The data files can be downloaded from
http://rem.ph.ucla.edu/~rob/mld/data.html .
Table 6.1, page 149.
data small; set smallmice; cont_day = day; cont_day2 = day**2; run; *Unstructured Covariance Matrix; proc mixed data = small method = reml noitprint noclprint; class id day; model weight = cont_day cont_day2/ notest; repeated day/ subject=id type = unstructured; run; The Mixed Procedure Model Information Data Set WORK.SMALL Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 28 Columns in X 3 Columns in Z 0 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 909.07 UN(2,1) id 1313.72 UN(2,2) id 2248.87 UN(3,1) id 889.13 UN(3,2) id 2062.34 UN(3,3) id 3532.66 UN(4,1) id 941.45 UN(4,2) id 2470.39 UN(4,3) id 5346.10 UN(4,4) id 10600 UN(5,1) id 721.71 UN(5,2) id 2674.65 UN(5,3) id 6486.86 UN(5,4) id 12884 UN(5,5) id 17993 UN(6,1) id 943.31 UN(6,2) id 2662.18 UN(6,3) id 5989.36 UN(6,4) id 12463 UN(6,5) id 16892 UN(6,6) id 18053 UN(7,1) id 1266.36 UN(7,2) id 3030.37 UN(7,3) id 5799.41 UN(7,4) id 10739 UN(7,5) id 14324 UN(7,6) id 14866 UN(7,7) id 14492 Fit Statistics -2 Res Log Likelihood 964.7 AIC (smaller is better) 1020.7 AICC (smaller is better) 1045.3 BIC (smaller is better) 1038.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 27 198.41 <.0001 *AR(1) Covariance Matrix; proc mixed data = small method = reml noitprint noclprint; class id day; model weight = cont_day cont_day2/ notest; repeated day/ subject=id type = ar(1); run; The Mixed Procedure Model Information Data Set WORK.SMALL Dependent Variable weight Covariance Structure Autoregressive Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 2 Columns in X 3 Columns in Z 0 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Subject Estimate AR(1) id 0.8737 Residual 8796.77 Fit Statistics -2 Res Log Likelihood 1035.3 AIC (smaller is better) 1039.3 AICC (smaller is better) 1039.4 BIC (smaller is better) 1040.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 127.83 <.0001 *RIAS Covariance Matrix; proc mixed data = small method = reml noitprint noclprint; class id day; model weight = cont_day cont_day2/ notest; random intercept cont_day/ subject=id type = un; run; The Mixed Procedure Model Information Data Set WORK.SMALL Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 3 Columns in Z Per Subject 2 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 744.35 UN(2,1) id -49.8237 UN(2,2) id 55.5479 Residual 1399.56 Fit Statistics -2 Res Log Likelihood 1038.6 AIC (smaller is better) 1046.6 AICC (smaller is better) 1047.0 BIC (smaller is better) 1049.2 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 124.48 <.0001 *CS Covariance Matrix; proc mixed data = small method = reml noitprint noclprint; class id day; model weight = cont_day cont_day2/ notest; random intercept/ subject=id; run; The Mixed Procedure Model Information Data Set WORK.SMALL Dependent Variable weight Covariance Structure Variance Components Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 2 Columns in X 3 Columns in Z Per Subject 1 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Subject Estimate Intercept id 6052.49 Residual 3618.76 Fit Statistics -2 Res Log Likelihood 1105.3 AIC (smaller is better) 1109.3 AICC (smaller is better) 1109.4 BIC (smaller is better) 1110.6 proc mixed data = small method = reml noitprint noclprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject=id type = vc; run; The Mixed Procedure Model Information Data Set WORK.SMALL Dependent Variable weight Covariance Structure Variance Components Subject Effect id Estimation Method REML Residual Variance Method Parameter Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 1 Columns in X 3 Columns in Z 0 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Subject Estimate day id 9416.41 Fit Statistics -2 Res Log Likelihood 1163.1 AIC (smaller is better) 1165.1 AICC (smaller is better) 1165.1 BIC (smaller is better) 1165.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 0 0.00 1.0000
Table 6.2, page 168.
Transformed estimates only.
data trans_pain; set pain; invsqrt = -paintol**(-.5); run; *Log2; proc mixed data = trans_pain method= reml noitprint noclprint noinfo; class id cs trial; model l2paintol = cs / solution notest; repeated trial/ subject = id type = unstructured; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 1.0065 UN(2,1) id 0.7482 UN(2,2) id 1.1281 UN(3,1) id 0.9522 UN(3,2) id 0.8736 UN(3,3) id 1.3423 UN(4,1) id 0.6725 UN(4,2) id 0.7908 UN(4,3) id 1.0022 UN(4,4) id 1.3071 Fit Statistics -2 Res Log Likelihood 568.4 AIC (smaller is better) 588.4 AICC (smaller is better) 589.4 BIC (smaller is better) 610.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 170.12 <.0001 Solution for Fixed Effects coping Standard Effect style Estimate Error DF t Value Pr > |t| Intercept 5.0770 0.1620 62 31.35 <.0001 cs attender -0.5054 0.2291 62 -2.21 0.0311 cs distracter 0 . . . . *Negative inverse square root; proc mixed data = trans_pain method= reml noitprint noclprint noinfo; class id cs trial; model invsqrt = cs / solution notest; repeated trial/ subject = id type = unstructured; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 0.003276 UN(2,1) id 0.002723 UN(2,2) id 0.004548 UN(3,1) id 0.003166 UN(3,2) id 0.003089 UN(3,3) id 0.004971 UN(4,1) id 0.002611 UN(4,2) id 0.003206 UN(4,3) id 0.004182 UN(4,4) id 0.005695 Fit Statistics -2 Res Log Likelihood -778.7 AIC (smaller is better) -758.7 AICC (smaller is better) -757.8 BIC (smaller is better) -737.1 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 164.19 <.0001 Solution for Fixed Effects coping Standard Effect style Estimate Error DF t Value Pr > |t| Intercept -0.1831 0.009837 62 -18.62 <.0001 cs attender -0.02888 0.01389 62 -2.08 0.0418 cs distracter 0 . . . .