groups. ! This is not what you want. However, the correlations ! and error variances are not constrained to be the same ! by default. output: standardized; SUMMARY OF ANALYSIS Number of groups 2 Number of observations Group GS 100 Group FAC 100 Number of dependent variables 12 Number of independent variables 0 Number of continuous latent variables 3 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 PER9 PER10 PER11 PER12 Continuous latent variables F1 F2 F3 Variables with special functions Grouping variable TYPE Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 136.390 Degrees of Freedom 102 P-Value 0.0130 Chi-Square Test of Model Fit for the Baseline Model Value 1793.727 Degrees of Freedom 132 P-Value 0.0000 CFI/TLI CFI 0.979 TLI 0.973 Loglikelihood H0 Value -3988.643 H1 Value -3920.448 Information Criteria Number of Free Parameters 54 Akaike (AIC) 8085.285 Bayesian (BIC) 8263.394 Sample-Size Adjusted BIC 8092.317 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.058 90 Percent C.I. 0.028 0.082 SRMR (Standardized Root Mean Square Residual) Value 0.057 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX Group GS F1 BY PER1 1.608 0.129 12.481 1.608 0.945 PER2 1.559 0.140 11.171 1.559 0.886 PER3 1.556 0.153 10.159 1.556 0.835 PER4 1.506 0.152 9.914 1.506 0.822 F2 BY PER5 1.730 0.150 11.496 1.730 0.907 PER6 1.439 0.166 8.648 1.439 0.753 PER7 1.647 0.148 11.150 1.647 0.890 PER8 1.734 0.172 10.068 1.734 0.834 F3 BY PER9 1.519 0.159 9.541 1.519 0.827 PER10 1.586 0.195 8.145 1.586 0.739 PER11 1.499 0.161 9.304 1.499 0.813 PER12 1.122 0.176 6.383 1.122 0.613 F2 WITH F1 0.569 0.075 7.590 0.569 0.569 F3 WITH F1 0.642 0.071 9.066 0.642 0.642 F2 0.567 0.081 7.013 0.567 0.567 Variances F1 1.000 0.000 0.000 1.000 1.000 F2 1.000 0.000 0.000 1.000 1.000 F3 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.308 0.090 3.428 0.308 0.106 PER2 0.666 0.124 5.384 0.666 0.215 PER3 1.052 0.174 6.059 1.052 0.303 PER4 1.090 0.177 6.162 1.090 0.325 PER5 0.649 0.151 4.308 0.649 0.178 PER6 1.580 0.250 6.317 1.580 0.433 PER7 0.713 0.150 4.767 0.713 0.208 PER8 1.312 0.229 5.724 1.312 0.304 PER9 1.066 0.228 4.681 1.066 0.316 PER10 2.094 0.363 5.764 2.094 0.454 PER11 1.155 0.235 4.917 1.155 0.340 PER12 2.097 0.326 6.430 2.097 0.625 Group FAC F1 BY PER1 1.283 0.103 12.420 1.283 0.944 PER2 1.358 0.123 11.072 1.358 0.882 PER3 1.045 0.135 7.761 1.045 0.692 PER4 1.323 0.119 11.089 1.323 0.882 F2 BY PER5 1.928 0.157 12.261 1.928 0.933 PER6 1.844 0.158 11.706 1.844 0.908 PER7 1.745 0.143 12.244 1.745 0.932 PER8 1.712 0.180 9.513 1.712 0.798 F3 BY PER9 1.070 0.190 5.629 1.070 0.577 PER10 1.386 0.190 7.296 1.386 0.716 PER11 0.991 0.149 6.649 0.991 0.662 PER12 0.792 0.174 4.563 0.792 0.480 F2 WITH F1 0.418 0.088 4.746 0.418 0.418 F3 WITH F1 0.689 0.076 9.008 0.689 0.689 F2 0.596 0.087 6.874 0.596 0.596 Variances F1 1.000 0.000 0.000 1.000 1.000 F2 1.000 0.000 0.000 1.000 1.000 F3 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.202 0.060 3.377 0.202 0.109 PER2 0.529 0.098 5.404 0.529 0.223 PER3 1.187 0.178 6.670 1.187 0.521 PER4 0.497 0.092 5.388 0.497 0.221 PER5 0.555 0.122 4.543 0.555 0.130 PER6 0.722 0.136 5.319 0.722 0.175 PER7 0.460 0.101 4.573 0.460 0.131 PER8 1.675 0.260 6.445 1.675 0.364 PER9 2.298 0.373 6.152 2.298 0.668 PER10 1.832 0.361 5.082 1.832 0.488 PER11 1.256 0.224 5.605 1.256 0.561 PER12 2.090 0.320 6.523 2.090 0.769 R-SQUARE Group GS Observed Variable R-Square PER1 0.894 PER2 0.785 PER3 0.697 PER4 0.675 PER5 0.822 PER6 0.567 PER7 0.792 PER8 0.696 PER9 0.684 PER10 0.546 PER11 0.660 PER12 0.375 Group FAC Observed Variable R-Square PER1 0.891 PER2 0.777 PER3 0.479 PER4 0.779 PER5 0.870 PER6 0.825 PER7 0.869 PER8 0.636 PER9 0.332 PER10 0.512 PER11 0.439 PER12 0.231
