Inputting training school data, table 28.1, p. 1122.
data training; input score A B classes; label A = 'School' B = 'Instructor'; cards; 25 1 1 1 29 1 1 2 14 1 2 1 11 1 2 2 11 2 1 1 6 2 1 2 22 2 2 1 18 2 2 2 17 3 1 1 20 3 1 2 5 3 2 1 2 3 2 2 ; run;
Obtaining the factor means and the grand mean, table 28.1, p. 1122. Using proc glm is more efficient than using multiple proc means.
Note: The score mean in the output is the grand mean.
proc glm data=training; class A B; model score = A B; means A B; run; quit;
The GLM Procedure<output omitted>
R-Square Coeff Var Root MSE score Mean 0.345300 52.78363 7.917544 15.00000
<output omitted>
Level of ————score———— A N Mean Std Dev 1 4 19.7500000 8.61684397 2 4 14.2500000 7.13559154 3 4 11.0000000 8.83176087 Level of ————score———— B N Mean Std Dev 1 6 18.0000000 8.57904424 2 6 12.0000000 7.61577311
Fig. 28.3, p. 1130.
data plot; set training; if b=1 then b1 = score; if b=2 then b2 = score; run; goptions reset=all; symbol1 v=dot c=blue h=.8; symbol2 v=circle c=red h=.8; axis1 label=('Score'); axis2 order=(1 to 3 by 1) value=('Atlanta (i=1)' 'Chicago (i=2)' 'San Francisco (i=3)') label=(a=90 'School') offset=(5,2); legend1 label=none value=(height=.8 font=swiss 'Instructor j=1' 'Instructor j=2' ) position=(bottom right inside) mode=protect cborder=black; proc gplot data=plot; plot a*(b1 b2)/ overlay legend=legend1 haxis=axis1 vaxis=axis2; run; quit;
Nested two-factor ANOVA for the Training School data, table 28.4a, p. 1130.
proc glm data=training; class A B; model score = A B(A); run; quit;
The GLM ProcedureClass Level Information
Class Levels Values A 3 1 2 3 B 2 1 2
Number of observations 12 The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 5 724.0000000 144.8000000 20.69 0.0010 Error 6 42.0000000 7.0000000 Corrected Total 11 766.0000000
R-Square Coeff Var Root MSE score Mean 0.945170 17.63834 2.645751 15.00000
Source DF Type I SS Mean Square F Value Pr > F A 2 156.5000000 78.2500000 11.18 0.0095 B(A) 3 567.5000000 189.1666667 27.02 0.0007 Source DF Type III SS Mean Square F Value Pr > F A 2 156.5000000 78.2500000 11.18 0.0095 B(A) 3 567.5000000 189.1666667 27.02 0.0007
Decomposition of SSB(A), table 28.4b, p. 1130.
Note: Due to the large amount of output the SSB(Ai) have been italicized to make it easier to recognize them.
proc glm data=training; by A; class B ; model score = B; run; quit;
School=1The GLM Procedure
Class Level Information
Class Levels Values B 2 1 2
Number of observations 4 School=1
The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 1 210.2500000 210.2500000 33.64 0.0285 Error 2 12.5000000 6.2500000 Corrected Total 3 222.7500000
R-Square Coeff Var Root MSE score Mean 0.943883 12.65823 2.500000 19.75000
Source DF Type I SS Mean Square F Value Pr > F B 1 210.2500000 210.2500000 33.64 0.0285 Source DF Type III SS Mean Square F Value Pr > F B 1 210.2500000 210.2500000 33.64 0.0285 School=2
The GLM Procedure
Class Level Information
Class Levels Values B 2 1 2
Number of observations 4 School=2
The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 1 132.2500000 132.2500000 12.90 0.0695 Error 2 20.5000000 10.2500000 Corrected Total 3 152.7500000
R-Square Coeff Var Root MSE score Mean 0.865794 22.46710 3.201562 14.25000
Source DF Type I SS Mean Square F Value Pr > F B 1 132.2500000 132.2500000 12.90 0.0695 Source DF Type III SS Mean Square F Value Pr > F B 1 132.2500000 132.2500000 12.90 0.0695 School=3
The GLM Procedure
Class Level Information
Class Levels Values B 2 1 2
Number of observations 4 School=3
The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 1 225.0000000 225.0000000 50.00 0.0194 Error 2 9.0000000 4.5000000 Corrected Total 3 234.0000000
R-Square Coeff Var Root MSE score Mean 0.961538 19.28473 2.121320 11.00000
Source DF Type I SS Mean Square F Value Pr > F B 1 225.0000000 225.0000000 50.00 0.0194 Source DF Type III SS Mean Square F Value Pr > F B 1 225.0000000 225.0000000 50.00 0.0194
Testing for factor B differences within level of factor A, specifically testing for instructor differences within the Atlanta School, comments bottom of p. 1132.
