This page was created using Mplus version 5.2, the output and/or syntax may be different for other versions of Mplus.
This page shows an example exploratory factor analysis in Mplus with both categorical and continuous variables. The dataset for this example includes data on 1428 college students and their instructors. You can download the dataset by clicking on https://stats.idre.ucla.edu/wp-content/uploads/2016/02/fa_categorical.dat. The factor analysis will include dichotomous variables, including faculty sex (facsex) and faculty nationality (US citizen or foreign citizen, facnat); ordered categorical variables, including faculty rank (facrank), student rank (studrank) and grade (A, B, C, etc., grade); and the continuous variables faculty salary (salary), years teaching at the University of Texas (yrsut), and number of students in the class (nstud) in this analysis. These variables were selected to represent a range of types of variables (i.e. dichotomous, ordered categorical, and continuous), and do not necessarily form substantively meaningful factors.
Below is the Mplus input file for our model. The categorical variables, both dichotomous and ordered categorical, are listed in the categorical option of the variable command. Note that the nominal option is used to specify that variables are unordered categorical (none of the variables in this model are nominal so that option was not used). We indicate the type of analysis that we would like to do, exploratory factor analysis (efa), using the type option of the analysis command. The numbers after efa indicate the minimum and maximum number of factors to be extracted. By using 3 3, we indicate that we want only a three-factor solution. We have done this to save space. We suggest that you use a reasonable range here, and each solution will be shown in the output. For example, if we had 2 4 at the end of the option, we would see the two-factor, three-factor and four-factor solution in the output. The missing option of the variable command informs Mplus that in the data file any missing values are represented by -9999.
Data:: File is https://stats.idre.ucla.edu/wp-content/uploads/2016/02/fa_categorical.dat ; Variable: Names are facsex facnat facrank salary yrsut nstud studrank grade; Missing are all (-9999) ; Categorical are facsex facnat facrank studrank grade; Analysis: Type = efa 3 3;
The output for this model is shown below. The results of this analysis are interpreted in a manner similar to an exploratory factor analysis with all continuous variables.
SUMMARY OF ANALYSIS Number of groups 1 Number of observations 1428 Number of dependent variables 8 Number of independent variables 0 Number of continuous latent variables 0 Observed dependent variables Continuous SALARY YRSUT NSTUD Binary and ordered categorical (ordinal) FACSEX FACNAT FACRANK STUDRANK GRADE Estimator WLSM Rotation GEOMIN Row standardization CORRELATION Type of rotation OBLIQUE Epsilon value Varies Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Optimization Specifications for the Exploratory Factor Analysis Rotation Algorithm Number of random starts 30 Maximum number of iterations 10000 Derivative convergence criterion 0.100D-04 Input data file(s) https://stats.idre.ucla.edu/wp-content/uploads/2016/02/fa_categorical.dat Input data format FREE SUMMARY OF DATA Number of missing data patterns 3 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage FACSEX FACNAT FACRANK SALARY YRSUT ________ ________ ________ ________ ________ FACSEX 1.000 FACNAT 1.000 1.000 FACRANK 1.000 1.000 1.000 SALARY 1.000 1.000 1.000 1.000 YRSUT 0.945 0.945 0.945 0.945 