This page shows how to obtain the results from Chatterjee, Hadi and Price’s Chapter 12 using SAS. The first example uses the p323 data file. You can copy and paste this data step into the program editor to run the examples below.
Note: The variable index corresponds to the row value in Table 12.1. The statement, index+1;, is one way to create a case ID in SAS. The +1 indicates that SAS is to add one to each successive case.
data p323; set p323; index = +1; run;
Table 12.1, page 323.
proc print data=p323; run; Obs Y X1 X2 X3 index 1 0 -62.8 -89.5 1.7 1 2 0 3.3 -3.5 1.1 1 3 0 -120.8 -103.2 2.5 1 4 0 -18.1 -28.8 1.1 1 5 0 -3.8 -50.6 0.9 1 6 0 -61.2 -56.2 1.7 1 7 0 -20.3 -17.4 1.0 1 8 0 -194.5 -25.8 0.5 1 9 0 20.8 -4.3 1.0 1 10 0 -106.1 -22.9 1.5 1 11 0 -39.4 -35.7 1.2 1 12 0 -164.1 -17.7 1.3 1 13 0 -308.9 -65.8 0.8 1 14 0 7.2 -22.6 2.0 1 15 0 -118.3 -34.2 1.5 1 16 0 -185.9 -280.0 6.7 1 17 0 -34.6 -19.4 3.4 1 18 0 -27.9 6.3 1.3 1 19 0 -48.2 6.8 1.6 1 20 0 -49.2 -17.2 0.3 1 21 0 -19.2 -36.7 0.8 1 22 0 -18.1 -6.5 0.9 1 23 0 -98.0 -20.8 1.7 1 24 0 -129.0 -14.2 1.3 1 25 0 -4.0 -15.8 2.1 1 26 0 -8.7 -36.3 2.8 1 27 0 -59.2 -12.8 2.1 1 28 0 -13.1 -17.6 0.9 1 29 0 -38.0 1.6 1.2 1 30 0 -57.9 0.7 0.8 1 31 0 -8.8 -9.1 0.9 1 32 0 -64.7 -4.0 0.1 1 33 0 -11.4 4.8 0.9 1 34 1 43.0 16.4 1.3 1 35 1 47.0 16.0 1.9 1 36 1 -3.3 4.0 2.7 1 37 1 35.0 20.8 1.9 1 38 1 46.7 12.6 0.9 1 39 1 20.8 12.5 2.4 1 40 1 33.0 23.6 1.5 1 41 1 26.1 10.4 2.1 1 42 1 68.6 13.8 1.6 1 43 1 37.3 33.4 3.5 1 44 1 59.0 23.1 5.5 1 45 1 49.6 23.8 1.9 1 46 1 12.5 7.0 1.8 1 47 1 37.3 34.1 1.5 1 48 1 35.3 4.2 0.9 1 49 1 49.5 25.1 2.6 1 50 1 18.1 13.5 4.0 1 51 1 31.4 15.7 1.9 1 52 1 21.5 -14.4 1.0 1 53 1 8.5 5.8 1.5 1 54 1 40.6 5.8 1.8 1 55 1 34.6 26.4 1.8 1 56 1 19.9 26.7 2.3 1 57 1 17.4 12.6 1.3 1 58 1 54.7 14.6 1.7 1 59 1 53.5 20.6 1.1 1 60 1 35.9 26.4 2.0 1 61 1 39.4 30.5 1.9 1 62 1 53.1 7.1 1.9 1 63 1 39.8 13.8 1.2 1 64 1 59.5 7.0 2.0 1 65 1 16.3 20.4 1.0 1 66 1 21.7 -7.8 1.6 1
Table 12.2, page 324.
Note 1: The descending option is needed so that SAS will model the probability of a response value of 1. By default, SAS models the probability of the response corresponding to the lower ordered value.