ods listing close; ods output GLM.ANOVA.score.OverallANOVA=anova; proc glm data=training; class A B; model score = A B(A); run; quit; ods output GLM.ByGroup1.ANOVA.score.OverallANOVA=anova1; proc glm data=training; by A; class B ; model score = B; run; quit; ods listing; ods output close; data _null_; set anova; if source='Error' then call symput('mse', ms); if source='Error' then call symput('dfe', df); run; %put here are the macros: &mse and &dfe; data _null_; set anova1; if source='Model' then call symput('msb_a1', ms); if source='Model' then call symput('dfb_a1', df); run; %put here are the macros: &msb_a1 and &dfb_a1; data temp; F = &msb_a1 / &mse ; Fcrit = finv( .95, &dfb_a1, &dfe); p_value = 1 - probf(F, &dfb_a1, &dfe); run; proc print data=temp; run;
Obs F Fcrit p_value1 30.0357 5.98738 .001542714
Examining the residual of the nested model for the Training School data, fig. 28.4a, p. 1134.
proc glm data=training noprint; class A B; model score = A B(A); output out=resids r=resid; run; quit; data resids; set resids; if a=1 then resid1=resid; if a=2 then resid2=resid; if a=3 then resid3=resid; run; symbol1 c=blue v=dot h=.8; symbol2 c=red v=circle h=.8; symbol3 c=green v=star h=.8; axis1 label=('Residuals'); axis2 value=('Atlanta' 'Chicago' 'San Francisco'); proc gplot data=resids; plot a*(resid1 resid2 resid3)/ overlay vaxis=axis2 haxis=axis1; run; quit;
Normal probability plot of the residuals from the nested model, fig. 28.4b, p. 1134.
proc capability data=resids noprint; qqplot resid; run;
Estimating the mean learning score for each school and calculating a 95% confidence coefficient the mean learning score for the Atlanta school (a=1)with , p. 1135.
Note: The lsmean statement for B(A) gives the confidence interval using the Bonferroni coefficient for all possible comparisons (6 choose 2 = 6!/2!4! = 30 )(B = t(1-.01/2*30, 6) = 7.31444) hence the confidence intervals are much larger.
proc glm data=training; class a b; model score = a b(a); lsmeans A / cl adjust=tukey; lsmeans A / pdiff adjust=tukey cl alpha=.1; lsmeans B(A) / pdiff adjust=bon cl; run; quit;
The GLM Procedure<output omitted>
Least Squares Means
A score LSMEAN
1 19.7500000 2 14.2500000 3 11.0000000
A score LSMEAN 95% Confidence Limits
1 19.750000 16.513040 22.986960 2 14.250000 11.013040 17.486960 3 11.000000 7.763040 14.236960
<output omitted>
Least Squares Means for effect A Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: score
i/j 1 2 3 1 0.0586 0.0081 2 0.0586 0.2677 3 0.0081 0.2677
<output omitted>
Least Squares Means for Effect A
Difference Simultaneous 90% Between Confidence Limits for i j Means LSMean(i)-LSMean(j) 1 2 5.500000 0.792778 10.207222 1 3 8.750000 4.042778 13.457222 2 3 3.250000 -1.457222 7.957222
The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni
LSMEAN B A score LSMEAN Number 1 1 27.0000000 1 2 1 12.5000000 2 1 2 8.5000000 3 2 2 20.0000000 4 1 3 18.5000000 5 2 3 3.5000000 6
<output omitted>
B A score LSMEAN 95% Confidence Limits
1 1 27.000000 22.422247 31.577753 2 1 12.500000 7.922247 17.077753 1 2 8.500000 3.922247 13.077753 2 2 20.000000 15.422247 24.577753 1 3 18.500000 13.922247 23.077753 2 3 3.500000 -1.077753 8.077753
Least Squares Means for Effect B(A)
Difference Simultaneous 95% Between Confidence Limits for i j Means LSMean(i)-LSMean(j)
