Data from table 23.3, page 515
data table23_3; input s a b c y @@; datalines; 1 1 1 1 11 1 1 1 2 5 1 1 1 3 3 2 1 1 1 12 2 1 1 2 10 2 1 1 3 5 3 1 2 1 17 3 1 2 2 11 3 1 2 3 11 4 1 2 1 18 4 1 2 2 16 4 1 2 3 13 5 2 1 1 20 5 2 1 2 14 5 2 1 3 13 6 2 1 1 12 6 2 1 2 10 6 2 1 3 9 7 2 2 1 16 7 2 2 2 10 7 2 2 3 10 8 2 2 1 20 8 2 2 2 18 8 2 2 3 14 9 3 1 1 23 9 3 1 2 17 9 3 1 3 18 10 3 1 1 22 10 3 1 2 19 10 3 1 3 22 11 3 2 1 14 11 3 2 2 8 11 3 2 3 8 12 3 2 1 18 12 3 2 2 16 12 3 2 3 12 ; run; data table23_3w; input s a b c1 c2 c3; datalines; 1 1 1 11 5 3 2 1 1 12 10 5 3 1 2 17 11 11 4 1 2 18 16 13 5 2 1 20 14 13 6 2 1 12 10 9 7 2 2 16 10 10 8 2 2 20 18 14 9 3 1 23 17 18 10 3 1 22 19 22 11 3 2 14 8 8 12 3 2 18 16 12 ; run;
Table 23.3, page 515. Analysis of variance of mixed three-way factorial design with two between-subject factors (a and b) and one within-subject factor (factor c)
NOTE: proc glm on the narrow data set in a A*B*(C*S) design is more complex than either proc mixed or proc glm on the wide data set. The complexities arises since we have to specify the nesting () of factors and define the tests for between and within subject tests. However, in a A*(B*C*S) design (the next problem) proc glm is the easiest way the model the between and within subject factors, but it is still complex. Table 23.2 and page 512-514 of Keppel discuss the correct error terms with respect the design.
proc glm data = table23_3; class s a b c; model y = a b a*b s(a*b) c a*c b*c a*b*c c*s(a*b)/ss3; test h = a b a*b e = s(a*b); test h = c a*c b*c a*b*c e =c*s(a*b); run; quit;
The GLM Procedure Class Level Information Class Levels Values s 12 1 2 3 4 5 6 7 8 9 10 11 12 a 3 1 2 3 b 2 1 2 c 3 1 2 3 Number of observations 36 Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model 35 882.7500000 25.2214286 . . Error 0 0.0000000 . Corrected Total 35 882.7500000 R-Square Coeff Var Root MSE y Mean 1.000000 . . 13.75000 Source DF Type III SS Mean Square F Value Pr > F a 2 176.1666667 88.0833333 . . b 1 0.6944444 0.6944444 . . a*b 2 309.7222222 154.8611111 . . s(a*b) 6 153.5000000 25.5833333 . . c 2 191.1666667 95.5833333 . . a*c 4 7.6666667 1.9166667 . . b*c 2 1.7222222 0.8611111 . . a*b*c 4 11.1111111 2.7777778 . . s*c(a*b) 12 31.0000000 2.5833333 . . Tests of Hypotheses Using the Type III MS for s(a*b) as an Error Term Source DF Type III SS Mean Square F Value Pr > F a 2 176.1666667 88.0833333 3.44 0.1009 b 1 0.6944444 0.6944444 0.03 0.8745 a*b 2 309.7222222 154.8611111 6.05 0.0364 Tests of Hypotheses Using the Type III MS for s*c(a*b) as an Error Term Source DF Type III SS Mean Square F Value Pr > F c 2 191.1666667 95.5833333 37.00 <.0001 a*c 4 7.6666667 1.9166667 0.74 0.5815 b*c 2 1.7222222 0.8611111 0.33 0.7230 a*b*c 4 11.1111111 2.7777778 1.08 0.4111
proc glm data = table23_3w; class a b; model c1 c2 c3 = a|b; repeated c 3; run; quit;
[c-level output omitted]