Page 158 Table 12.2
title: page 158 of Exploratory and Confirmatory Factor Analysis; data: file is "D:https://stats.idre.ucla.edu/wp-content/uploads/2016/02/thompson-1.txt"; variable: names are id type per1 - per12; usevar per1-per12 type ; grouping is type (2 = gs 3 = fac); ! the values in () are necessary; model: f1 by per1 - per4; f2 by per5 - per8; f3 by per10 per9 per11 per12; ! per10 is listed first because it needs to be ! constrained to equal 1, and the first variable ! listed is constrained to equal 1 by default. output: standardized; SUMMARY OF ANALYSIS Number of groups 2 Number of observations Group GS 100 Group FAC 100 Number of dependent variables 12 Number of independent variables 0 Number of continuous latent variables 3 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 PER9 PER10 PER11 PER12 Continuous latent variables F1 F2 F3 Variables with special functions Grouping variable TYPE Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 145.926 Degrees of Freedom 111 P-Value 0.0147 Chi-Square Test of Model Fit for the Baseline Model Value 1793.727 Degrees of Freedom 132 P-Value 0.0000 CFI/TLI CFI 0.979 TLI 0.975 Loglikelihood H0 Value -3993.411 H1 Value -3920.448 Information Criteria Number of Free Parameters 45 Akaike (AIC) 8076.821 Bayesian (BIC) 8225.246 Sample-Size Adjusted BIC 8082.681 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.056 90 Percent C.I. 0.026 0.080 SRMR (Standardized Root Mean Square Residual) Value 0.067 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX Group GS F1 BY PER1 1.000 0.000 0.000 1.593 0.944 PER2 1.009 0.049 20.403 1.606 0.893 PER3 0.911 0.060 15.294 1.451 0.812 PER4 0.989 0.052 18.862 1.575 0.834 F2 BY PER5 1.000 0.000 0.000 1.741 0.907 PER6 0.923 0.050 18.405 1.606 0.789 PER7 0.923 0.043 21.412 1.607 0.884 PER8 0.943 0.058 16.176 1.642 0.816 F3 BY PER10 1.000 0.000 0.000 1.684 0.763 PER9 0.896 0.096 9.360 1.509 0.825 PER11 0.860 0.091 9.444 1.448 0.798 PER12 0.658 0.092 7.128 1.108 0.607 F2 WITH F1 1.575 0.340 4.629 0.568 0.568 F3 WITH F1 1.719 0.367 4.689 0.641 0.641 F2 1.657 0.389 4.257 0.565 0.565
NOTE: The estimates 1.575, 1.719 and 1.657 are covariances. The values given in the StdYX column are correlations (which are standardized covariances). The values in the Estimates (covariances) and StdYX (correlations) columns are often the same because we often constrain the variances of the factors to equal 1. In this case, we did not, so we get both the covariance and the correlation estimates.
Variances F1 2.537 0.395 6.418 1.000 1.000 F2 3.030 0.489 6.192 1.000 1.000 F3 2.837 0.613 4.625 1.000 1.000 Residual Variances PER1 0.313 0.087 3.613 0.313 0.110 PER2 0.655 0.124 5.297 0.655 0.202 PER3 1.088 0.174 6.248 1.088 0.341 PER4 1.083 0.178 6.099 1.083 0.304 PER5 0.650 0.147 4.411 0.650 0.177 PER6 1.566 0.254 6.161 1.566 0.378 PER7 0.718 0.144 5.003 0.718 0.218 PER8 1.352 0.227 5.945 1.352 0.334 PER9 1.070 0.224 4.781 1.070 0.320 PER10 2.037 0.364 5.599 2.037 0.418 PER11 1.195 0.230 5.196 1.195 0.363 PER12 2.101 0.325 6.469 2.101 0.631 Group FAC F1 BY PER1 1.000 0.000 0.000 1.297 0.947 PER2 1.009 0.049 20.403 1.308 0.870 PER3 0.911 0.060 15.294 1.182 0.735 PER4 0.989 0.052 18.862 1.282 0.874 F2 BY PER5 1.000 0.000 0.000 1.919 0.932 PER6 0.923 0.050 18.405 1.770 0.898 PER7 0.923 0.043 21.412 1.771 0.935 PER8 0.943 0.058 16.176 1.809 0.814 F3 BY PER10 1.000 0.000 0.000 1.230 0.658 PER9 0.896 0.096 9.360 1.102 0.589 PER11 0.860 0.091 9.444 1.058 0.690 PER12 0.658 0.092 7.128 0.809 0.488 