1 2 14.500000 2.070465 26.929535 1 3 18.500000 6.070465 30.929535 1 4 7.000000 -5.429535 19.429535 1 5 8.500000 -3.929535 20.929535 1 6 23.500000 11.070465 35.929535 2 3 4.000000 -8.429535 16.429535 2 4 -7.500000 -19.929535 4.929535 2 5 -6.000000 -18.429535 6.429535
The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni
Least Squares Means for Effect B(A)
Difference Simultaneous 95% Between Confidence Limits for i j Means LSMean(i)-LSMean(j)
2 6 9.000000 -3.429535 21.429535 3 4 -11.500000 -23.929535 0.929535 3 5 -10.000000 -22.429535 2.429535 3 6 5.000000 -7.429535 17.429535 4 5 1.500000 -10.929535 13.929535 4 6 16.500000 4.070465 28.929535 5 6 15.000000 2.570465 27.429535
Testing three specific comparisons of treatment means: mu11-mu12, mu21-mu22, mu31-mu32, p. 1137.
It is a little tricky figuring out which difference of means correspond to the i and j columns in the last two tables in the output above. The numbers for i and j refer to the list of the six lsmeans in the table with the lsmean score before the two tables with confidence intervals in the above output. So, for the i=1, j=2 difference the second mean in the list (which is mu12) is begin subtracted from the first mean in the list (which is mu11). Similarly, the i=3, j=4 difference is the fourth mean (mu22) being subtracted from the third mean (mu21).
ods listing close; ods output GLM.LSMEANS.B_A_.score.LSMeanDiffCL=means GLM.ANOVA.score.OverallANOVA=anova; proc glm data=training; class a b; model score = a b(a); lsmeans B(A) / pdiff adjust=bon cl; run; quit; ods listing; ods output close; data _null_; set anova; if source='Error' then call symput('mse', ms); run; %put here is the mse &mse; /* check number in SAS log file*/ data temp; set means; drop effect dependent LowerCL UpperCL; B = tinv(1 - (.01/2*3), 6); s2L = &mse*2/2; BsL = B*sqrt(s2L); lower = difference - BsL; upper = difference + BsL; run; proc print data=temp; where (i=1 and j=2) or (i=3 and j=4) or (i=5 and j=6); var difference B s2L BsL lower upper; run;
Obs Difference B s2L BsL lower upper1 14.500000 2.82893 7 7.48464 7.0154 21.9846 10 -11.500000 2.82893 7 7.48464 -18.9846 -4.0154 15 15.000000 2.82893 7 7.48464 7.5154 22.4846
Estimating the overall mean with a 95% confidence interval, p. 1137.
ods listing close; ods output OverallANOVA=anova FitStatistics=fit; proc glm data=training; class a b; model score = a b(a); run; quit; ods output close; ods listing; data _null_; set anova; if source='Error' then call symput('mse', ms); if source='Error' then call symput('dfe', df); if source='Corrected Total' then call symput('df', df); run; %put here are the macros &mse &dfe &df; /*Check number in SAS log file*/ data _null_; set fit; call symput('mean', Depmean); run; %put here is the mean &mean; /*Check number in SAS log file*/ data temp; mean = &mean; s2Y = &mse/(&df+1); sY = sqrt(s2Y); t = tinv(.975, &dfe); lower = mean-t*sY; upper = mean + t*sY; run; proc print data=temp; run;
Obs mean s2Y sY t lower upper1 15 0.58333 0.76376 2.44691 13.1311 16.8689
Inputting Follow-up Training School study, table 28.6a, p. 1139.
data followup; input score A B rep; label A='School' B='Instructor'; cards; 20 1 1 1 22 1 1 2 8 1 2 1 9 1 3 1 13 1 3 2 4 2 1 1 8 2 1 2 16 2 2 1 20 2 2 2 ; run;
Generating the X and Y variables to be used in the regression, table 28.4b, p. 1139.
