Mplus version 5.2 was used for these examples.
1.0 Descriptive statistics in Mplus
To indicate to Mplus that you want basic descriptive statistics (means, variances, covariances and correlations), you need to enter Type = basic; in the analysis command block. If you would like to be able to view histograms or scatterplots of some of your variables, you can add a plot command block. These types of univariate and bivariate graphs are plot1 types of graphs.
The data set is https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb-1.dat .
Title: Entering data example free format using https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb-1.dat Data: File is "D:/https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb-1.dat"; Variable: Names are id female race ses schtyp prog read write math science socst; Usevariables are id female race ses schtyp prog read write math science socst; Analysis: Type = basic; Plot: Type is plot1;
Here is the output that Mplus generates.
SUMMARY OF ANALYSIS Number of groups 1 Number of observations 200 Number of dependent variables 11 Number of independent variables 0 Number of continuous latent variables 0 Observed dependent variables Continuous READ WRITE MATH ID FEMALE RACE SES SCHTYP PROG SCIENCE SOCST Estimator ML Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Input data file(s) D:/https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb-1.dat Input data format FREE RESULTS FOR BASIC ANALYSIS SAMPLE STATISTICS Means READ WRITE MATH ID FEMALE ________ ________ ________ ________ ________ 1 52.230 52.775 52.645 100.500 0.545 Means RACE SES SCHTYP PROG SCIENCE ________ ________ ________ ________ ________ 1 3.430 2.055 1.160 2.025 51.850 Means SOCST ________ 1 52.405 Covariances READ WRITE MATH ID FEMALE ________ ________ ________ ________ ________ READ 105.123 WRITE 57.997 89.844 MATH 63.615 54.829 87.768 ID 88.196 102.420 118.877 3350.000 FEMALE -0.272 1.214 -0.137 -2.520 0.249 RACE 2.594 2.168 1.973 45.050 0.001 SES 2.178 1.424 1.849 8.842 -0.045 SCHTYP 0.325 0.443 0.338 10.261 0.003 PROG -0.956 -1.185 -0.971 -2.319 0.001 SCIENCE 63.969 53.534 58.504 184.181 -0.631 SOCST 68.409 61.544 54.763 113.902 0.281 Covariances RACE SES SCHTYP PROG SCIENCE ________ ________ ________ ________ ________ RACE 1.081 SES 0.147 0.525 SCHTYP 0.041 0.036 0.135 PROG -0.036 0.009 -0.024 0.477 SCIENCE 3.296 2.028 0.235 -1.298 98.028 SOCST 2.121 2.581 0.382 -1.447 49.438 Covariances SOCST ________ SOCST 115.257 Correlations READ WRITE MATH ID FEMALE ________ ________ ________ ________ ________ READ 1.000 WRITE 0.597 1.000 MATH 0.662 0.617 1.000 ID 0.149 0.187 0.219 1.000 FEMALE -0.053 0.256 -0.029 -0.087 1.000 RACE 0.243 0.220 0.203 0.749 0.001 SES 0.293 0.207 0.272 0.211 -0.125 SCHTYP 0.086 0.127 0.098 0.482 0.015 PROG -0.135 -0.181 -0.150 -0.058 0.004 SCIENCE 0.630 0.570 0.631 0.321 -0.128 SOCST 0.621 0.605 0.544 0.183 0.052 Correlations RACE SES SCHTYP PROG SCIENCE ________ ________ ________ ________ ________ RACE 1.000 SES 0.195 1.000 SCHTYP 0.108 0.137 1.000 PROG -0.050 0.017 -0.095 1.000 SCIENCE 0.320 0.283 0.065 -0.190 1.000 SOCST 0.190 0.332 0.097 -0.195 0.465 Correlations SOCST ________ SOCST 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values) Scatterplots (sample values) Beginning Time: 11:35:42 Ending Time: 11:35:43 Elapsed Time: 00:00:01
You can compare these summary statistics to those found in another software package or by hand to ensure that you have read the data into Mplus correctly. To view plots, you can select Graph, View graphs or press Alt-V to open the dialog box below.
From here, you can select Histograms and choose read from the drop down menu to get the plot below.
Alternatively, you can select Scatterplots and choose to look at math and write.
2.0 Descriptive statistics with missing data without listwise deletion
Next, we will look at a dataset with missing data. This time we will not include the id variable in the analyses. We will use the hsbmis.dat datafile and hsbmis.inp command file created by Stata in the previous section to demonstrate the descriptive statistics.
Data: File is "D:hsbmis.dat" ; Variable: Names are id female race ses schtyp prog read write math science socst; Missing are all (-9999) ; Usevariables are female race ses schtyp prog read write math science socst; Analysis: type = basic missing ; ! note we added missing
Here is the output generated by Mplus.