Note 2: The output statement creates an output dataset containing predicted probabilities, deviance residuals, Pearson residual, leverage, and change in chi-squared statistics.
proc logistic data=p323 descending; model y = x1 x2 x3 / iplots; output out=p323o prob=p resdev=dr h=pii reschi=pr cbar=dbeta difchisq=dfg; run; The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -10.1527 10.8389 0.8774 0.3489 X1 1 0.3312 0.3007 1.2133 0.2707 X2 1 0.1809 0.1069 2.8617 0.0907 X3 1 5.0871 5.0816 1.0022 0.3168 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits X1 1.393 0.772 2.511 X2 1.198 0.972 1.478 X3 161.922 0.008 >999.999 Association of Predicted Probabilities and Observed Responses Percent Concordant 99.9 Somers' D 0.998 Percent Discordant 0.1 Gamma 0.998 Percent Tied 0.0 Tau-a 0.507 Pairs 1089 c 0.999 -------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 2 + + | | P | | e | * | a | | r 1 + + s | | o RESCHI | * | n | | | * * * ** | R 0 + ****** *** ******** ******** ******* **** ********* + e | * * | s | * | i | | d | | u -1 + + a | | l | | | * | | | -2 + + -------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX
Fig 12.2 page 326.
-------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 2 + + | | D | | e | * | v | | i 1 + + a | n RESDEV | * | c | | e | * * * ** | 0 + ****** *** ******** ******** ******* **** ********* + R | * * | e | | s | * | i | | d -1 + + u | | a | | l | * | | | -2 + + -------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX -+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-- 0.8 + + | | | | | | H | * | a 0.6 + * + t | * | H | | D | * | i | | a 0.4 + * + g | * | o | | n | | a | * * | l 0.2 + + | * | | | | * * * | | * * | 0.0 + * ****** **** ** ******* ********* ********* * *** *** ******* + -+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- DFBETA0 | | 0.4 + + I | | n | * | t | | e | | r | | c 0.2 + + e | * | p | | t | | | | D | | f 0.0 + ****** *** ******** ******** ******* **** ********** + B | * | e | * * | t | * * | a | * | | | -0.2 + + | | ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- DFBETA1 | | 0.2 + * + | | | | | * * * * | | | X | * | 1 0.0 + ****** *** ******** ******** ******* **** ********** + | * | D | | f | | B | | e | | t -0.2 + + a | | | | | | | * | | | -0.4 + * + | | ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0.5 + * * + | | | | | | | * * * | 0.0 + ****** *** ******** ******** ************ ********* * + X | | 2 DFBETA2 | | | | D | * | f -0.5 + + B | | e | | t | | a | | -1.0 + + | * | | | | | | | -1.5 + + ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0.2 + + | * | | * | | * * | | * * | 0.0 + ****** *** ******** ******** ******* **** ********** + X | | 3 DFBETA3 | | | | D | | f -0.2 + * + B | * | e | | t | | a | | -0.4 + + | | | * | | | | | -0.6 + + ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX --+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--- C 8 + + o | | n | | f | | i | * | d 6 + + e | | n C | | c | | e | | 4 + + I | | n | | t | * | e | | r 2 + + v | | a | | l | * * | | | D 0 + ******** **** ************************************* ************* + i --+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--- s 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 p Case Number INDEX
Fig 12.3, page 326.
-+----+----+----+----+----+----+----+----+----+----+----+----+----+----+- C CBAR | | o 3 + + n | | f | | i | * | d | | e | | n 2 + + c | * | e | | | | I | | n | | t 1 + + e | | r | | v | | a | * * | l | | 0 + ******** **** ************************************* ************* + D | | i -+----+----+----+----+----+----+----+----+----+----+----+----+----+----+- s 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 p Case Number INDEX -------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- DIFDEV | | 6 + + | | D | | e | | l | * * | t | | a 4 + + | | D | | e | | v | | i | | a 2 + + n | | c | | e | | | * * | | | 0 + ****** *** ****************************** *********** + | | -------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------- 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX
Fig 12.4, page 327.
------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------ DIFCHISQ | | 6 + + | | D | | e | | l | * | t | * | a 4 + + | | C | | h | | i | | S | | q 2 + + u | | a | | r | | e | * * | | | 0 + ****** *** ****************************** *********** + | | ------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+------ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Case Number INDEX
Figures 12.2 and 12.4, pages 326 and 327.
Note 1: Observations 9 and 52 appear are clearly problematic, however observation 36 does not appear problematic differing from the figures in the book.