data reg; set followup; x1=1; if A=2 then x1=-1; x2=0; if A=1 and B=1 then x2=1; else if A=1 and B=3 then x2=-1; x3=0; if A=1 and B=2 then x3=1; else if A=1 and B=3 then x3=-1; x4=0; if A=2 and B=1 then x4=1; if A=2 and B=2 then x4=-1; run;
The output from the tests statements correspond to the MS and Ftest statistics in table 28.7, p. 1141.
proc reg data=reg; model score = x1-x4; main_A: test x1=0; instructor_effect: test x2=x3=x4=0; run; quit;
The REG Procedure Model: MODEL1 Dependent Variable: scoreAnalysis of Variance
Sum of Mean Source DF Squares Square F Value Pr > F Model 4 308.00000 77.00000 11.85 0.0172 Error 4 26.00000 6.50000 Corrected Total 8 334.00000
Root MSE 2.54951 R-Square 0.9222 Dependent Mean 13.33333 Adj R-Sq 0.8443 Coeff Var 19.12132
Parameter Estimates
Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 12.66667 0.87599 14.46 0.0001 x1 1 0.66667 0.87599 0.76 0.4890 x2 1 7.66667 1.58990 4.82 0.0085 x3 1 -5.33333 1.90029 -2.81 0.0485 x4 1 -6.00000 1.27475 -4.71 0.0093
The REG Procedure Model: MODEL1
Test main_A Results for Dependent Variable score
Mean Source DF Square F Value Pr > F Numerator 1 3.76471 0.58 0.4890 Denominator 4 6.50000
The REG Procedure Model: MODEL1
Test instructor_effect Results for Dependent Variable score
Mean Source DF Square F Value Pr > F Numerator 3 98.40000 15.14 0.0119 Denominator 4 6.50000
You can obtain the same results using proc glm and the option ss3 which is robust to unequal sample sizes, table 28.7, p. 1141.
proc glm data=followup; class a b; model score= a b(a) / ss3; run; quit;
The GLM ProcedureClass Level Information
Class Levels Values A 2 1 2 B 3 1 2 3
Number of observations 9 The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 4 308.0000000 77.0000000 11.85 0.0172 Error 4 26.0000000 6.5000000 Corrected Total 8 334.0000000
R-Square Coeff Var Root MSE score Mean 0.922156 19.12132 2.549510 13.33333
Source DF Type III SS Mean Square F Value Pr > F A 1 3.7647059 3.7647059 0.58 0.4890 B(A) 3 295.2000000 98.4000000 15.14 0.0119
Inputting the Bread Crustiness data, table 28.9, p. 1144.
data bread; input score a b rep; label a ='Temperature' b ='Batch' rep ='Exp. unit'; cards; 4 1 1 1 7 1 1 2 5 1 1 3 12 1 2 1 8 1 2 2 10 1 2 3 14 2 1 1 13 2 1 2 11 2 1 3 9 2 2 1 10 2 2 2 12 2 2 3 14 3 1 1 17 3 1 2 15 3 1 3 16 3 2 1 19 3 2 2 18 3 2 3 ; run;
Fig. 28.5, p. 1144.
data plot; set bread; if b=1 then b1=score; if b=2 then b2=score; run; goptions reset=all; symbol1 c=blue v=dot; symbol2 c=red v=circle; axis1 value=('Low (i=1)' 'Medium (i=2)' 'High (i=3)' ) offset=(2,5); axis2 label=('Crustiness') order=(0 to 20 by 5); legend1 label=none value=(height=.8 font=swiss 'Batch=1' 'Batch=2' ) position=(top left inside) mode=share cborder=black; proc gplot data=plot; plot a*(b1 b2)/ overlay vaxis=axis1 haxis=axis2 legend=legend1; run; quit;
ANOVA table 28.10, and tests of temperature effect and batch differences, p. 1144-1145. Estimating treatment effects, including the mean of the low temperature group and the difference between the low and high temperature groups with a 95% confidence interval, p. 1146.
