Using proc contents to see the names of the variables and the variable labels.
1 schid Num 8 0 School ID 2 stuid Num 8 8 Student ID 3 ses Num 8 16 Socioecnonomic Status 4 meanses Num 8 24 Mean SES for the school 5 homework Num 8 32 Time spent on math homework each week 6 white Num 8 40 Race: 1=white, 0=non-white 7 parented Num 8 48 Parents highest education level 8 public Num 8 56 Public school: 1=public, 0=non-public 9 ratio Num 8 64 Student-Teacher ratio 10 percmin Num 8 72 Percent minority in school 11 math Num 8 80 Math score 12 sex Num 8 88 Sex: 1=male, 2=female 13 race Num 8 96 race of student, 1=asian, 2=Hispanic, 3=Black, 4=White, 5=Native American 14 sctype Num 8 104 Type of school, 1=public, 2=catholic, 3=Private other religious, 4=Private non-r 15 cstr Num 8 112 16 scsize Num 8 120 17 urban Num 8 128 18 region Num 8 136
Page 64, 4.2.2, The Null Model, Model 0 (SAS Program).
proc mixed data="c:immimm23" covtest; class schid; model math = / solution ; random intercept / subject=schid ; run;
Results from the program (abbreviated).
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Intercept schid 26.1211 8.9853 2.91 0.0018 Residual 81.2442 5.1539 15.76 <.0001 Fit Statistics -2 Res Log Likelihood 3798.7 AIC (smaller is better) 3802.7 AICC (smaller is better) 3802.7 BIC (smaller is better) 3804.9 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 50.7589 1.1511 22 44.10 <.0001
Page 65, 4.2.3 ‘Homework and ‘MathAchievement’, Model 1, (SAS Program).
proc mixed data="c:immimm23" covtest; class schid; model math = homework / solution ; random intercept / subject=schid ; run;
Results for model 1.
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Intercept schid 21.3376 7.5722 2.82 0.0024 Residual 71.2842 4.5305 15.73 <.0001 Fit Statistics -2 Res Log Likelihood 3729.3 AIC (smaller is better) 3733.3 AICC (smaller is better) 3733.3 BIC (smaller is better) 3735.6 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 46.3557 1.1627 22 39.87 <.0001 homework 2.3999 0.2772 495 8.66 <.0001
Pages 66 and 67, 4.2.4 Random slope for ‘Homework’, model 2 (SAS Program).
proc mixed data="c:immimm23" covtest; class schid; model math = homework / solution ; random intercept homework / subject=schid type=un; run;
Results for model 2.
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 62.4231 21.3807 2.92 0.0018 UN(2,1) schid -27.5930 10.5657 -2.61 0.0090 UN(2,2) schid 17.7260 6.2599 2.83 0.0023 Residual 53.2947 3.4660 15.38 <.0001 Fit Statistics -2 Res Log Likelihood 3635.6 AIC (smaller is better) 3643.6 AICC (smaller is better) 3643.6 BIC (smaller is better) 3648.1 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 190.19 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 46.3256 1.7589 22 26.34 <.0001 homework 1.9802 0.9284 22 2.13 0.0443 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F homework 1 22 4.55 0.0443
Page 69, 4.2.5 Adding ‘ParentEducation’, model 3 (SAS Program).
proc mixed data="c:immimm23" covtest; class schid; model math = homework parented / solution ; random intercept homework / subject=schid type=un; run;
Results of model 3
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 47.8612 17.0115 2.81 0.0025 UN(2,1) schid -21.9452 8.4985 -2.58 0.0098 UN(2,2) schid 13.8741 5.0365 2.75 0.0029 Residual 50.7789 3.3118 15.33 <.0001 Fit Statistics -2 Res Log Likelihood 3600.0 AIC (smaller is better) 3608.0 AICC (smaller is better) 3608.1 BIC (smaller is better) 3612.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 119.94 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 40.8545 1.7901 22 22.82 <.0001 homework 1.8817 0.8301 22 2.27 0.0336 parented 1.8415 0.2959 472 6.22 <.0001
Page 70 and 71, 4.2.6 Traditional regression model.
