Example 16. 1
Comparing the ordinary least square regression with the instrumental variable estimator.
data example16_1; input Year Q P L NptCost CPI Income; cards; 1960 72 51 24 46 88.7 6036 1961 70 52 25 46 89.6 6113 1962 71 54 26 47 90.6 6271 1963 74 55 27 47 91.7 6378 1964 72 55 29 47 92.9 6727 1965 76 53 31 48 94.5 7027 1966 73 55 33 50 97.2 7280 1967 77 52 35 50 100.0 7513 1968 79 52 38 50 104.2 7728 1969 80 50 40 52 109.8 7891 1970 77 52 42 54 116.3 8134 1971 86 56 43 57 121.3 8322 1972 87 60 47 61 125.3 8562 1973 92 91 53 73 133.1 9042 1974 84 117 66 83 147.7 8867 1975 93 105 75 91 161.2 8944 1976 92 102 86 97 170.5 9175 1977 100 100 100 100 181.5 9381 1978 102 105 109 108 195.4 9735 1979 113 116 125 125 217.4 9829 1980 101 125 145 138 246.8 9722 1981 117 134 158 148 272.4 9769 1982 117 121 157 150 289.1 9725 1983 88 128 148 153 298.4 9930 1984 111 139 146 155 311.1 10421 1985 117 120 128 151 322.2 10563 1986 108 106 112 146 328.4 10780 ; run; proc reg data=example16_1; model q=p; run; quit;
The REG Procedure Model: MODEL1 Dependent Variable: Q Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 1 4918.74252 4918.74252 71.57 <.0001 Error 25 1718.22044 68.72882 Corrected Total 26 6636.96296 Root MSE 8.29028 R-Square 0.7411 Dependent Mean 89.96296 Adj R-Sq 0.7308 Coeff Var 9.21522 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 54.13198 4.52600 11.96 <.0001 P 1 0.41953 0.04959 8.46 <.0001
proc model data=example16_1; q = intercept + P_co * p; fit q /n2sls vardef=N; instruments income ; run; quit;
The MODEL Procedure Nonlinear 2SLS Summary of Residual Errors DF DF Adj Equation Model Error SSE MSE Root MSE R-Square R-Sq Q 2 25 1916.7 70.9877 8.4254 0.7112 0.6997 Nonlinear 2SLS Parameter Estimates Approx Approx Parameter Estimate Std Err t Value Pr > |t| intercept 46.93491 5.1954 9.03 <.0001 P_co 0.503798 0.0578 8.72 <.0001 Number of Observations Statistics for System Used 27 Objective 5.971E-26 Missing 0 Objective*N 1.612E-24
Table 16.4 Single-Equation Estimates of Klein’s Consumption Function
On page 687 with four difference estimates for Klein’s model.
data klein; input Year C P Wp I Klag X Wg G T ; cards; 1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4 1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7 1922 45.0 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9 1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7 1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8 1925 52.6 20.1 35.4 5.1 192.7 61.0 3.2 3.3 5.5 1926 55.1 19.6 37.4 5.6 197.8 64.0 3.3 3.3 7.0 1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7 1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2 1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0 1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7 1931 50.9 11.4 34.5 -3.4 216.7 53.4 4.8 5.9 7.5 1932 45.6 7.0 29.0 -6.2 213.3 44.3 5.3 4.9 8.3 1933 46.5 11.2 28.5 -5.1 207.1 45.1 5.6 3.7 5.4 1934 48.7 12.3 30.6 -3.0 202.0 49.7 6.0 4.0 6.8 1935 51.3 14.0 33.2 -1.3 199.0 54.4 6.1 4.4 7.2 1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3 1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7 1938 57.5 15.3 38.2 -1.9 201.8 60.9 7.7 5.3 7.4 1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9 1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6 1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6 ; run; data klein; set klein; W=Wp+Wg; A=Year-1931; Plag=lag(P); Xlag=lag(X); Y=C + I + G - T; run; /*OLS Estimate*/ proc reg data=klein; model C = P Plag W; run; quit; The REG Procedure Model: MODEL1 Dependent Variable: C Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 923.55008 307.85003 