Table 8.1, page 275.
data sm; set smallmice; cont_day = day; cont_day2 = day**2; run; *Model #7: ARH(1); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2 /notest; repeated day / subject = id type = arh(1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Heterogeneous Autoregressive Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 990.9 AIC (smaller is better) 1006.9 AICC (smaller is better) 1008.5 BIC (smaller is better) 1012.0 DF Chi-Square Pr > ChiSq 7 172.22 <.0001 *Model 12: ANTEH; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2 /notest; repeated day / subject = id type = ante(1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Ante-dependence Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 983.1 AIC (smaller is better) 1009.1 AICC (smaller is better) 1013.6 BIC (smaller is better) 1017.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 12 180.00 <.0001 *Model 13: FAH(2); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = fah(2); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 977.1 AIC (smaller is better) 1015.1 AICC (smaller is better) 1025.2 BIC (smaller is better) 1027.2 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 18 185.98 <.0001 *Model 14: UN; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 964.7 AIC (smaller is better) 1020.7 AICC (smaller is better) 1045.3 BIC (smaller is better) 1038.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 27 198.41 <.0001 *Model 2: AR(1); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = ar(1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Autoregressive Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1035.3 AIC (smaller is better) 1039.3 AICC (smaller is better) 1039.4 BIC (smaller is better) 1040.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 127.83 <.0001 *Model 5: ARMA; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = arma(1,1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Autoregressive Moving Average Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1032.9 AIC (smaller is better) 1038.9 AICC (smaller is better) 1039.2 BIC (smaller is better) 1040.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 2 130.18 <.0001 *Model 10: FA(2); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = fa1(2); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1004.0 AIC (smaller is better) 1032.0 AICC (smaller is better) 1037.3 BIC (smaller is better) 1041.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 13 159.05 <.0001 *Model 8: FA(1); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = fa1(1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1020.4 AIC (smaller is better) 1036.4 AICC (smaller is better) 1038.1 BIC (smaller is better) 1041.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 7 142.69 <.0001 *Model 3: RS; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; random cont_day/ subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment [...output omitted...] Fit Statistics -2 Res Log Likelihood 1041.0 AIC (smaller is better) 1045.0 AICC (smaller is better) 1045.1 BIC (smaller is better) 1046.3 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 2 122.10 <.0001 *Model 6: RIAS; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; random intercept cont_day / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment [...output omitted...] Fit Statistics -2 Res Log Likelihood 1038.6 AIC (smaller is better) 1046.6 AICC (smaller is better) 1047.0 BIC (smaller is better) 1049.2 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 124.48 <.0001 *Model 11: FAH(1); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = fa(1); run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1016.8 AIC (smaller is better) 1044.8 AICC (smaller is better) 1050.0 BIC (smaller is better) 1053.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 13 146.33 <.0001 *Model 9: CSH; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = csh; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Heterogeneous Compound Symmetry Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1050.7 AIC (smaller is better) 1066.7 AICC (smaller is better) 1068.3 BIC (smaller is better) 1071.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 7 112.43 <.0001 *Model 4: RI; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = cs; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Compound Symmetry Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1105.3 AIC (smaller is better) 1109.3 AICC (smaller is better) 1109.4 BIC (smaller is better) 1110.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 57.80 <.0001 *Model 1: IND; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ notest; repeated day / subject = id type = vc; run; The Mixed Procedure Model Information Data Set WORK.SM Dependent Variable weight Covariance Structure Variance Components Subject Effect id Estimation Method REML Residual Variance Method Parameter Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within [...output omitted...] Fit Statistics -2 Res Log Likelihood 1163.1 AIC (smaller is better) 1165.1 AICC (smaller is better) 1165.1 BIC (smaller is better) 1165.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 0 0.00 1.0000
Table 8.3, page 277.