0.945 NSTUD 1.000 1.000 1.000 1.000 0.945 STUDRANK 0.992 0.992 0.992 0.992 0.937 GRADE 1.000 1.000 1.000 1.000 0.945 Covariance Coverage NSTUD STUDRANK GRADE ________ ________ ________ NSTUD 1.000 STUDRANK 0.992 0.992 GRADE 1.000 0.992 1.000 SUMMARY OF CATEGORICAL DATA PROPORTIONS FACSEX Category 1 0.595 Category 2 0.405 FACNAT Category 1 0.840 Category 2 0.160 FACRANK Category 1 0.230 Category 2 0.270 Category 3 0.343 Category 4 0.156 STUDRANK Category 1 0.171 Category 2 0.212 Category 3 0.250 Category 4 0.242 Category 5 0.125 GRADE Category 1 0.005 Category 2 0.023 Category 3 0.204 Category 4 0.476 Category 5 0.291 RESULTS FOR EXPLORATORY FACTOR ANALYSIS EIGENVALUES FOR SAMPLE CORRELATION MATRIX 1 2 3 4 5 ________ ________ ________ ________ ________ 1 2.821 1.763 1.107 0.809 0.590 EIGENVALUES FOR SAMPLE CORRELATION MATRIX 6 7 8 ________ ________ ________ 1 0.448 0.329 0.135 EXPLORATORY FACTOR ANALYSIS WITH 3 FACTOR(S): TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 64.604* Degrees of Freedom 7 P-Value 0.0000 Scaling Correction Factor 0.373 for MLR * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus User's Guide. Chi-Square Test of Model Fit for the Baseline Model Value 3734.662 Degrees of Freedom 28 P-Value 0.0000 CFI/TLI CFI 0.984 TLI 0.938 Number of Free Parameters 24 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.076 MINIMUM ROTATION FUNCTION VALUE 0.22117 GEOMIN ROTATED LOADINGS 1 2 3 ________ ________ ________ FACSEX -0.447 -0.655 0.004 FACNAT -0.457 0.374 -0.007 FACRANK 1.009 -0.016 0.069 SALARY 0.756 0.067 0.114 YRSUT 0.668 -0.324 -0.029 NSTUD -0.002 0.650 -0.289 STUDRANK -0.005 -0.007 0.767 GRADE 0.007 -0.001 0.274 GEOMIN FACTOR CORRELATIONS 1 2 3 ________ ________ ________ 1 1.000 2 -0.121 1.000 3 -0.023 -0.207 1.000 ESTIMATED RESIDUAL VARIANCES FACSEX FACNAT FACRANK SALARY YRSUT ________ ________ ________ ________ ________ 1 0.440 0.609 -0.024 0.430 0.398 ESTIMATED RESIDUAL VARIANCES NSTUD STUDRANK GRADE ________ ________ ________ 1 0.417 0.409 0.925 S.E. GEOMIN ROTATED LOADINGS 1 2 3 ________ ________ ________ FACSEX 0.043 0.064 0.002 FACNAT 0.030 0.040 0.021 FACRANK 0.013 0.005 0.066 SALARY 0.016 0.028 0.058 YRSUT 0.021 0.038 0.050 NSTUD 0.001 0.049 0.062 STUDRANK 0.006 0.012 0.110 GRADE 0.028 0.045 0.050 S.E. GEOMIN FACTOR CORRELATIONS 1 2 3 ________ ________ ________ 1 0.000 2 0.054 0.000 3 0.063 0.063 0.000 S.E. ESTIMATED RESIDUAL VARIANCES FACSEX FACNAT FACRANK SALARY YRSUT ________ ________ ________ ________ ________ 1 0.083 0.034 0.025 0.021 0.027 S.E. ESTIMATED RESIDUAL VARIANCES NSTUD STUDRANK GRADE ________ ________ ________ 1 0.076 0.166 0.025 Est./S.E. GEOMIN ROTATED LOADINGS 1 2 3 ________ ________ ________ FACSEX -10.394 -10.166 1.969 FACNAT -15.178 9.421 -0.350 FACRANK 77.424 -2.962 1.054 SALARY 48.518 2.412 1.979 YRSUT 31.658 -8.535 -0.590 NSTUD -2.271 13.136 -4.637 STUDRANK -0.859 -0.609 6.961 GRADE 0.253 -0.012 5.434 Est./S.E. GEOMIN FACTOR CORRELATIONS 1 2 3 ________ ________ ________ 1 0.000 2 -2.260 0.000 3 -0.365 -3.308 0.000 Est./S.E. ESTIMATED RESIDUAL VARIANCES FACSEX FACNAT FACRANK SALARY YRSUT ________ ________ ________ ________ ________ 1 5.331 17.653 -0.952 20.375 14.900 Est./S.E. ESTIMATED RESIDUAL VARIANCES NSTUD STUDRANK GRADE ________ ________ ________ 1 5.487 2.458 37.379 FACTOR STRUCTURE 1 2 3 ________ ________ ________ FACSEX -0.368 -0.602 0.150 FACNAT -0.502 0.431 -0.074 FACRANK 1.009 -0.153 0.049 SALARY 0.745 -0.049 0.083 YRSUT 0.708 -0.399 0.022 NSTUD -0.074 0.710 -0.423 STUDRANK -0.022 -0.165 0.769 GRADE 0.001 -0.058 0.274 FACTOR DETERMINACIES 1 2 3 ________ ________ ________ 1 1.012 0.847 0.800