292.71 <.0001 Error 17 17.87945 1.05173 Corrected Total 20 941.42952 Root MSE 1.02554 R-Square 0.9810 Dependent Mean 53.99524 Adj R-Sq 0.9777 Coeff Var 1.89932 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 16.23660 1.30270 12.46 <.0001 P 1 0.19293 0.09121 2.12 0.0495 Plag 1 0.08988 0.09065 0.99 0.3353 W 1 0.79622 0.03994 19.93 <.0001 /* 2sls Estimate*/ proc model data=klein; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; ENDOGENOUS W P X; EXOGENOUS T Wg G; fit C /n2sls vardef=N; instruments G T A Wg Plag Klag Xlag ; run; quit; The MODEL Procedure Nonlinear 2SLS Summary of Residual Errors DF DF Adj Equation Model Error SSE MSE Root MSE R-Square R-Sq C 4 17 21.9252 1.0441 1.0218 0.9767 0.9726 Nonlinear 2SLS Parameter Estimates Approx Approx Parameter Estimate Std Err t Value Pr > |t| cons_c 16.55476 1.3208 12.53 <.0001 P_c 0.017302 0.1180 0.15 0.8852 Plag_c 0.216234 0.1073 2.02 0.0599 W_c 0.810183 0.0402 20.13 <.0001 Number of Observations Statistics for System Used 21 Objective 0.4361 Missing 1 Objective*N 9.1580 /* GMM(H2sls)*/ proc model data=klein; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; fit C /n2sls outv=vdata; instruments G T A Wg Plag Klag Xlag ; run; quit; data vblkdiag; set vdata; if (eq_row ^= eq_col) then value=0; /* create block-diagonal V */ run; /*use the block-diagonal in gmm*/ proc model data=klein OUTPARMS=parm1; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; fit C / gmm vdata=vblkdiag; instruments G T A Wg Plag Klag Xlag ; run; quit; /*use the parameter estimate from the previous model as the initial estimate*/ proc model data=klein; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; fit C /estdata=parm1 no2sls gmm kernel=(bart,0,) vardef=N; instruments G T A Wg Plag Klag Xlag ; run; quit; The MODEL Procedure Nonlinear GMM Summary of Residual Errors DF DF Adj Equation Model Error SSE MSE Root MSE R-Square R-Sq C 4 17 21.7278 1.0347 1.0172 0.9769 0.9728 Nonlinear GMM Parameter Estimates Approx Approx Parameter Estimate Std Err t Value Pr > |t| cons_c 14.35319 0.8984 15.98 <.0001 P_c 0.091284 0.0626 1.46 0.1627 Plag_c 0.141792 0.0658 2.16 0.0457 W_c 0.862988 0.0291 29.62 <.0001 Number of Observations Statistics for System Used 21 Objective 0.1810 Missing 1 Objective*N 3.8004 /*LIML*/ proc syslin data=klein liml vardef=N; endogenous C P Wp I X W Klag Y ; instruments Klag Plag Xlag Wg G T A; consume: model c = P Plag W; run; The SYSLIN Procedure Limited-Information Maximum Likelihood Estimation Model CONSUME Dependent Variable C Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 854.3541 284.7847 118.42 <.0001 Error 17 40.88419 2.404952 Corrected Total 20 941.4295 Root MSE 1.55079 R-Square 0.95433 Dependent Mean 53.99524 Adj R-Sq 0.94627 Coeff Var 2.87209 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 17.14765 1.840295 9.32 <.0001 P 1 -0.22251 0.201748 -1.10 0.2854 Plag 1 0.396027 0.173598 2.28 0.0357 W 1 0.822559 0.055378 14.85 <.0001 NOTE: K-Class Estimation with K=1.4987455056
Table 16.5 Estimates of Klein’s Model I
Limited-Information Estimates vs. Full-Information estimates
