One way of getting robust standard errors for OLS regression parameter estimates in SAS is via proc surveyreg. Here are two examples using hsb2.sas7bdat.
proc reg data = hsb2;
model write = female math;
run;
quit; Parameter Estimates
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 16.61374 2.90896 5.71 <.0001
FEMALE 1 5.21838 0.99751 5.23 <.0001
MATH 1 0.63287 0.05315 11.91 <.0001
Example 1
proc surveyreg data = hsb2; cluster ses; model write = female math; run; quit;
Estimated Regression Coefficients
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 16.6137389 1.06324657 15.63 0.0041
FEMALE 5.2183771 0.78520124 6.65 0.0219
MATH 0.6328663 0.03540689 17.87 0.0031
NOTE: The denominator degrees of freedom for the t tests is 2.
Example 2
If we only want robust standard errors, we can specify the cluster variable to be the identifier variable.
proc surveyreg data = hsb2; cluster id; model write = female math; run; quit;
Estimated Regression Coefficients
Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 16.6137389 2.69631975 6.16 <.0001
FEMALE 5.2183771 1.02236809 5.10 <.0001
MATH 0.6328663 0.04627457 13.68 <.0001
NOTE: The denominator degrees of freedom for the t tests is 199