*arh(1); proc mixed data = sm method = reml noitprint noclprint noinfo; class id day; model weight = cont_day cont_day2/ solution notest; repeated day / subject = id type = arh(1) rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 22 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 1 1.0000 0.8963 0.8034 0.7201 0.6454 0.5785 0.5185 2 0.8963 1.0000 0.8963 0.8034 0.7201 0.6454 0.5785 3 0.8034 0.8963 1.0000 0.8963 0.8034 0.7201 0.6454 4 0.7201 0.8034 0.8963 1.0000 0.8963 0.8034 0.7201 5 0.6454 0.7201 0.8034 0.8963 1.0000 0.8963 0.8034 6 0.5785 0.6454 0.7201 0.8034 0.8963 1.0000 0.8963 7 0.5185 0.5785 0.6454 0.7201 0.8034 0.8963 1.0000 [...output omitted...] *ANTEH; proc mixed data = sm method = reml noitprint noclprint noinfo; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = ante(1) rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 22 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 1 1.0000 0.9228 0.6901 0.5995 0.5578 0.5217 0.4787 2 0.9228 1.0000 0.7478 0.6496 0.6044 0.5653 0.5187 3 0.6901 0.7478 1.0000 0.8687 0.8082 0.7560 0.6937 4 0.5995 0.6496 0.8687 1.0000 0.9304 0.8703 0.7985 5 0.5578 0.6044 0.8082 0.9304 1.0000 0.9353 0.8582 6 0.5217 0.5653 0.7560 0.8703 0.9353 1.0000 0.9176 7 0.4787 0.5187 0.6937 0.7985 0.8582 0.9176 1.0000 [...output omitted...] *FAH(2); proc mixed data = sm method = reml noclprint noinfo noitprint; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = fah(2) rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 22 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 1 1.0000 0.9276 0.5844 0.3110 0.2056 0.2189 0.3083 2 0.9276 1.0000 0.7424 0.4978 0.3998 0.4090 0.4886 3 0.5844 0.7424 1.0000 0.8311 0.8024 0.7946 0.8064 4 0.3110 0.4978 0.8311 1.0000 0.9304 0.9138 0.8849 5 0.2056 0.3998 0.8024 0.9304 1.0000 0.9416 0.8984 6 0.2189 0.4090 0.7946 0.9138 0.9416 1.0000 0.8825 7 0.3083 0.4886 0.8064 0.8849 0.8984 0.8825 1.0000 *UN; proc mixed data = sm method = reml noitprint noclprint noinfo; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = un rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 22 Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 1 1.0000 0.9188 0.4962 0.3033 0.1785 0.2329 0.3489 2 0.9188 1.0000 0.7317 0.5060 0.4205 0.4178 0.5308 3 0.4962 0.7317 1.0000 0.8737 0.8136 0.7500 0.8105 4 0.3033 0.5060 0.8737 1.0000 0.9330 0.9010 0.8665 5 0.1785 0.4205 0.8136 0.9330 1.0000 0.9372 0.8871 6 0.2329 0.4178 0.7500 0.9010 0.9372 1.0000 0.9191 7 0.3489 0.5308 0.8105 0.8665 0.8871 0.9191 1.0000
Table 8.4, page 278.
*ARH(1); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ solution notest; repeated day / subject = id type = arh(1); run; [...output omitted...] Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 78.8108 6.9230 13 11.38 <.0001 cont_day 67.1741 3.0942 82 21.71 <.0001 cont_day2 -1.1793 0.1421 82 -8.30 <.0001 *ANTE; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = ante(1); run; [...output omitted...] Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 81.3278 6.1346 13 13.26 <.0001 cont_day 66.3829 2.3550 82 28.19 <.0001 cont_day2 -1.1773 0.1152 82 -10.22 <.0001 *FAH(2); proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = fah(2); run; [...output omitted...] Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 84.7254 5.6912 13 14.89 <.0001 cont_day 67.1351 2.2533 82 29.79 <.0001 cont_day2 -1.2583 0.08510 82 -14.79 <.0001 *UN; proc mixed data = sm method = reml noclprint noitprint; class id day; model weight = cont_day cont_day2/ solution notest ; repeated day / subject = id type = un; run; [...output omitted...] Standard Effect Estimate Error DF t Value Pr > |t| Intercept 89.5909 4.5755 13 19.58 <.0001 cont_day 64.1899 2.3275 13 27.58 <.0001 cont_day2 -1.1105 0.09463 13 -11.74 <.0001
Table 8.5, page 279.