/* 2SLS */ proc model data=klein; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; I = cons_i + P_i * P + Plag_i * Plag +Klag_i * Klag; Wp = cons_w + X_w * X + Xlag_w * Xlag + A_w *A; ENDOGENOUS W P X; EXOGENOUS T Wg G; fit C I Wp /n2sls vardef=N; instruments G T A Wg Plag Klag Xlag ; run; quit; The MODEL Procedure Nonlinear 2SLS Summary of Residual Errors DF DF Adj Equation Model Error SSE MSE Root MSE R-Square R-Sq C 4 17 21.9252 1.0441 1.0218 0.9767 0.9726 I 4 17 29.0469 1.3832 1.1761 0.8849 0.8646 Wp 4 17 10.0050 0.4764 0.6902 0.9874 0.9852 Nonlinear 2SLS Parameter Estimates Approx Approx Parameter Estimate Std Err t Value Pr > |t| cons_c 16.55476 1.3208 12.53 <.0001 P_c 0.017302 0.1180 0.15 0.8852 Plag_c 0.216234 0.1073 2.02 0.0599 W_c 0.810183 0.0402 20.13 <.0001 cons_i 20.27821 7.5427 2.69 0.0155 P_i 0.150222 0.1732 0.87 0.3979 Plag_i 0.615944 0.1628 3.78 0.0015 Klag_i -0.15779 0.0361 -4.37 0.0004 cons_w 1.500297 1.1478 1.31 0.2086 X_w 0.438859 0.0356 12.32 <.0001 Xlag_w 0.146674 0.0388 3.78 0.0015 A_w 0.130396 0.0291 4.47 0.0003 Number of Observations Statistics for System Used 21 Objective 0.8391 Missing 1 Objective*N 17.6215 /* LIML */ /*The standard errors for the second and third equation are different from the book*/ proc syslin data=klein liml vardef=N; endogenous C P Wp I X W Klag Y ; instruments Klag Plag Xlag Wg G T A; consume: model c = P Plag W; invest: model i = P Plag Klag; labor: model wp = X Xlag A; run; The SYSLIN Procedure Limited-Information Maximum Likelihood Estimation Model CONSUME Dependent Variable C Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 854.3541 284.7847 118.42 <.0001 Error 17 40.88419 2.404952 Corrected Total 20 941.4295 Root MSE 1.55079 R-Square 0.95433 Dependent Mean 53.99524 Adj R-Sq 0.94627 Coeff Var 2.87209 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 17.14765 1.840295 9.32 <.0001 P 1 -0.22251 0.201748 -1.10 0.2854 Plag 1 0.396027 0.173598 2.28 0.0357 W 1 0.822559 0.055378 14.85 <.0001 NOTE: K-Class Estimation with K=1.4987455056 The SYSLIN Procedure Limited-Information Maximum Likelihood Estimation Model INVEST Dependent Variable I Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 210.3790 70.12634 34.06 <.0001 Error 17 34.99649 2.058617 Corrected Total 20 252.3267 Root MSE 1.43479 R-Square 0.85738 Dependent Mean 1.26667 Adj R-Sq 0.83221 Coeff Var 113.27274 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 22.59083 8.545818 2.64 0.0171 P 1 0.075185 0.202181 0.37 0.7146 Plag 1 0.680386 0.188175 3.62 0.0021 Klag 1 -0.16826 0.040798 -4.12 0.0007 NOTE: K-Class Estimation with K=1.0859528454 The SYSLIN Procedure Limited-Information Maximum Likelihood Estimation Model LABOR Dependent Variable Wp Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 696.1485 232.0495 393.62 <.0001 Error 17 10.02192 0.589525 Corrected Total 20 794.9095 Root MSE 0.76781 R-Square 0.98581 Dependent Mean 36.36190 Adj R-Sq 0.98330 Coeff Var 2.11156 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 1.526187 1.188405 1.28 0.2163 X 1 0.433941 0.067937 6.39 <.0001 Xlag 1 0.151321 0.067054 2.26 0.0375 A 1 0.131593 0.032386 4.06 0.0008 NOTE: K-Class Estimation with K=2.4685825667 /* OLS Estimate */ proc reg data=klein; model C= P Plag W; model I = P Plag Klag; model Wp= X Xlag A; run; quit; The REG Procedure Model: MODEL1 Dependent Variable: C Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 923.55008 307.85003 292.71 <.0001 Error 17 17.87945 1.05173 Corrected Total 20 941.42952 Root MSE 1.02554 R-Square 0.9810 Dependent Mean 53.99524 Adj R-Sq 0.9777 Coeff Var 1.89932 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 16.23660 1.30270 12.46 <.0001 P 1 0.19293 0.09121 2.12 0.0495 Plag 1 0.08988 0.09065 0.99 0.3353 W 1 0.79622 0.03994 19.93 <.0001 The REG Procedure Model: MODEL2 Dependent Variable: I Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 235.00396 78.33465 76.88 <.0001 Error 17 17.32270 1.01898 Corrected Total 20 252.32667 Root MSE 1.00945 R-Square 0.9313 Dependent Mean 1.26667 Adj R-Sq 0.9192 Coeff Var 79.69315 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 10.12579 5.46555 1.85 0.0814 P 1 0.47964 0.09711 