SUMMARY OF ANALYSIS Number of groups 1 Number of observations 200 Number of dependent variables 11 Number of independent variables 0 Number of continuous latent variables 0 Observed dependent variables Continuous ID FEMALE RACE SES SCHTYP PROG READ WRITE MATH SCIENCE SOCST Estimator ML Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Input data file(s) D:hsbmis.dat Input data format FREE SUMMARY OF DATA Number of missing data patterns 7 SUMMARY OF MISSING DATA PATTERNS MISSING DATA PATTERNS (x = not missing) 1 2 3 4 5 6 7 ID x x x x x x x FEMALE x x x x x x RACE x x x x x x x SES x x x x x x x SCHTYP x x x x x x x PROG x x x x x x x READ x x x x x x WRITE x x x x x x MATH x x x x x x SCIENCE x x x x x x SOCST x x x x x x MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern Frequency Pattern Frequency 1 138 4 12 7 6 2 5 5 14 3 14 6 11 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage ID FEMALE RACE SES SCHTYP ________ ________ ________ ________ ________ ID 1.000 FEMALE 0.970 0.970 RACE 1.000 0.970 1.000 SES 1.000 0.970 1.000 1.000 SCHTYP 1.000 0.970 1.000 1.000 1.000 PROG 1.000 0.970 1.000 1.000 1.000 READ 0.945 0.915 0.945 0.945 0.945 WRITE 0.930 0.900 0.930 0.930 0.930 MATH 0.940 0.910 0.940 0.940 0.940 SCIENCE 0.930 0.900 0.930 0.930 0.930 SOCST 0.975 0.945 0.975 0.975 0.975 Covariance Coverage PROG READ WRITE MATH SCIENCE ________ ________ ________ ________ ________ PROG 1.000 READ 0.945 0.945 WRITE 0.930 0.875 0.930 MATH 0.940 0.885 0.870 0.940 SCIENCE 0.930 0.875 0.860 0.870 0.930 SOCST 0.975 0.920 0.905 0.915 0.905 Covariance Coverage SOCST ________ SOCST 0.975 RESULTS FOR BASIC ANALYSIS ESTIMATED SAMPLE STATISTICS Means ID FEMALE RACE SES SCHTYP ________ ________ ________ ________ ________ 1 100.500 0.546 3.430 2.055 1.160 Means PROG READ WRITE MATH SCIENCE ________ ________ ________ ________ ________ 1 2.025 52.361 52.560 52.796 51.839 Means SOCST ________ 1 52.353 Covariances ID FEMALE RACE SES SCHTYP ________ ________ ________ ________ ________ ID 3333.250 FEMALE -1.848 0.247 RACE 44.825 0.015 1.075 SES 8.797 -0.041 0.146 0.522 SCHTYP 10.210 0.002 0.041 0.036 0.134 PROG -2.308 0.008 -0.036 0.009 -0.024 READ 87.947 -0.281 2.622 2.285 0.350 WRITE 100.623 1.199 2.052 1.386 0.475 MATH 120.213 -0.249 2.086 1.680 0.240 SCIENCE 168.152 -0.602 3.084 1.861 0.290 SOCST 113.330 0.252 2.035 2.546 0.388 Covariances PROG READ WRITE MATH SCIENCE ________ ________ ________ ________ ________ PROG 0.474 READ -0.964 104.529 WRITE -1.197 56.743 88.262 MATH -1.117 61.541 53.418 84.921 SCIENCE -1.456 63.739 54.726 58.634 94.130 SOCST -1.432 67.903 60.147 50.856 50.528 Covariances SOCST ________ SOCST 115.411 Correlations ID FEMALE RACE SES SCHTYP ________ ________ ________ ________ ________ ID 1.000 FEMALE -0.064 1.000 RACE 0.749 0.029 1.000 SES 0.211 -0.114 0.195 1.000 SCHTYP 0.482 0.013 0.108 0.137 1.000 PROG -0.058 0.023 -0.050 0.017 -0.095 READ 0.149 -0.055 0.247 0.309 0.093 WRITE 0.186 0.256 0.211 0.204 0.138 MATH 0.226 -0.054 0.218 0.252 0.071 SCIENCE 0.300 -0.125 0.307 0.265 0.082 SOCST 0.183 0.047 0.183 0.328 0.099 Correlations PROG READ WRITE MATH SCIENCE ________ ________ ________ ________ ________ PROG 1.000 READ -0.137 1.000 WRITE -0.185 0.591 1.000 MATH -0.176 0.653 0.617 1.000 SCIENCE -0.218 0.643 0.600 0.656 1.000 SOCST -0.194 0.618 0.596 0.514 0.485 Correlations SOCST ________ SOCST 1.000 MAXIMUM LOG-LIKELIHOOD VALUE FOR THE UNRESTRICTED (H1) MODEL IS -5102.296 Beginning Time: 11:56:08 Ending Time: 11:56:08 Elapsed Time: 00:00:00
Because we indicated that our data included missing values, our basic output included “SUMMARY OF MISSING DATA PATTERNS” in which we can see which combinations of variables are missing for how many observations in our data. From this section of output, we can see that we have 138 complete observations and no more than one missing variable in any of our other observations.
2.1 Descriptive statistics with missing data with listwise deletion
You might also notice that the descriptive statistics from Mplus do not match with the output from a standard statistics software package, such as SPSS, Stata or SAS, when missing data are present. This is because that by default Mplus uses the maximum likelihood estimation, and it uses all the available values instead of doing the listwise deletion, which is the default behavior in SPSS, Stata or SAS. For the purpose of checking data, you can request that Mplus does listwise deletion as well. Here is the syntax.
Data: File is "D:hsbmis.dat" ; listwise = on; Variable: Names are id female race ses schtyp prog read write math science socst; Missing are all (-9999) ; Usevariables are female race ses schtyp prog read write math science socst; Analysis: type = basic ;