The data files can be downloaded from
http://rem.ph.ucla.edu/~rob/mld/data.html .
Table 9.1, page 314.
data bsi; set bsitotal; knot18 = (true_month - 18)*(true_month >= 18); knot36 = (true_month - 36)*(true_month >= 36); spring = (season = "spring (3-6)"); summer = (season = "summer (7-10)"); l2bsi_gsi = log(bsi_gsi + 1/53)/log(2); run; proc mixed data = bsi method = reml noitprint noclprint covtest; class pid rounded3_true_month gender drug_status; model l2bsi_gsi = true_month knot18 knot36 spring summer gender parent_alcohol parent_marijuana drug_status/ notest; repeated rounded3_true_month / subject = pid type = arma(1,1); run; The Mixed Procedure Model Information Data Set WORK.BSI Dependent Variable l2bsi_gsi Covariance Structure Autoregressive Moving Average Subject Effect pid Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Dimensions Covariance Parameters 3 Columns in X 13 Columns in Z 0 Subjects 329 Max Obs Per Subject 13 Number of Observations Number of Observations Read 4857 Number of Observations Used 1907 Number of Observations Not Used 2950 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Rho pid 0.9415 0.01068 88.19 <.0001 Gamma pid 0.5855 0.02435 24.05 <.0001 Residual 4.0431 0.1954 20.69 <.0001 Fit Statistics -2 Res Log Likelihood 7367.7 AIC (smaller is better) 7373.7 AICC (smaller is better) 7373.7 BIC (smaller is better) 7385.1 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 2 761.23 <.0001 proc mixed data = bsi method = reml noitprint noclprint covtest; class pid rounded3_true_month gender drug_status parent; model l2bsi_gsi = true_month knot18 knot36 spring summer gender parent_alcohol parent_marijuana drug_status/ notest; repeated rounded3_true_month / subject = pid(parent) type = arma(1,1); random intercept / subject = parent type = un; run; The Mixed Procedure Model Information Data Set WORK.BSI Dependent Variable l2bsi_gsi Covariance Structures Unstructured, Autoregressive Moving Average Subject Effects parent, pid(parent) Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 13 Columns in Z Per Subject 1 Subjects 220 Max Obs Per Subject 44 Number of Observations Number of Observations Read 4857 Number of Observations Used 1907 Number of Observations Not Used 2950 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) parent 0.7199 0.2348 3.07 0.0011 Rho pid(parent) 0.9047 0.02247 40.25 <.0001 Gamma pid(parent) 0.5036 0.03542 14.22 <.0001 Residual 3.3345 0.2248 14.83 <.0001 Fit Statistics -2 Res Log Likelihood 7357.2 AIC (smaller is better) 7365.2 AICC (smaller is better) 7365.2 BIC (smaller is better) 7378.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 771.70 <.0001
Table 9.2, page 315.
data weight2_1; set weight2; d1 = day; d2 = day*day/100; run; *Model 1; proc mixed data = weight2_1 method = reml noitprint noclprint; class id ; model weight = d1 d2 / solution notest; random intercept d1 / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.WEIGHT2 Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 3 Columns in Z Per Subject 2 Subjects 38 Max Obs Per Subject 8 Number of Observations Number of Observations Read 304 Number of Observations Used 265 Number of Observations Not Used 39 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 666.30 UN(2,1) id -0.6606 UN(2,2) id 0.01148 Residual 4.5231 Fit Statistics -2 Res Log Likelihood 1474.1 AIC (smaller is better) 1482.1 AICC (smaller is better) 1482.3 BIC (smaller is better) 1488.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 986.16 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 193.72 4.1976 37 46.15 <.0001 d1 -0.2653 0.03428 37 -7.74 <.0001 d2 0.2079 0.06208 188 3.35 0.0010 *Model 2; proc mixed data = weight2_1 method = reml noitprint noclprint; class id; model weight = d1 d2 visit/ solution notest; random intercept d1 / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.WEIGHT2 Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 4 Columns in Z Per Subject 2 Subjects 38 Max Obs Per Subject 8 Number of Observations Number of Observations Read 304 Number of Observations Used 265 Number of Observations Not Used 39 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 666.06 UN(2,1) id -0.6833 UN(2,2) id 0.01179 Residual 3.4397 Fit Statistics -2 Res Log Likelihood 1420.7 AIC (smaller is better) 1428.7 AICC (smaller is better) 1428.9 BIC (smaller is better) 1435.3 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 1034.39 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 193.46 4.1945 37 46.12 <.0001 d1 -0.1732 0.03337 37 -5.19 <.0001 d2 0.1104 0.05577 187 1.98 0.0492 visit -2.3782 0.3025 187 -7.86 <.0001 *Model 3; proc mixed data = weight2_1 method = reml noitprint noclprint; class id; model weight = d1 d2 visit/ solution notest; random intercept d1 / subject = id type = un; random visit /subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.WEIGHT2 Dependent Variable weight Covariance Structure Unstructured Subject Effects id, id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 5 Columns in X 4 Columns in Z Per Subject 3 Subjects 38 Max Obs Per Subject 8 Number of Observations Number of Observations Read 304 Number of Observations Used 265 Number of Observations Not Used 39 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 667.10 UN(2,1) id -0.5547 UN(2,2) id 0.01195 UN(1,1) id 4.0915 Residual 2.5165 Fit Statistics -2 Res Log Likelihood 1399.4 AIC (smaller is better) 1409.4 AICC (smaller is better) 1409.6 BIC (smaller is better) 1417.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 4 1055.75 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 193.45 4.1957 37 46.11 <.0001 d1 -0.1715 0.03021 37 -5.68 <.0001 d2 0.1081 0.04824 150 2.24 0.0266 visit -2.3786 0.4219 37 -5.64 <.0001 *Model 4; proc mixed data = weight2_1 method = reml noitprint noclprint; class id ; model weight = d1 d2 visit/ solution notest; random intercept d1 visit / subject = id type = un; run; The Mixed Procedure Model Information Data Set WORK.WEIGHT2 Dependent Variable weight Covariance Structure Unstructured Subject Effect id Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 7 Columns in X 4 Columns in Z Per Subject 3 Subjects 38 Max Obs Per Subject 8 Number of Observations Number of Observations Read 304 Number of Observations Used 265 Number of Observations Not Used 39 Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) id 667.00 UN(2,1) id -0.4385 UN(2,2) id 0.01223 UN(3,1) id -13.5255 UN(3,2) id -0.02733 UN(3,3) id 4.3062 Residual 2.5039 Fit Statistics -2 Res Log Likelihood 1397.3 AIC (smaller is better) 1411.3 AICC (smaller is better) 1411.7 BIC (smaller is better) 1422.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 6 1057.86 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 193.45 4.1954 37 46.11 <.0001 d1 -0.1721 0.03028 37 -5.69 <.0001 d2 0.1091 0.04810 150 2.27 0.0248 visit -2.3724 0.4285 37 -5.54 <.0001