Repeated Measures Analysis of Variance Repeated Measures Level Information Dependent Variable c1 c2 c3 Level of c 1 2 3 Manova Test Criteria and Exact F Statistics for the Hypothesis of no c Effect H = Type III SSCP Matrix for c E = Error SSCP Matrix S=1 M=0 N=1.5 Statistic Value F Value Num DF Den DF Pr > F Wilks' Lambda 0.05654871 41.71 2 5 0.0008 Pillai's Trace 0.94345129 41.71 2 5 0.0008 Hotelling-Lawley Trace 16.68386817 41.71 2 5 0.0008 Roy's Greatest Root 16.68386817 41.71 2 5 0.0008 Manova Test Criteria and F Approximations for the Hypothesis of no c*a Effect H = Type III SSCP Matrix for c*a E = Error SSCP Matrix S=2 M=-0.5 N=1.5 Statistic Value F Value Num DF Den DF Pr > F Wilks' Lambda 0.53462133 0.92 4 10 0.4899 Pillai's Trace 0.46568779 0.91 4 12 0.4886 Hotelling-Lawley Trace 0.86990460 1.07 4 5.1429 0.4578 Roy's Greatest Root 0.86923942 2.61 2 6 0.1531 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact. Manova Test Criteria and Exact F Statistics for the Hypothesis of no c*b Effect H = Type III SSCP Matrix for c*b E = Error SSCP Matrix S=1 M=0 N=1.5 Statistic Value F Value Num DF Den DF Pr > F Wilks' Lambda 0.83885049 0.48 2 5 0.6445 Pillai's Trace 0.16114951 0.48 2 5 0.6445 Hotelling-Lawley Trace 0.19210755 0.48 2 5 0.6445 Roy's Greatest Root 0.19210755 0.48 2 5 0.6445
Manova Test Criteria and F Approximations for the Hypothesis of no c*a*b Effect H = Type III SSCP Matrix for c*a*b E = Error SSCP Matrix S=2 M=-0.5 N=1.5 Statistic Value F Value Num DF Den DF Pr > F Wilks' Lambda 0.44083349 1.27 4 10 0.3458 Pillai's Trace 0.55974001 1.17 4 12 0.3737 Hotelling-Lawley Trace 1.26712923 1.56 4 5.1429 0.3135 Roy's Greatest Root 1.26610170 3.80 2 6 0.0859 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact.
Tests of Hypotheses for Between Subjects Effects Source DF Type III SS Mean Square F Value Pr > F a 2 176.1666667 88.0833333 3.44 0.1009 b 1 0.6944444 0.6944444 0.03 0.8745 a*b 2 309.7222222 154.8611111 6.05 0.0364 Error 6 153.5000000 25.5833333
Univariate Tests of Hypotheses for Within Subject Effects Adj Pr > F Source DF Type III SS Mean Square F Value Pr > F G - G H - F c 2 191.1666667 95.5833333 37.00 <.0001 <.0001 <.0001 c*a 4 7.6666667 1.9166667 0.74 0.5815 0.5636 0.5815 c*b 2 1.7222222 0.8611111 0.33 0.7230 0.6866 0.7230 c*a*b 4 11.1111111 2.7777778 1.08 0.4111 0.4090 0.4111 Error(c) 12 31.0000000 2.5833333 Greenhouse-Geisser Epsilon 0.8332 Huynh-Feldt Epsilon 2.076
proc mixed data = table23_3; class s a b c; model y = a|b|c; repeated/ subject = s type = cs; run; quit;
The Mixed Procedure Model Information Data Set WORK.TABLE23_3 Dependent Variable y Covariance Structure Compound Symmetry Subject Effect s Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Class Level Information Class Levels Values s 12 1 2 3 4 5 6 7 8 9 10 11 12 a 3 1 2 3 b 2 1 2 c 3 1 2 3 Dimensions Covariance Parameters 2 Columns in X 48 Columns in Z 0 Subjects 12 Max Obs Per Subject 3 Observations Used 36 Observations Not Used 0 Total Observations 36 Iteration History Iteration Evaluations -2 Res Log Like Criterion 0 1 105.44943515 1 1 94.39904969 0.00000000 Convergence criteria met. Covariance Parameter Estimates Cov Parm Subject Estimate CS s 7.6667 Residual 2.5833 Fit Statistics -2 Res Log Likelihood 94.4 AIC (smaller is better) 98.4 AICC (smaller is better) 99.2 BIC (smaller is better) 99.