data pain1; set pain; tmt = "Z"; if trial = 4 and treatment = "attend" then tmt = "A"; if trial = 4 and treatment = "distract" then tmt = "D"; if trial = 4 and treatment = "no directions" then tmt = "N"; cont_trial = trial; logpain = log(paintol); run; *RI; proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; random intercept / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 2 Columns in X 15 Columns in Z Per Subject 1 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 408.2 AIC (smaller is better) 412.2 AICC (smaller is better) 412.3 BIC (smaller is better) 416.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 142.92 <.0001 *ARMA(1,1); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = arma(1,1); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Autoregressive Moving Average Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 3 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 406.1 AIC (smaller is better) 412.1 AICC (smaller is better) 412.2 BIC (smaller is better) 418.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 2 145.01 <.0001 *RIAS; proc mixed data = pain1 method = reml noclprint noitprint; class id tmt cs; model logpain = cs|tmt trial/ notest; random intercept trial / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 16 Columns in Z Per Subject 2 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 408.0 AIC (smaller is better) 416.0 AICC (smaller is better) 416.1
Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 2 146.10 <.0001 *FA(1); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = fa1(1); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 5 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 403.9 AIC (smaller is better) 413.9 AICC (smaller is better) 414.2 BIC (smaller is better) 424.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 4 147.23 <.0001 *UN; proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 10 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 385.1 AIC (smaller is better) 405.1 AICC (smaller is better) 406.1 BIC (smaller is better) 426.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 166.04 <.0001 *FA(2); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = fa1(2); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 8 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 396.7 AIC (smaller is better) 412.7 AICC (smaller is better) 413.3 BIC (smaller is better) 429.9 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 7 154.46 <.0001 *FAH(1); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = fa(1); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Factor Analytic Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 8 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 396.8 AIC (smaller is better) 412.8 AICC (smaller is better) 413.4 BIC (smaller is better) 430.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 7 154.39 <.0001 *AR(1); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = ar(1); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Autoregressive Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 2 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 428.9 AIC (smaller is better) 432.9 AICC (smaller is better) 432.9 BIC (smaller is better) 437.2 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 122.29 <.0001 *ANTEH(1); proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = ante(1); run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Ante-dependence Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 7 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 426.3 AIC (smaller is better) 440.3 AICC (smaller is better) 440.8 BIC (smaller is better) 455.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 6 124.82 <.0001 *IND; proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = vc; run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Variance Components Subject Effect id Estimation Method REML Residual Variance Method Parameter Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 1 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 [...output omitted...] Fit Statistics -2 Res Log Likelihood 551.1 AIC (smaller is better) 553.1 AICC (smaller is better) 553.2 BIC (smaller is better) 555.3 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 0 0.00 1.0000
Table 8.6, page 280.
proc mixed data = pain1 method = reml noclprint noitprint; class id trial tmt cs; model logpain = cs|tmt/ notest; repeated trial / subject = id type = un rcorr; run; The Mixed Procedure Model Information Data Set WORK.PAIN1 Dependent Variable logpain Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 10 Columns in X 15 Columns in Z 0 Subjects 64 Max Obs Per Subject 4 Number of Observations Number of Observations Read 256 Number of Observations Used 245 Number of Observations Not Used 11 Estimated R Correlation Matrix for id 1 Row Col1 Col2 Col3 Col4 1 1.0000 0.7015 0.8196 0.5489 2 0.7015 1.0000 0.7072 0.6727 3 0.8196 0.7072 1.0000 0.7326 4 0.5489 0.6727 0.7326 1.0000 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 0.4847 UN(2,1) id 0.3593 UN(2,2) id 0.5411 UN(3,1) id 0.4564 UN(3,2) id 0.4161 UN(3,3) id 0.6398 UN(4,1) id 0.2764 UN(4,2) id 0.3578 UN(4,3) id 0.4238 UN(4,4) id 0.5230 Fit Statistics -2 Res Log Likelihood 385.1 AIC (smaller is better) 405.1 AICC (smaller is better) 406.1 BIC (smaller is better) 426.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 166.04 <.0001
Table 8.7, page 281.