F2 WITH F1 1.050 0.285 3.685 0.422 0.422 F3 WITH F1 1.115 0.236 4.725 0.699 0.699 F2 1.423 0.334 4.257 0.603 0.603 Variances F1 1.682 0.261 6.438 1.000 1.000 F2 3.681 0.582 6.324 1.000 1.000 F3 1.513 0.360 4.200 1.000 1.000 Residual Variances PER1 0.194 0.058 3.318 0.194 0.103 PER2 0.547 0.097 5.647 0.547 0.242 PER3 1.186 0.180 6.574 1.186 0.459 PER4 0.509 0.091 5.580 0.509 0.236 PER5 0.558 0.121 4.617 0.558 0.132 PER6 0.752 0.135 5.548 0.752 0.194 PER7 0.450 0.100 4.479 0.450 0.125 PER8 1.668 0.261 6.380 1.668 0.337 PER9 2.286 0.368 6.218 2.286 0.653 PER10 1.984 0.342 5.795 1.984 0.567 PER11 1.232 0.223 5.531 1.232 0.524 PER12 2.090 0.318 6.568 2.090 0.762 R-SQUARE Group GS Observed Variable R-Square PER1 0.890 PER2 0.798 PER3 0.659 PER4 0.696 PER5 0.823 PER6 0.622 PER7 0.782 PER8 0.666 PER9 0.680 PER10 0.582 PER11 0.637 PER12 0.369 Group FAC Observed Variable R-Square PER1 0.897 PER2 0.758 PER3 0.541 PER4 0.764 PER5 0.868 PER6 0.806 PER7 0.875 PER8 0.663 PER9 0.347 PER10 0.433 PER11 0.476 PER12 0.238
Page 161 Table 12.3
title: page 158 of Exploratory and Confirmatory Factor Analysis; data: file is "D:thompson_fac.txt"; variable: names are id type per1 - per12; usevar per1-per12; model: f1 by per1@1.61 per2@1.60 per3@1.56 per4@1.51; f2 by per5@1.73 per6@1.44 per7@1.65 per8@1.73; f3 by per9@1.52 per10@1.59 per11@1.50 per12@1.12; f1@1 f2@1 f3@1; output: standardized; SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 12 Number of independent variables 0 Number of continuous latent variables 3 Observed dependent variables Continuous PER1 PER2 PER3 PER4 PER5 PER6 PER7 PER8 PER9 PER10 PER11 PER12 Continuous latent variables F1 F2 F3 Estimator ML Information matrix EXPECTED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 107.174 Degrees of Freedom 63 P-Value 0.0004 Chi-Square Test of Model Fit for the Baseline Model Value 889.592 Degrees of Freedom 66 P-Value 0.0000 CFI/TLI CFI 0.946 TLI 0.944 Loglikelihood H0 Value -1967.880 H1 Value -1914.293 Information Criteria Number of Free Parameters 15 Akaike (AIC) 3965.759 Bayesian (BIC) 4004.837 Sample-Size Adjusted BIC 3957.463 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.084 90 Percent C.I. 0.056 0.110 Probability RMSEA <= .05 0.027 SRMR (Standardized Root Mean Square Residual) Value 0.262 MODEL RESULTS Estimates S.E. Est./S.E. Std StdYX F1 BY PER1 1.610 0.000 0.000 1.610 0.966 PER2 1.600 0.000 0.000 1.600 0.908 PER3 1.560 0.000 0.000 1.560 0.816 PER4 1.510 0.000 0.000 1.510 0.901 F2 BY PER5 1.730 0.000 0.000 1.730 0.917 PER6 1.440 0.000 0.000 1.440 0.837 PER7 1.650 0.000 0.000 1.650 0.929 PER8 1.730 0.000 0.000 1.730 0.801 F3 BY PER9 1.520 0.000 0.000 1.520 0.709 PER10 1.590 0.000 0.000 1.590 0.754 PER11 1.500 0.000 0.000 1.500 0.808 PER12 1.120 0.000 0.000 1.120 0.613 F2 WITH F1 0.461 0.077 6.005 0.461 0.461 F3 WITH F1 0.785 0.048 16.463 0.785 0.785 F2 0.575 0.075 7.646 0.575 0.575 Variances F1 1.000 0.000 0.000 1.000 1.000 F2 1.000 0.000 0.000 1.000 1.000 F3 1.000 0.000 0.000 1.000 1.000 Residual Variances PER1 0.185 0.057 3.245 0.185 0.067 PER2 0.547 0.096 5.701 0.547 0.176 PER3 1.218 0.187 6.525 1.218 0.334 PER4 0.527 0.091 5.817 0.527 0.188 PER5 0.569 0.121 4.722 0.569 0.160 PER6 0.888 0.146 6.073 0.888 0.300 PER7 0.430 0.100 4.280 0.430 0.136 PER8 1.674 0.265 6.313 1.674 0.359 PER9 2.292 0.375 6.120 2.292 0.498 PER10 1.916 0.329 5.816 1.916 0.431 PER11 1.194 0.227 5.255 1.194 0.347 PER12 2.086 0.321 6.510 2.086 0.625 R-SQUARE Observed Variable R-Square PER1 0.933 PER2 0.824 PER3 0.666 PER4 0.812 PER5 0.840 PER6 0.700 PER7 0.864 PER8 0.641 PER9 0.502 PER10 0.569 PER11 0.653 PER12 0.375