Consider this seemingly unrelated regression using Stata.
use https://stats.idre.ucla.edu/stat/stata/notes/hsb2 sureg (read write math science) (socst write math science)
Seemingly unrelated regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- read 200 3 6.930412 0.5408 235.54 0.0000 socst 200 3 8.180626 0.4164 142.73 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- read | write | .2376706 .0689943 3.44 0.001 .1024443 .3728968 math | .3784015 .0738838 5.12 0.000 .2335919 .5232111 science | .2969347 .0669546 4.43 0.000 .1657061 .4281633 _cons | 4.369926 3.176527 1.38 0.169 -1.855954 10.59581 -------------+---------------------------------------------------------------- socst | write | .4656741 .0814405 5.72 0.000 .3060536 .6252946 math | .2763008 .0872121 3.17 0.002 .1053682 .4472334 science | .0851168 .0790329 1.08 0.281 -.0697848 .2400185 _cons | 8.869885 3.749558 2.37 0.018 1.520886 16.21888 ------------------------------------------------------------------------------
You could preface the command with the bootstrap prefix, as illustrated below, to obtain bias corrected bootstrap standard errors based on 20,000 replications.
bootstrap, reps(20000) bca: sureg (read write math science) (socst write math science)
Seemingly unrelated regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- read 200 3 6.930412 0.5408 235.54 0.0000 socst 200 3 8.180626 0.4164 142.73 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Bootstrap | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- read | write | .2376706 .0689077 3.45 0.001 .1026139 .3727272 math | .3784015 .072022 5.25 0.000 .2372409 .5195621 science | .2969347 .0732453 4.05 0.000 .1533766 .4404928 _cons | 4.369926 2.958737 1.48 0.140 -1.429093 10.16894 -------------+---------------------------------------------------------------- socst | write | .4656741 .0915943 5.08 0.000 .2861525 .6451957 math | .2763008 .0941304 2.94 0.003 .0918087 .4607929 science | .0851168 .0842935 1.01 0.313 -.0800954 .250329 _cons | 8.869885 3.412316 2.60 0.009 2.181869 15.5579 ------------------------------------------------------------------------------
The same analysis can be run in Mplus and obtaining bias corrected standard errors. Here we run this based on the https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb2.dat data file. Note that in the analysis section we use the bootstrap = 20000; command to request 20,000 bootstrap iterations, and then in the output section we use cinterval (bcbootstrap); to request confidence intervals using bias corrected bootstrap standard errors (by using bootstrap in place of bcbootstap we would get bootstrap standard errors that were not bias corrected).
As you compare the first analysis (with standard confidence intervals) with the second analysis (with bootstrap confidence intervals), note the slight discrepancies in the confidence intervals for _cons for the two equations.
Title: Bootstrap standard errors. Data: File = https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb2.dat ; Variable: Names = id female race ses schtyp prog read write math science socst; usevar = read socst write math science; Analysis: Type = meanstructure ; bootstrap = 20000; model: read on write math science ; socst on write math science; output: cinterval (bcbootstrap);
And here is the output.
MODEL RESULTS Estimates S.E. Est./S.E. READ ON WRITE 0.238 0.070 3.410 MATH 0.378 0.072 5.271 SCIENCE 0.297 0.073 4.052 SOCST ON WRITE 0.466 0.091 5.122 MATH 0.276 0.094 2.931 SCIENCE 0.085 0.085 1.004 SOCST WITH READ 18.286 4.168 4.387 Intercepts READ 4.370 2.947 1.483 SOCST 8.870 3.420 2.594 Residual Variances READ 48.030 4.419 10.869 SOCST 66.922 6.326 10.579 CONFIDENCE INTERVALS OF MODEL RESULTS Lower .5% Lower 2.5% Estimates Upper 2.5% Upper .5% READ ON WRITE 0.055 0.101 0.238 0.374 0.414 MATH 0.200 0.240 0.378 0.521 0.566 SCIENCE 0.101 0.148 0.297 0.434 0.478 SOCST ON WRITE 0.226 0.284 0.466 0.640 0.694 MATH 0.036 0.093 0.276 0.461 0.523 SCIENCE -0.135 -0.083 0.085 0.249 0.303 SOCST WITH READ 8.219 10.776 18.286 27.222 30.064 Intercepts READ -3.200 -1.351 4.370 10.152 12.136 SOCST 0.140 2.260 8.870 15.653 18.054 Residual Variances READ 38.242 40.671 48.030 58.322 61.399 SOCST 52.587 56.277 66.922 81.379 85.557
The first and last column represent the LCL and UCL for a 99% confidence interval, and the second and fourth columns represent the LCL and UCL for a 95% confidence interval. The middle (third) column contains the point estimate for each of the parameters.
Note how the Mplus confidence intervalue for the Intercepts change in a similar way to the Stata values for _cons when using the bootstrap confidence intervals.