data pain2; set pain; tmt_a = (treatment = "attend")*(trial = 4); tmt_d = (treatment = "distract")*(trial = 4); tmt_n = (treatment = "no directions")*(trial = 4); attend = (cs = "attender"); distract = (cs = "distracter"); logpain = log(paintol); run; *TOP MODEL; proc mixed data = pain2 method = reml noclprint noitprint; class id trial ; model logpain = attend tmt_a tmt_d tmt_n attend*tmt_a attend*tmt_d attend*tmt_n/ notest solution; repeated trial / subject = id type = un; estimate 'DA' tmt_a 1 ; estimate 'DD' tmt_d 1 ; estimate 'DN' tmt_n 1 ; estimate 'AA' attend*tmt_a 1 tmt_a 1 ; estimate 'AD' attend*tmt_d 1 tmt_d 1 ; estimate 'AN' attend*tmt_n 1 tmt_n 1 ; run; The Mixed Procedure [...output omitted...] Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 3.5109 0.1167 62 30.08 <.0001 attend -0.3560 0.1650 62 -2.16 0.0348 tmt_a -0.1352 0.1467 62 -0.92 0.3603 tmt_d 0.4900 0.1403 62 3.49 0.0009 tmt_n -0.3495 0.1509 62 -2.32 0.0238 attend*tmt_a 0.2317 0.2075 62 1.12 0.2684 attend*tmt_d -0.4245 0.2030 62 -2.09 0.0406 attend*tmt_n 0.3313 0.2118 62 1.56 0.1228 Estimates Standard Label Estimate Error DF t Value Pr > |t| DA -0.1352 0.1467 62 -0.92 0.3603 DD 0.4900 0.1403 62 3.49 0.0009 DN -0.3495 0.1509 62 -2.32 0.0238 AA 0.09650 0.1467 62 0.66 0.5131 AD 0.06547 0.1467 62 0.45 0.6569 AN -0.01820 0.1486 62 -0.12 0.9029 *Bottom MODEL; proc mixed data = pain2 method = reml noclprint noitprint; class id trial ; model logpain = attend tmt_a tmt_d tmt_n attend*tmt_a attend*tmt_d attend*tmt_n/ notest solution; random intercept / subject = id type = cs; estimate 'DA' tmt_a 1 ; estimate 'DD' tmt_d 1 ; estimate 'DN' tmt_n 1 ; estimate 'AA' attend*tmt_a 1 tmt_a 1 ; estimate 'AD' attend*tmt_d 1 tmt_d 1 ; estimate 'AN' attend*tmt_n 1 tmt_n 1 ; run; The Mixed Procedure [...output omitted...] Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 3.4731 0.1173 62 29.62 <.0001 attend -0.3313 0.1659 175 -2.00 0.0474 tmt_a -0.2438 0.1467 175 -1.66 0.0982 tmt_d 0.3993 0.1399 175 2.85 0.0048 tmt_n -0.3340 0.1493 175 -2.24 0.0266 attend*tmt_a 0.3188 0.2074 175 1.54 0.1261 attend*tmt_d -0.3723 0.2027 175 -1.84 0.0680 attend*tmt_n 0.2590 0.2098 175 1.23 0.2187 Estimates Standard Label Estimate Error DF t Value Pr > |t| DA -0.2438 0.1467 175 -1.66 0.0982 DD 0.3993 0.1399 175 2.85 0.0048 DN -0.3340 0.1493 175 -2.24 0.0266 AA 0.07499 0.1467 175 0.51 0.6098 AD 0.02700 0.1467 175 0.18 0.8542 AN -0.07500 0.1474 175 -0.51 0.6114
Table 8.8, page 283.