proc mixed data="c:immimm23" covtest; class schid; model math = homework parented / solution ; run;
Results
Covariance Parameter Estimates Standard Z Cov Parm Estimate Error Value Pr Z Residual 76.1163 4.7388 16.06 <.0001 Fit Statistics -2 Res Log Likelihood 3720.0 AIC (smaller is better) 3722.0 AICC (smaller is better) 3722.0 BIC (smaller is better) 3726.2 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 37.2392 0.9963 516 37.38 <.0001 homework 2.3354 0.2684 516 8.70 <.0001 parented 3.0040 0.2765 516 10.86 <.0001
Page 73/74, 4.3.2 A model with ‘SchoolSize’ (Model 2), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework scsize / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 66.4271 23.3302 2.85 0.0022 UN(2,1) schid -28.7509 11.0714 -2.60 0.0094 UN(2,2) schid 17.7846 6.2816 2.83 0.0023 Residual 53.3058 3.4673 15.37 <.0001 Fit Statistics -2 Res Log Likelihood 3634.2 AIC (smaller is better) 3642.2 AICC (smaller is better) 3642.3 BIC (smaller is better) 3646.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 189.33 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 44.9720 2.7109 21 16.59 <.0001 homework 1.9812 0.9298 22 2.13 0.0445 scsize 0.4259 0.6410 473 0.66 0.5067
Page 74/75, 4.3.3 Changing ‘SchoolSize’ to ‘Public’ (Model 3), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework public / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 60.1538 20.8873 2.88 0.0020 UN(2,1) schid -27.4478 10.3743 -2.65 0.0082 UN(2,2) schid 17.3031 6.1085 2.83 0.0023 Residual 53.3443 3.4716 15.37 <.0001 Fit Statistics -2 Res Log Likelihood 3628.4 AIC (smaller is better) 3636.4 AICC (smaller is better) 3636.5 BIC (smaller is better) 3640.9 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 157.64 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 49.0504 2.1847 21 22.45 <.0001 homework 1.9753 0.9182 22 2.15 0.0427 public -4.0611 1.9779 473 -2.05 0.0406
Page 77, 4.3.4 Adding a cross level interaction with ‘Public’, (Model 4), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework public homework*public / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 62.5515 22.0536 2.84 0.0023 UN(2,1) schid -28.9502 11.0801 -2.61 0.0090 UN(2,2) schid 18.2497 6.5507 2.79 0.0027 Residual 53.3329 3.4702 15.37 <.0001 Fit Statistics -2 Res Log Likelihood 3625.2 AIC (smaller is better) 3633.2 AICC (smaller is better) 3633.2 BIC (smaller is better) 3637.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 159.63 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 48.5289 3.0160 21 16.09 <.0001 homework 2.2928 1.5913 21 1.44 0.1644 public -3.2620 3.7145 473 -0.88 0.3803 homework*public -0.4957 1.9727 473 -0.25 0.8017
Page 80, 4.3.5 Model 4 will full NELS-88 data (we don’t have these data, so this is omitted).
Page 80/82, 4.3.6 Deleting ‘HomePublic’ and adding ‘White’ (Model 5), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework public white / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 56.0169 19.6224 2.85 0.0022 UN(2,1) schid -26.8055 9.9968 -2.68 0.0073 UN(2,2) schid 16.7698 5.9278 2.83 0.0023 Residual 52.7291 3.4370 15.34 <.0001 Fit Statistics -2 Res Log Likelihood 3615.5 AIC (smaller is better) 3623.5 AICC (smaller is better) 3623.5 BIC (smaller is better) 3628.0 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 3 133.03 <.0001 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 46.6283 2.1921 21 21.27 <.0001 homework 1.8992 0.9049 22 2.10 0.0475 public -3.8825 1.7987 472 -2.16 0.0314 white 3.3095 0.9699 472 3.41 0.0007
Page 82/83, 4.3.7 Adding a random part for ‘White’ (Model 6), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework public white / solution ; random intercept homework white / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 69.1398 31.1837 2.22 0.0133 UN(2,1) schid -28.5298 12.2476 -2.33 0.0198 UN(2,2) schid 16.6238 5.8694 2.83 0.0023 UN(3,1) schid -22.0770 20.9222 -1.06 0.2913 UN(3,2) schid 2.9197 7.9180 0.37 0.7123 UN(3,3) schid 26.4989 22.5376 1.18 0.1198 Residual 51.1580 3.3848 15.11 <.0001 Fit Statistics -2 Res Log Likelihood 3610.5 AIC (smaller is better) 3624.5 AICC (smaller is better) 3624.7 BIC (smaller is better) 3632.4 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 48.2276 2.3398 21 20.61 <.0001 homework 1.9401 0.9003 22 2.16 0.0424 public -4.9292 1.6507 457 -2.99 0.0030 white 2.5982 1.5538 15 1.67 0.1152