proc glm data=bread; class a b; model score = a b(a); random b(a); temperature_effect: test h=a e=b(a); lsmeans a / e=b(a) pdiff cl; run; quit;
The GLM ProcedureClass Level Information
Class Levels Values a 3 1 2 3 b 2 1 2
Number of observations 18 The GLM Procedure Dependent Variable: score Sum of Source DF Squares Mean Square F Value Pr > F Model 5 284.4444444 56.8888889 21.79 <.0001 Error 12 31.3333333 2.6111111 Corrected Total 17 315.7777778
R-Square Coeff Var Root MSE score Mean 0.900774 13.59163 1.615893 11.88889
Source DF Type I SS Mean Square F Value Pr > F a 2 235.4444444 117.7222222 45.09 <.0001 b(a) 3 49.0000000 16.3333333 6.26 0.0084 Source DF Type III SS Mean Square F Value Pr > F a 2 235.4444444 117.7222222 45.09 <.0001 b(a) 3 49.0000000 16.3333333 6.26 0.0084
The GLM Procedure
Source Type III Expected Mean Square a Var(Error) + 3 Var(b(a)) + Q(a) b(a) Var(Error) + 3 Var(b(a))
The GLM Procedure Least Squares Means Standard Errors and Probabilities Calculated Using the Type III MS for b(a) as an Error Term
LSMEAN a score LSMEAN Number 1 7.6666667 1 2 11.5000000 2 3 16.5000000 3
Least Squares Means for effect a Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: score
i/j 1 2 3 1 0.1990 0.0323 2 0.1990 0.1215 3 0.0323 0.1215
a score LSMEAN 95% Confidence Limits 1 7.666667 2.415898 12.917435 2 11.500000 6.249231 16.750769 3 16.500000 11.249231 21.750769
Least Squares Means for Effect a
Difference Between 95% Confidence Limits for i j Means LSMean(i)-LSMean(j) 1 2 -3.833333 -11.259041 3.592375 1 3 -8.833333 -16.259041 -1.407625 2 3 -5.000000 -12.425708 2.425708
NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.
The GLM Procedure
Dependent Variable: score
Tests of Hypotheses Using the Type III MS for b(a) as an Error Term
Source DF Type III SS Mean Square F Value Pr > F a 2 235.4444444 117.7222222 7.21 0.0715
Tests of the main effects of temperature, p. 1144-1145. Estimating treatment effects, including the mean of the low temperature group and the difference between the low and high temperature groups with a 95% confidence intervals using proc mixed, p. 1146.
proc mixed data=bread; class a b; model score = a; random b(a); lsmeans a / cl pdiff; run; quit;
The Mixed ProcedureModel Information Data Set WORK.BREAD Dependent Variable score Covariance Structure Variance Components Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment
Class Level Information
Class Levels Values a 3 1 2 3 b 2 1 2
Dimensions Covariance Parameters 2 Columns in X 4 Columns in Z 6 Subjects 1 Max Obs Per Subject 18 Observations Used 18 Observations Not Used 0 Total Observations 18
Iteration History
Iteration Evaluations -2 Res Log Like Criterion 0 1 73.11545106 1 1 67.84036856 0.00000000
Convergence criteria met. Covariance Parameter Estimates
Cov Parm Estimate b(a) 4.5741 Residual 2.6111
The Mixed Procedure
Fit Statistics -2 Res Log Likelihood 67.8 AIC (smaller is better) 71.8 AICC (smaller is better) 72.8 BIC (smaller is better) 71.4
Type 3 Tests of Fixed Effects
Num Den Effect DF DF F Value Pr > F a 2 3 7.21 0.0715
Least Squares Means
Standard Effect Temperature Estimate Error DF t Value Pr > |t| Alpha Lower Upper a 1 7.6667 1.6499 3 4.65 0.0188 0.05 2.4159 12.9174 a 2 11.5000 1.6499 3 6.97 0.0061 0.05 6.2492 16.7508 a 3 16.5000 1.6499 3 10.00 0.0021 0.05 11.2492 21.7508
Differences of Least Squares Means
Standard Effect Temperature Temperature Estimate Error DF t Value Pr > |t| Alpha a 1 2 -3.8333 2.3333 3 -1.64 0.1990 0.05 a 1 3 -8.8333 2.3333 3 -3.79 0.0323 0.05 a 2 3 -5.0000 2.3333 3 -2.14 0.1215 0.05
Differences of Least Squares Means
Effect Temperature Temperature Lower Upper a 1 2 -11.2590 3.5924 a 1 3 -16.2590 -1.4076 a 2 3 -12.4257 2.4257
Unable to reproduce the same results as in the book for the estimation of sigma-squared (between batch variability), p. 1146-1147.