*RI-2; proc mixed data = pain1 method = reml noclprint noitprint noinfo; class cs treatment id trial tmt; model logpain = cs|tmt/ notest; repeated trial / subject = id type = cs group = cs; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Group Estimate Variance id cs attender 0.09966 CS id cs attender 0.3004 Variance id cs distracter 0.2294 CS id cs distracter 0.4630 Fit Statistics -2 Res Log Likelihood 391.7 AIC (smaller is better) 399.7 AICC (smaller is better) 399.9 BIC (smaller is better) 408.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 159.40 <.0001 *UN-2; proc mixed data = pain1 method = reml noclprint noitprint noinfo; class cs tmt id trial; model logpain = cs|tmt/ notest; repeated trial / subject = id type = un group = cs; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Group Estimate UN(1,1) id cs attender 0.3800 UN(2,1) id cs attender 0.3599 UN(2,2) id cs attender 0.4801 UN(3,1) id cs attender 0.3360 UN(3,2) id cs attender 0.3390 UN(3,3) id cs attender 0.3980 UN(4,1) id cs attender 0.2244 UN(4,2) id cs attender 0.2959 UN(4,3) id cs attender 0.2655 UN(4,4) id cs attender 0.3582 UN(1,1) id cs distracter 0.5874 UN(2,1) id cs distracter 0.3621 UN(2,2) id cs distracter 0.6100 UN(3,1) id cs distracter 0.5769 UN(3,2) id cs distracter 0.4978 UN(3,3) id cs distracter 0.8828 UN(4,1) id cs distracter 0.3323 UN(4,2) id cs distracter 0.4283 UN(4,3) id cs distracter 0.5878 UN(4,4) id cs distracter 0.6941 Fit Statistics -2 Res Log Likelihood 361.2 AIC (smaller is better) 401.2 AICC (smaller is better) 405.1 BIC (smaller is better) 444.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 19 189.96 <.0001 *RI; proc mixed data = pain1 method = reml noclprint noitprint noinfo; class cs treatment id trial tmt; model logpain = cs|tmt/ notest; repeated trial / subject = id type = cs; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate CS id 0.3814 Residual 0.1649 Fit Statistics -2 Res Log Likelihood 408.2 AIC (smaller is better) 412.2 AICC (smaller is better) 412.3 BIC (smaller is better) 416.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 142.92 <.0001 *UN; proc mixed data = pain1 method = reml noclprint noitprint noinfo; class cs tmt id trial; model logpain = cs|tmt/ notest; repeated trial / subject = id type = un; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 0.4847 UN(2,1) id 0.3593 UN(2,2) id 0.5411 UN(3,1) id 0.4564 UN(3,2) id 0.4161 UN(3,3) id 0.6398 UN(4,1) id 0.2764 UN(4,2) id 0.3578 UN(4,3) id 0.4238 UN(4,4) id 0.5230 Fit Statistics -2 Res Log Likelihood 385.1 AIC (smaller is better) 405.1 AICC (smaller is better) 406.1 BIC (smaller is better) 426.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq *RI attenders; proc mixed data = pain1 method = reml noclprint noitprint noinfo; where cs = "attender"; class tmt id trial; model logpain = tmt/ notest; repeated trial / subject = id type = cs; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate CS id 0.3003 Residual 0.09967 Fit Statistics -2 Res Log Likelihood 151.3 AIC (smaller is better) 155.3 AICC (smaller is better) 155.4 BIC (smaller is better) 158.2 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 85.47 <.0001 *UN attenders; proc mixed data = pain1 method = reml noclprint noitprint noinfo; where cs = "attender"; class tmt id trial; model logpain = tmt/ notest; repeated trial / subject = id type = un; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 0.3800 UN(2,1) id 0.3599 UN(2,2) id 0.4801 UN(3,1) id 0.3360 UN(3,2) id 0.3390 UN(3,3) id 0.3980 UN(4,1) id 0.2244 UN(4,2) id 0.2959 UN(4,3) id 0.2655 UN(4,4) id 0.3582 Fit Statistics -2 Res Log Likelihood 134.8 AIC (smaller is better) 154.8 AICC (smaller is better) 156.9 BIC (smaller is better) 169.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 101.94 <.0001 *RI distracter; proc mixed data = pain1 method = reml noclprint noitprint noinfo; where cs = "distracter"; class tmt id trial; model logpain = tmt/ notest; repeated trial / subject = id type = cs; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate CS id 0.4630 Residual 0.2294 Fit Statistics -2 Res Log Likelihood 240.5 AIC (smaller is better) 244.5 AICC (smaller is better) 244.6 BIC (smaller is better) 247.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 64.80 <.0001 *UN distracter; proc mixed data = pain1 method = reml noclprint noitprint noinfo; where cs = "distracter"; class tmt id trial; model logpain = tmt/ notest; repeated trial / subject = id type = un; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 0.5874 UN(2,1) id 0.3621 UN(2,2) id 0.6100 UN(3,1) id 0.5769 UN(3,2) id 0.4978 UN(3,3) id 0.8828 UN(4,1) id 0.3323 UN(4,2) id 0.4283 UN(4,3) id 0.5878 UN(4,4) id 0.6941 Fit Statistics -2 Res Log Likelihood 226.4 AIC (smaller is better) 246.4 AICC (smaller is better) 248.4 BIC (smaller is better) 261.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 78.89 <.0001
Table 8.9, page 284.
