Table 4.1, p. 47.
Estimating the intercept only model using langpost as the dependent variable, schoolnr as level 2 (group level) and pupilnr as level 1 (individual level).
Title: Random intercept model with no covariate Data: File is mlbook1.dat ; Variable: Names are schoolnr pupilnr iq_verb iq_perf sex minority repeatgr aritpret classnr aritpost langpret langpost ses denomina schoolse satiprin natitest meetings currmeet mixedgra percmino aritdiff homework classsiz groupsiz; Missing are all (-9999) ; usevar langpost schoolnr; cluster = schoolnr; Analysis: Type = twolevel random ; estimator = ml; model: %within% langpost; %between% langpost;
Loglikelihood
H0 Value -8126.609 H1 Value -8126.609
Information Criteria
Number of Free Parameters 3 Akaike (AIC) 16259.219 Bayesian (BIC) 16276.424 Sample-Size Adjusted BIC 16266.892 (n* = (n + 2) / 24)
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
SRMR (Standardized Root Mean Square Residual)
Value for Between 0.000 Value for Within 0.000
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
Variances LANGPOST 64.562 1.973 32.731
Between Level
Means LANGPOST 40.363 0.428 94.405
Variances LANGPOST 19.471 3.111 6.259
Table 4.2, p. 49.
The model includes only the predictor gndc_verb.
Title: Random intercept model with a covariate; Data: File is h:xiaomlbook1.dat ; Variable: Names are schoolnr pupilnr iq_verb iq_perf sex minority repeatgr aritpret classnr aritpost langpret langpost ses denomina schoolse satiprin natitest meetings currmeet mixedgra percmino aritdiff homework classsiz groupsiz; Missing are all (-9999) ; within = iq_verb; usevar langpost schoolnr iq_verb; cluster = schoolnr; centering = grandmean(iq_verb); Analysis: Type = twolevel random; estimator = ml; model: %within% langpost on iq_verb; %between% langpost;
Loglikelihood H0 Value -7625.887 H1 Value -7625.886 Information Criteria Number of Free Parameters 4 Akaike (AIC) 15259.773 Bayesian (BIC) 15282.713 Sample-Size Adjusted BIC 15270.004 (n* = (n + 2) / 24) RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 SRMR (Standardized Root Mean Square Residual) Value for Between 0.000 Value for Within 0.000 MODEL RESULTS Estimates S.E. Est./S.E. Within Level LANGPOST ON IQ_VERB 2.488 0.071 35.275 Residual Variances LANGPOST 42.225 1.288 32.774 Between Level Means LANGPOST 40.609 0.308 132.005 Variances LANGPOST 9.515 1.577 6.032
Table 4.3 on page 51, ordinary least squares regression
Title: OLS regression; Data: File is mlbook1.dat ; Variable: Names are schoolnr pupilnr iq_verb iq_perf sex minority repeatgr aritpret classnr aritpost langpret langpost ses denomina schoolse satiprin natitest meetings currmeet mixedgra percmino aritdiff homework classsiz groupsiz; Missing are all (-9999) ; usevar langpost iq_verb; centering = grandmean(iq_verb); Analysis: Type = meanstructure; model: langpost on iq_verb;
MODEL RESULTS
Estimates S.E. Est./S.E.
LANGPOST ON IQ_VERB 2.654 0.072 36.797
Intercepts LANGPOST 40.935 0.149 274.397
Residual Variances LANGPOST 50.897 1.505 33.816
Table 4.4 on page 55, within- and between-group regression
Title: iq_verbc is grandmean centered version of iq_verb; iqbar is the group-mean centered version of iq_verbc; Data: File is mlbook1_a.dat ; Variable: Names are schoolnr pupilnr iq_verb iq_perf sex minority repeatgr aritpret classnr aritpost langpret langpost ses denomina schoolses satiprin natitest meetings currmeet mixedgra percmino aritdiff homework classsiz groupsiz iq_verbc iqbar; Missing are all (-9999) ; usevar langpost iq_verbc iqbar; within = iq_verbc; between iqbar; cluster = schoolnr; Analysis: Type = twolevel random; estimator = ml; model: %within% langpost on iq_verbc; %between% langpost on iqbar;
Loglikelihood
H0 Value -7613.774 H1 Value -7613.774
Information Criteria
Number of Free Parameters 5 Akaike (AIC) 15237.548 Bayesian (BIC) 15266.223 Sample-Size Adjusted BIC 15250.338 (n* = (n + 2) / 24)
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
SRMR (Standardized Root Mean Square Residual)
Value for Between 0.000 Value for Within 0.000
MODEL RESULTS
Estimates S.E. Est./S.E.
Within Level
LANGPOST ON IQ_VERBC 2.414 0.072 33.691
Residual Variances LANGPOST 42.149 1.284 32.826
Between Level
LANGPOST ON IQBAR 1.593 0.313 5.089
Intercepts LANGPOST 40.741 0.285 143.038
Residual Variances LANGPOST 7.743 1.313 5.897
Table 4.5, on page 64. Currently Mplus 3 does not allow three-level modeling yet.