Note 2: The symbol and axis statements are used to define the plotting symbol (circle) and to display the Y-axis label vertically.
symbol1 v=circle; axis1 label=(r=1 a=90); proc gplot data=p323o; plot dr*index; plot dfg*index; run;
Table 12.3, page 328.
proc logistic data=p323 descending; model y = x1 x2; run; The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -0.5503 0.9510 0.3349 0.5628 X1 1 0.1574 0.0749 4.4114 0.0357 X2 1 0.1947 0.1224 2.5297 0.1117 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits X1 1.170 1.011 1.356 X2 1.215 0.956 1.544 Association of Predicted Probabilities and Observed Responses Percent Concordant 99.7 Somers' D 0.994 Percent Discordant 0.3 Gamma 0.994 Percent Tied 0.0 Tau-a 0.505 Pairs 1089 c 0.997
Table 12.4, page 328.
proc logistic data=p323 descending; model y = x1; run; The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -1.1666 0.8164 2.0418 0.1530 X1 1 0.1767 0.0571 9.5775 0.0020 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits X1 1.193 1.067 1.335 Association of Predicted Probabilities and Observed Responses Percent Concordant 99.1 Somers' D 0.983 Percent Discordant 0.8 Gamma 0.983 Percent Tied 0.1 Tau-a 0.499 Pairs 1089 c 0.991
Table 12.5, page 331.
proc reg data=p323; model y = x1 x2 x3; output out=p323o2 predicted=p; run; end; The REG Procedure Model: MODEL1 Dependent Variable: Y Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 9.40334 3.13445 27.38 <.0001 Error 62 7.09666 0.11446 Corrected Total 65 16.50000 Root MSE 0.33832 R-Square 0.5699 Dependent Mean 0.50000 Adj R-Sq 0.5491 Coeff Var 67.66456 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 0.32187 0.08746 3.68 0.0005 X1 1 0.00312 0.00082939 3.76 0.0004 X2 1 0.00425 0.00144 2.96 0.0044 X3 1 0.14850 0.04532 3.28 0.0017
Table 12.6, page 332.
Note: the command assign = (p >= .5) creates a new variable assign which has the value 1 if p is greater or equal to .5 and 0 otherwise.
data p323r; set p323o2; assign = (p >= .5); run; proc print data=p323r; var y p assign; run; Obs Y p assign 1 0 -0.00170 0 2 0 0.48066 0 3 0 -0.12212 0 4 0 0.30644 0 5 0 0.22883 0 6 0 0.14467 0 7 0 0.33313 0 8 0 -0.32057 0 9 0 0.51704 1 10 0 0.11620 0 11 0 0.22551 0 12 0 -0.07248 0 13 0 -0.80295 0 14 0 0.54540 1 15 0 0.03014 0 16 0 -0.45225 0 17 0 0.63641 1 18 0 0.45458 0 19 0 0.43788 0 20 0 0.13981 0 21 0 0.22492 0 22 0 0.37142 0 23 0 0.18010 0 24 0 0.05195 0 25 0 0.55416 1 26 0 0.55640 1 27 0 0.39458 0 28 0 0.33990 0 29 0 0.38824 0 30 0 0.26290 0 31 0 0.38941 0 32 0 0.11777 0 33 0 0.44031 0 34 1 0.71878 1 35 1 0.81867 1 36 1 0.72951 1 37 1 0.80159 1 38 1 0.65479 1 39 1 0.79627 1 40 1 0.74783 1 41 1 0.75935 1 42 1 0.83220 1 43 1 1.09987 1 44 1 1.42088 1 45 1 0.85990 1 46 1 0.65791 1 47 1 0.80583 1 48 1 0.58354 1 49 1 0.96906 1 50 1 1.02970 1 51 1 0.76870 1 52 1 0.47635 0 53 1 0.59578 1 54 1 0.74053 1 55 1 0.80927 1 56 1 0.83890 1 57 1 0.62273 1 58 1 0.80706 1 59 1 0.73969 1 60 1 0.84302 1 61 1 0.85651 1 62 1 0.79992 1 63 1 0.68290 1 64 1 0.83433 1 65 1 0.60786 1 66 1 0.59409 1