proc mixed data = pain1 method = reml covtest noclprint noitprint noinfo; class cs id trial tmt; model logpain = cs tmt/ notest; repeated trial / subject = id type = cs group = cs; run; The Mixed Procedure Covariance Parameter Estimates Standard Z Cov Parm Subject Group Estimate Error Value Pr Z Variance id cs attender 0.1009 0.01540 6.55 <.0001 CS id cs attender 0.3034 0.08458 3.59 0.0003 Variance id cs distracter 0.2338 0.03513 6.66 <.0001 CS id cs distracter 0.4846 0.1389 3.49 0.0005 Fit Statistics -2 Res Log Likelihood 395.2 AIC (smaller is better) 403.2 AICC (smaller is better) 403.4 BIC (smaller is better) 411.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 163.06 <.0001
Table 8.10, page 284.
proc mixed data = pain1 method = reml covtest noclprint noitprint noinfo; class cs id trial tmt; model logpain = cs tmt/ notest; repeated trial / subject = id type = un group = cs; run; The Mixed Procedure Covariance Parameter Estimates Standard Z Cov Parm Subject Group Estimate Error Value Pr Z UN(1,1) id cs attender 0.3786 0.09606 3.94 <.0001 UN(2,1) id cs attender 0.3600 0.1010 3.57 0.0004 UN(2,2) id cs attender 0.4818 0.1260 3.82 <.0001 UN(3,1) id cs attender 0.3354 0.09244 3.63 0.0003 UN(3,2) id cs attender 0.3398 0.1022 3.32 0.0009 UN(3,3) id cs attender 0.3981 0.1029 3.87 <.0001 UN(4,1) id cs attender 0.2320 0.08128 2.85 0.0043 UN(4,2) id cs attender 0.3032 0.09910 3.06 0.0022 UN(4,3) id cs attender 0.2753 0.08880 3.10 0.0019 UN(4,4) id cs attender 0.3778 0.1043 3.62 0.0001 UN(1,1) id cs distracter 0.5882 0.1505 3.91 <.0001 UN(2,1) id cs distracter 0.3622 0.1260 2.88 0.0040 UN(2,2) id cs distracter 0.6082 0.1542 3.94 <.0001 UN(3,1) id cs distracter 0.5780 0.1673 3.46 0.0006 UN(3,2) id cs distracter 0.5002 0.1608 3.11 0.0019 UN(3,3) id cs distracter 0.8874 0.2290 3.88 <.0001 UN(4,1) id cs distracter 0.3808 0.1437 2.65 0.0080 UN(4,2) id cs distracter 0.4552 0.1513 3.01 0.0026 UN(4,3) id cs distracter 0.6564 0.1965 3.34 0.0008 UN(4,4) id cs distracter 0.8053 0.2135 3.77 <.0001 Fit Statistics -2 Res Log Likelihood 364.8 AIC (smaller is better) 404.8 AICC (smaller is better) 408.6 BIC (smaller is better) 448.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 19 193.44 <.0001
Table 8.11, page 285.