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 11.05 0.0009 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F a 2 6 3.44 0.1009 b 1 6 0.03 0.8745 a*b 2 6 6.05 0.0364 c 2 12 37.00 <.0001 a*c 4 12 0.74 0.5815 b*c 2 12 0.33 0.7230 a*b*c 4 12 1.08 0.4111
Data from table 23.4, page 517
data table23_4; input s a b c y @@; datalines; 1 1 1 1 1 1 1 2 1 1 1 1 3 1 2 1 1 1 2 1 1 1 2 2 3 1 1 3 2 2 1 1 1 3 2 1 1 2 3 4 1 1 3 3 2 2 1 1 1 2 2 1 2 1 3 2 1 3 1 3 2 1 1 2 2 2 1 2 2 4 2 1 3 2 4 2 1 1 3 3 2 1 2 3 5 2 1 3 3 4 3 1 1 1 1 3 1 2 1 2 3 1 3 1 3 3 1 1 2 3 3 1 2 2 3 3 1 3 2 5 3 1 1 3 2 3 1 2 3 5 3 1 3 3 5 4 2 1 1 2 4 2 2 1 1 4 2 3 1 1 4 2 1 2 2 4 2 2 2 2 4 2 3 2 2 4 2 1 3 3 4 2 2 3 3 4 2 3 3 2 5 2 1 1 3 5 2 2 1 2 5 2 3 1 3 5 2 1 2 3 5 2 2 2 4 5 2 3 2 3 5 2 1 3 5 5 2 2 3 5 5 2 3 3 4 6 2 1 1 1 6 2 2 1 2 6 2 3 1 1 6 2 1 2 2 6 2 2 2 3 6 2 3 2 3 6 2 1 3 1 6 2 2 3 3 6 2 3 3 2 ; run;
Table 23.4, page 517. Analysis of variance of a mixed three-way factorial design with one between-subject factor (A) and two within-subject factors (B and C)
proc glm data = table23_4; class s a b c; model y = a|b|c|s(a)/ss3; test h = a e = s(a); test h = b a*b e = b*s(a); test h = c a*c e = c*s(a); test h = b*c a*b*c e = b*c*s(a); run; quit;
The GLM Procedure Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model 53 77.64814815 1.46505940 . . Error 0 0.00000000 . Corrected Total 53 77.64814815 R-Square Coeff Var Root MSE y Mean 1.000000 . . 2.685185 Source DF Type III SS Mean Square F Value Pr > F a 1 1.50000000 1.50000000 . . b 2 7.70370370 3.85185185 . . a*b 2 5.77777778 2.88888889 . . c 2 19.37037037 9.68518519 . . a*c 2 0.11111111 0.05555556 . . b*c 4 4.07407407 1.01851852 . . a*b*c 4 0.44444444 0.11111111 . . s(a) 4 24.37037037 6.09259259 . . s*b(a) 8 5.62962963 0.70370370 . . s*c(a) 8 4.29629630 0.53703704 . . s*b*c(a) 16 4.37037037 0.27314815 . . Tests of Hypotheses Using the Type III MS for s(a) as an Error Term Source DF Type III SS Mean Square F Value Pr > F a 1 1.50000000 1.50000000 0.25 0.6458 Tests of Hypotheses Using the Type III MS for s*b(a) as an Error Term Source DF Type III SS Mean Square F Value Pr > F b 2 7.70370370 3.85185185 5.47 0.0318 a*b 2 5.77777778 2.88888889 4.11 0.0593 Tests of Hypotheses Using the Type III MS for s*c(a) as an Error Term Source DF Type III SS Mean Square F Value Pr > F c 2 19.37037037 9.68518519 18.03 0.0011 a*c 2 0.11111111 0.05555556 0.10 0.9029 Tests of Hypotheses Using the Type III MS for s*b*c(a) as an Error Term Source DF Type III SS Mean Square F Value Pr > F b*c 4 4.07407407 1.01851852 3.73 0.0250 a*b*c 4 0.44444444 0.11111111 0.41 0.8011
Table 23.10, page 526. Analysis of the between-subjects simple interaction A*B at c=3.
