Linear contrasts on data file friendly on page 209. The option /E on the contrast statement gives the entire vector.
proc means data=friendly; class cond; var correct; run; proc glm data=friendly; class cond; model correct=cond; contrast 'SRF vs. others' cond -0.5 -0.5 1 /E; contrast 'B vs. M' cond 1 -1 0 /E; run; quit;The MEANS Procedure
Analysis Variable : correct
N cond Obs N Mean Std Dev Minimum Maximum ------------------------------------------------------------------------------------- Before 10 10 36.6000000 5.3374984 24.0000000 40.0000000
Meshed 10 10 36.6000000 3.0258149 30.0000000 40.0000000
SFR 10 10 30.3000000 7.3340909 21.0000000 39.0000000 -------------------------------------------------------------------------------------
The GLM Procedure
Class Level Information
Class Levels Values
cond 3 Before Meshed SFR
Number of observations 30
The GLM Procedure
Coefficients for Contrast SRF vs. others
Row 1
Intercept 0
cond Before -0.5 cond Meshed -0.5 cond SFR 1
The GLM Procedure
Coefficients for Contrast B vs. M
Row 1
Intercept 0
cond Before 1 cond Meshed -1 cond SFR 0
The GLM Procedure
Dependent Variable: correct
Sum of Source DF Squares Mean Square F Value Pr > F
Model 2 264.600000 132.300000 4.34 0.0232
Error 27 822.900000 30.477778
Corrected Total 29 1087.500000
R-Square Coeff Var Root MSE correct Mean
0.243310 16.00194 5.520668 34.50000
Source DF Type I SS Mean Square F Value Pr > F
cond 2 264.6000000 132.3000000 4.34 0.0232
Source DF Type III SS Mean Square F Value Pr > F
cond 2 264.6000000 132.3000000 4.34 0.0232
Contrast DF Contrast SS Mean Square F Value Pr > F
SRF vs. others 1 264.6000000 264.6000000 8.68 0.0065 B vs. M 1 0.0000000 0.0000000 0.00 1.0000
Calculation on page 214 and calculation on page 222 using data file duncan.
data inpt; set duncan; incpt=1; run; proc iml; use inpt; read all; x = incpt || income || educ ; b=INV(x`*x)*x`*prestige; print b; /*regression coefficients*/r=prestige-x*b; v=(r`*r)/42; V2=v*INV(x`*x); d=diag(V2); a=sqrt(d); print a; /*estimated standard errors */ quit;
B
-6.064663 0.5987328 0.5458339
A
4.2719412 0 0 0 0.1196673 0 0 0 0.0982526