Inputting the Group Decision Making data, table 28.12, p. 1152.
data decision; input score a b c rep ; label a ='Nationality' b ='Size' c ='Observer'; cards; 16 1 1 1 1 20 1 1 1 2 14 1 1 2 1 19 1 1 2 2 7 2 1 1 1 5 2 1 1 2 4 2 1 2 1 9 2 1 2 2 21 1 2 1 1 25 1 2 1 2 28 1 2 2 1 19 1 2 2 2 11 2 2 1 1 17 2 2 1 2 12 2 2 2 1 15 2 2 2 2 ; run;
Fig. 28.6, p. 1152.
data plot; set decision; if a=1 and c=1 then a1c1=score; if a=1 and c=2 then a1c2=score; if a=2 and c=1 then a2c1=score; if a=2 and c=2 then a2c2=score; run; goptions reset=all; symbol1 c=red v=square; symbol2 c=green v=circle; symbol3 c=blue v=:; symbol4 c=cyan v=dot; axis1 label=(a=90 'Size of Team') value=('4' '8') offset=(10,5) order=(1 2); axis2 label=('Number of Group Interactions'); legend1 label=none value=(height=.8 font=swiss 'US, observer 1' 'US, observer 2' 'Foreign, observer 1' 'Foreign, observer 2' ) across=2 position=(bottom right inside) mode=share cborder=black; proc gplot data=plot; plot b*(a1c1 a1c2 a2c1 a2c2) / overlay vaxis=axis1 haxis=axis2 legend=legend1; run; quit;
Fig. 28.7, p. 1153 and estimating the difference in mean score between US and Foreign teams, p. 1154.
proc glm data=decision; class a b c; model score = A | c(A) | b; test h=a e=c(a); lsmeans a / e=c(a) cl pdiff; run; quit;
The GLM ProcedureClass Level Information
Class Levels Values a 2 1 2 b 2 1 2 c 2 1 2
Number of observations 16 The GLM Procedure Dependent Variable: score
Sum of Source DF Squares Mean Square F Value Pr > F Model 7 607.7500000 86.8214286 6.55 0.0083 Error 8 106.0000000 13.2500000 Corrected Total 15 713.7500000
R-Square Coeff Var Root MSE score Mean 0.851489 24.06648 3.640055 15.12500
Source DF Type I SS Mean Square F Value Pr > F a 1 420.2500000 420.2500000 31.72 0.0005 c(a) 2 0.5000000 0.2500000 0.02 0.9814 b 1 182.2500000 182.2500000 13.75 0.0060 a*b 1 2.2500000 2.2500000 0.17 0.6911 b*c(a) 2 2.5000000 1.2500000 0.09 0.9110
Source DF Type III SS Mean Square F Value Pr > F a 1 420.2500000 420.2500000 31.72 0.0005 c(a) 2 0.5000000 0.2500000 0.02 0.9814 b 1 182.2500000 182.2500000 13.75 0.0060 a*b 1 2.2500000 2.2500000 0.17 0.6911 b*c(a) 2 2.5000000 1.2500000 0.09 0.9110
Tests of Hypotheses Using the Type III MS for c(a) as an Error Term
Source DF Type III SS Mean Square F Value Pr > F a 1 420.2500000 420.2500000 1681.00 0.0006
The GLM Procedure Least Squares Means Standard Errors and Probabilities Calculated Using the Type III MS for c(a) as an Error Term
H0:LSMean1= LSMean2 a score LSMEAN Pr > |t| 1 20.2500000 0.0006 2 10.0000000 a score LSMEAN 95% Confidence Limits 1 20.250000 19.489391 21.010609 2 10.000000 9.239391 10.760609
Least Squares Means for Effect a
Difference Between 95% Confidence Limits for i j Means LSMean(i)-LSMean(j) 1 2 10.250000 9.174337 11.325663