NOTE: Evaluating the design at a specific level of a within-subject factor reduces the design to a two-factor between-subject design.
proc glm data = table23_3; where c =3; class a b ; model y = a|b /ss3; run; quit;
The GLM Procedure Class Level Information Class Levels Values a 3 1 2 3 b 2 1 2 Number of observations 12
Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model 5 263.0000000 52.6000000 8.77 0.0099 Error 6 36.0000000 6.0000000 Corrected Total 11 299.0000000 R-Square Coeff Var Root MSE y Mean 0.879599 21.29991 2.449490 11.50000 Source DF Type III SS Mean Square F Value Pr > F a 2 98.0000000 49.0000000 8.17 0.0194 b 1 0.3333333 0.3333333 0.06 0.8215 a*b 2 164.6666667 82.3333333 13.72 0.0058
proc glm data = table23_3w; class a b; model c3 = a|b /ss3; run; quit;
The GLM Procedure Class Level Information Class Levels Values a 3 1 2 3 b 2 1 2 Number of observations 12 Dependent Variable: c3 Sum of Source DF Squares Mean Square F Value Pr > F Model 5 263.0000000 52.6000000 8.77 0.0099 Error 6 36.0000000 6.0000000 Corrected Total 11 299.0000000 R-Square Coeff Var Root MSE c3 Mean 0.879599 21.29991 2.449490 11.50000 Source DF Type III SS Mean Square F Value Pr > F a 2 98.0000000 49.0000000 8.17 0.0194 b 1 0.3333333 0.3333333 0.06 0.8215 a*b 2 164.6666667 82.3333333 13.72 0.0058
proc mixed data = table23_3; where c = 3; class s a b ; model y = a|b; repeated/ subject = s type = cs; run; quit;
The Mixed Procedure Model Information Data Set WORK.TABLE23_3 Dependent Variable y Covariance Structure Compound Symmetry Subject Effect s Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Class Level Information Class Levels Values s 12 1 2 3 4 5 6 7 8 9 10 11 12 a 3 1 2 3 b 2 1 2 Dimensions Covariance Parameters 2 Columns in X 12 Columns in Z 0 Subjects 12 Max Obs Per Subject 1 Observations Used 12 Observations Not Used 0 Total Observations 12 Iteration History Iteration Evaluations -2 Res Log Like Criterion 0 1 31.93670230 1 1 31.93670230 0.00000000 Convergence criteria met but final hessian is not positive definite. Covariance Parameter Estimates Cov Parm Subject Estimate CS s 5.1429 Residual 0.8571 Fit Statistics -2 Res Log Likelihood 31.9 AIC (smaller is better) 35.9 AICC (smaller is better) 39.9 BIC (smaller is better) 36.9 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 0.00 1.0000 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F a 2 6 8.17 0.0194 b 1 6 0.06 0.8215 a*b 2 6 13.72 0.0058
Table 23.12, page 528. Simple effects of factor B and C for female subjects from the data in Table 23.4 using only the restricted error terms.
NOTE: Restricting the design to one level of the between subject factor reduces the design to a two-factor within-subject design.
proc glm data = table23_4; where a = 1; class s b c; model y = b|c|s/ss3; test h = b e = b*s; test h = c e = c*s; test h = b*c e = s*b*c ; run;quit;
The GLM Procedure Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model 26 43.40740741 1.66951567 . . Error 0 0.00000000 . Corrected Total 26 43.40740741 R-Square Coeff Var Root MSE y Mean 1.000000 . . 2.851852 Source DF Type III SS Mean Square F Value Pr > F b 2 12.51851852 6.25925926 . . c 2 11.18518519 5.59259259 . . b*c 4 3.03703704 0.75925926 . . s 2 9.85185185 4.92592593 . . s*b 4 3.03703704 0.75925926 . . s*c 4 1.03703704 0.25925926 . . s*b*c 8 2.74074074 0.34259259 . . Tests of Hypotheses Using the Type III MS for s*b as an Error Term Source DF Type III SS Mean Square F Value Pr > F b 2 12.51851852 6.25925926 8.24 0.0381 Tests of Hypotheses Using the Type III MS for s*c as an Error Term Source DF Type III SS Mean Square F Value Pr > F c 2 11.18518519 5.59259259 21.57 0.0072 Tests of Hypotheses Using the Type III MS for s*b*c as an Error Term Source DF Type III SS Mean Square F Value Pr > F b*c 4 3.03703704 0.75925926 2.22 0.1571