*Attenders; proc mixed data = pain2 method = reml covtest noclprint noitprint noinfo; where cs = "attender"; class cs id trial ; model logpain = cs tmt_a tmt_d tmt_n/ notest ; repeated trial / subject = id type = un rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 1 Row Col1 Col2 Col3 Col4 1 1.0000 0.8425 0.8641 0.6083 2 0.8425 1.0000 0.7757 0.7136 3 0.8641 0.7757 1.0000 0.7033 4 0.6083 0.7136 0.7033 1.0000 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) id 0.3800 0.09678 3.93 <.0001 UN(2,1) id 0.3599 0.1009 3.57 0.0004 UN(2,2) id 0.4801 0.1254 3.83 <.0001 UN(3,1) id 0.3360 0.09276 3.62 0.0003 UN(3,2) id 0.3390 0.1019 3.33 0.0009 UN(3,3) id 0.3980 0.1029 3.87 <.0001 UN(4,1) id 0.2244 0.07922 2.83 0.0046 UN(4,2) id 0.2959 0.09668 3.06 0.0022 UN(4,3) id 0.2655 0.08637 3.07 0.0021 UN(4,4) id 0.3582 0.09872 3.63 0.0001 Fit Statistics -2 Res Log Likelihood 134.8 AIC (smaller is better) 154.8 AICC (smaller is better) 156.9 BIC (smaller is better) 169.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 101.94 <.0001 *Distracters; proc mixed data = pain2 method = reml noinfo covtest noclprint noitprint; where cs = "distracter"; class cs id trial ; model logpain = cs tmt_a tmt_d tmt_n/ notest; repeated trial / subject = id type = un rcorr; run; The Mixed Procedure Estimated R Correlation Matrix for id 2 Row Col1 Col2 Col3 Col4 1 1.0000 0.6050 0.8011 0.5204 2 0.6050 1.0000 0.6784 0.6583 3 0.8011 0.6784 1.0000 0.7509 4 0.5204 0.6583 0.7509 1.0000 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) id 0.5874 0.1503 3.91 <.0001 UN(2,1) id 0.3621 0.1263 2.87 0.0041 UN(2,2) id 0.6100 0.1550 3.93 <.0001 UN(3,1) id 0.5769 0.1669 3.46 0.0005 UN(3,2) id 0.4978 0.1609 3.09 0.0020 UN(3,3) id 0.8828 0.2277 3.88 <.0001 UN(4,1) id 0.3323 0.1330 2.50 0.0125 UN(4,2) id 0.4283 0.1412 3.03 0.0024 UN(4,3) id 0.5878 0.1809 3.25 0.0012 UN(4,4) id 0.6941 0.1822 3.81 <.0001 Fit Statistics -2 Res Log Likelihood 226.4 AIC (smaller is better) 246.4 AICC (smaller is better) 248.4 BIC (smaller is better) 261.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 9 78.89 <.0001
Table 8.12, page 286.
NOTE: SAS does not allow for random statement with groups in proc mixed, which is what would best fit the description of the bottom model in the book. However, the results were matched using a repeated statement in place of a random statement.