4.94 0.0001 Plag 1 0.33304 0.10086 3.30 0.0042 Klag 1 -0.11179 0.02673 -4.18 0.0006 The REG Procedure Model: MODEL3 Dependent Variable: Wp Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 784.90477 261.63492 444.57 <.0001 Error 17 10.00475 0.58851 Corrected Total 20 794.90952 Root MSE 0.76715 R-Square 0.9874 Dependent Mean 36.36190 Adj R-Sq 0.9852 Coeff Var 2.10976 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 1.49704 1.27003 1.18 0.2547 X 1 0.43948 0.03241 13.56 <.0001 Xlag 1 0.14609 0.03742 3.90 0.0011 A 1 0.13025 0.03191 4.08 0.0008 /* 3SLS */ proc model data=klein; C = cons_c + P_c * P + Plag_c * Plag + W_c*W; I = cons_i + P_i * P + Plag_i * Plag +Klag_i * Klag; Wp = cons_w + X_w * X + Xlag_w * Xlag + A_w *A; ENDOGENOUS W P X ; EXOGENOUS T Wg G; fit C I Wp /n3sls vardef=N; instruments G T A Wg Plag Klag Xlag ; run; quit; The MODEL Procedure Nonlinear 3SLS Summary of Residual Errors DF DF Adj Equation Model Error SSE MSE Root MSE R-Square R-Sq C 4 17 18.7270 0.8918 0.9443 0.9801 0.9766 I 4 17 43.9540 2.0930 1.4467 0.8258 0.7951 Wp 4 17 10.9205 0.5200 0.7211 0.9863 0.9838 Nonlinear 3SLS Parameter Estimates Approx Approx Parameter Estimate Std Err t Value Pr > |t| cons_c 16.44079 1.3045 12.60 <.0001 P_c 0.12489 0.1081 1.16 0.2641 Plag_c 0.163144 0.1004 1.62 0.1227 W_c 0.790081 0.0379 20.83 <.0001 cons_i 28.17785 6.7938 4.15 0.0007 P_i -0.01308 0.1619 -0.08 0.9366 Plag_i 0.755724 0.1529 4.94 0.0001 Klag_i -0.19485 0.0325 -5.99 <.0001 cons_w 1.797216 1.1159 1.61 0.1257 X_w 0.400492 0.0318 12.59 <.0001 Xlag_w 0.181291 0.0342 5.31 <.0001 A_w 0.149674 0.0279 5.36 <.0001 Number of Observations Statistics for System Used 21 Objective 1.1567 Missing 1 Objective*N 24.2910 /* FIML */ proc syslin data=klein fiml; endogenous C P Wp I X W Y ; instruments Klag Plag Xlag Wg G T A; consume: model C = P Plag W; invest: model I = P Plag Klag; labor: model Wp = X Xlag A; product: identity X = C + I + G; profit: identity P = Y - Wp; wage: identity W = Wg + Wp; income: identity Y = C + I + G - T; run; Model CONSUME Dependent Variable C Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 18.34865 2.488480 7.37 <.0001 P 1 -0.23308 0.312439 -0.75 0.4659 Plag 1 0.385971 0.217618 1.77 0.0940 W 1 0.801879 0.035898 22.34 <.0001 Model INVEST Dependent Variable I Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 27.26501 7.939025 3.43 0.0032 P 1 -0.80179 0.491990 -1.63 0.1216 Plag 1 1.052094 0.352749 2.98 0.0084 Klag 1 -0.14806 0.029844 -4.96 0.0001 Model LABOR Dependent Variable Wp Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 5.797016 1.804906 3.21 0.0051 X 1 0.234023 0.048829 4.79 0.0002 Xlag 1 0.284728 0.045214 6.30 <.0001 A 1 0.234878 0.034506 6.81 <.0001 /* I3SLS */ proc syslin data=klein i3sls vardef=N; endogenous C P Wp I X W Klag Y; instruments Klag Plag Xlag Wg G T A; consume: model c = P Plag W; invest: model i = P Plag Klag; labor: model wp = X Xlag A; run; The SYSLIN Procedure Iterative Three-Stage Least Squares Estimation Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 16.55898 1.224394 13.52 <.0001 P 1 0.164505 0.096198 1.71 0.1054 Plag 1 0.176562 0.090100 1.96 0.0666 W 1 0.765804 0.034760 22.03 <.0001 Model INVEST Dependent Variable I Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 42.89425 10.59316 4.05 0.0008 P 1 -0.35649 0.260138 -1.37 0.1884 Plag 1 1.011268 0.248757 4.07 0.0008 Klag 1 -0.26019 0.050866 -5.12 <.0001 Model LABOR Dependent Variable Wp Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 2.624646 1.195543 2.20 0.0423 X 1 0.374782 0.031103 12.05 <.0001 Xlag 1 0.193650 0.032402 5.98 <.0001 A 1 0.167923 0.028929 5.80 <.0001