*TOP MODEL; proc mixed data = pain2 method = reml noclprint noitprint noinfo; class id trial cs; model logpain = attend tmt_a tmt_d tmt_n attend*tmt_a attend*tmt_d attend*tmt_n/ notest solution; repeated trial / subject = id type = un group=cs; estimate 'DA' tmt_a 1 ; estimate 'DD' tmt_d 1 ; estimate 'DN' tmt_n 1 ; estimate 'AA' attend*tmt_a 1 tmt_a 1 ; estimate 'AD' attend*tmt_d 1 tmt_d 1 ; estimate 'AN' attend*tmt_n 1 tmt_n 1 ; run; The Mixed Procedure Covariance Parameter Estimates Cov Parm Subject Group Estimate UN(1,1) id cs attender 0.3800 UN(2,1) id cs attender 0.3599 UN(2,2) id cs attender 0.4801 UN(3,1) id cs attender 0.3360 UN(3,2) id cs attender 0.3390 UN(3,3) id cs attender 0.3980 UN(4,1) id cs attender 0.2244 UN(4,2) id cs attender 0.2959 UN(4,3) id cs attender 0.2655 UN(4,4) id cs attender 0.3582 UN(1,1) id cs distracter 0.5874 UN(2,1) id cs distracter 0.3621 UN(2,2) id cs distracter 0.6100 UN(3,1) id cs distracter 0.5769 UN(3,2) id cs distracter 0.4978 UN(3,3) id cs distracter 0.8828 UN(4,1) id cs distracter 0.3323 UN(4,2) id cs distracter 0.4283 UN(4,3) id cs distracter 0.5878 UN(4,4) id cs distracter 0.6941 Fit Statistics -2 Res Log Likelihood 361.2 AIC (smaller is better) 401.2 AICC (smaller is better) 405.1 BIC (smaller is better) 444.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 19 189.96 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 3.5252 0.1214 62 29.05 <.0001 attend -0.3483 0.1614 62 -2.16 0.0348 tmt_a -0.1413 0.1637 175 -0.86 0.3895 tmt_d 0.4777 0.1565 175 3.05 0.0026 tmt_n -0.3339 0.1691 175 -1.97 0.0499 attend*tmt_a 0.2451 0.2061 175 1.19 0.2359 attend*tmt_d -0.4042 0.2004 175 -2.02 0.0452 attend*tmt_n 0.3334 0.2111 175 1.58 0.1160 Estimates Standard Label Estimate Error DF t Value Pr > |t| DA -0.1413 0.1637 175 -0.86 0.3895 DD 0.4777 0.1565 175 3.05 0.0026 DN -0.3339 0.1691 175 -1.97 0.0499 AA 0.1039 0.1251 175 0.83 0.4076 AD 0.07351 0.1251 175 0.59 0.5577 AN -0.00047 0.1263 175 -0.00 0.9970 *Bottom MODEL; proc mixed data = pain2 method = reml noclprint noitprint noinfo; class id trial cs; model logpain = attend tmt_a tmt_d tmt_n attend*tmt_a attend*tmt_d attend*tmt_n/ notest solution; repeated trial / subject = id type = cs group=cs; estimate 'DA' tmt_a 1 ; estimate 'DD' tmt_d 1 ; estimate 'DN' tmt_n 1 ; estimate 'AA' attend*tmt_a 1 tmt_a 1 ; estimate 'AD' attend*tmt_d 1 tmt_d 1 ; estimate 'AN' attend*tmt_n 1 tmt_n 1 ; run;
The Mixed Procedure
Covariance Parameter Estimates Cov Parm Subject Group Estimate Variance id cs attender 0.09966 CS id cs attender 0.3004 Variance id cs distracter 0.2294 CS id cs distracter 0.4630 Fit Statistics -2 Res Log Likelihood 391.7 AIC (smaller is better) 399.7 AICC (smaller is better) 399.9 BIC (smaller is better) 408.4 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 159.40 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 3.4736 0.1305 62 26.62 <.0001 attend -0.3307 0.1659 62 -1.99 0.0507 tmt_a -0.2440 0.1727 175 -1.41 0.1596 tmt_d 0.4035 0.1648 175 2.45 0.0153 tmt_n -0.3388 0.1758 175 -1.93 0.0556 attend*tmt_a 0.3171 0.2071 175 1.53 0.1276 attend*tmt_d -0.3730 0.2006 175 -1.86 0.0646 attend*tmt_n 0.2652 0.2100 175 1.26 0.2083 Estimates Standard Label Estimate Error DF t Value Pr > |t| DA -0.2440 0.1727 175 -1.41 0.1596 DD 0.4035 0.1648 175 2.45 0.0153 DN -0.3388 0.1758 175 -1.93 0.0556 AA 0.07308 0.1143 175 0.64 0.5234 AD 0.03046 0.1143 175 0.27 0.7902 AN -0.07359 0.1148 175 -0.64 0.5225