Page 85, 4.3.8 Making the coefficient of ‘White’ fixed and adding ‘MeanSES’ (Model 7), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework public white meanses / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 54.1137 19.0857 2.84 0.0023 UN(2,1) schid -27.0176 9.8916 -2.73 0.0063 UN(2,2) schid 16.4294 5.8132 2.83 0.0024 Residual 52.7965 3.4449 15.33 <.0001 Fit Statistics -2 Res Log Likelihood 3606.5 AIC (smaller is better) 3614.5 AICC (smaller is better) 3614.6 BIC (smaller is better) 3619.1 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 44.6158 2.2348 20 19.96 <.0001 homework 1.9243 0.8961 22 2.15 0.0430 public 0.1603 2.2708 472 0.07 0.9437 white 3.0971 0.9631 472 3.22 0.0014 meanses 4.9776 1.9507 472 2.55 0.0110
Page 86, 4.3.9 Deleting the school characteristic ‘Public’ (Model 8), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework white meanses / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 53.5511 18.8970 2.83 0.0023 UN(2,1) schid -26.9812 9.8535 -2.74 0.0062 UN(2,2) schid 16.3851 5.7957 2.83 0.0023 Residual 52.7925 3.4444 15.33 <.0001 Fit Statistics -2 Res Log Likelihood 3610.0 AIC (smaller is better) 3618.0 AICC (smaller is better) 3618.1 BIC (smaller is better) 3622.5 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 44.7021 1.7870 21 25.02 <.0001 homework 1.9252 0.8948 22 2.15 0.0427 white 3.1151 0.9570 472 3.25 0.0012 meanses 4.8928 1.3405 472 3.65 0.0003
Page 87/88, 4.3.10 Adding an interaction between ‘HomeWork’ and ‘MeanSES’ (Model 9), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework white meanses homework*meanses / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 55.8829 20.0177 2.79 0.0026 UN(2,1) schid -28.3876 10.5226 -2.70 0.0070 UN(2,2) schid 17.2368 6.2097 2.78 0.0028 Residual 52.7811 3.4431 15.33 <.0001 Fit Statistics -2 Res Log Likelihood 3607.1 AIC (smaller is better) 3615.1 AICC (smaller is better) 3615.1 BIC (smaller is better) 3619.6 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 44.6113 1.8361 21 24.30 <.0001 homework 1.9747 0.9291 21 2.13 0.0456 white 3.1150 0.9571 472 3.25 0.0012 meanses 3.9776 3.0226 472 1.32 0.1888 homework*meanses 0.5531 1.6457 472 0.34 0.7369
Page 88/89, 4.3.11 Adding another student-level variable (Model 10), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework white meanses ses / solution ; random intercept homework / subject=schid type=un; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 49.8879 17.7280 2.81 0.0024 UN(2,1) schid -24.3721 9.0424 -2.70 0.0070 UN(2,2) schid 14.6440 5.2441 2.79 0.0026 Residual 51.2969 3.3506 15.31 <.0001 Fit Statistics -2 Res Log Likelihood 3592.8 AIC (smaller is better) 3600.8 AICC (smaller is better) 3600.8 BIC (smaller is better) 3605.3 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 45.6748 1.7519 21 26.07 <.0001 homework 1.8257 0.8503 22 2.15 0.0431 white 2.1708 0.9733 471 2.23 0.0262 meanses 2.9453 1.4280 471 2.06 0.0397 ses 2.2058 0.5356 471 4.12 <.0001
Page 88/89, 4.3.12: Analyses with NELS-88 (we don’t have these data, so these analyses are omitted).
Page 91, 4.4.1 ‘SES’ as a student-level explanatory variable (Model 1), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = ses / solution ; random intercept / subject=schid ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Intercept schid 12.6312 5.0151 2.52 0.0059 Residual 75.3279 4.7872 15.74 <.0001 Fit Statistics -2 Res Log Likelihood 3746.2 AIC (smaller is better) 3750.2 AICC (smaller is better) 3750.2 BIC (smaller is better) 3752.4 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 51.2009 0.8507 22 60.19 <.0001 ses 4.3323 0.5663 495 7.65 <.0001
Page 92, 4.4.2 Adding a random slope (Model 2), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = ses / solution ; random intercept ses / subject=schid type=un ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 12.9434 5.0950 2.54 0.0055 UN(2,1) schid -1.4471 3.1449 -0.46 0.6454 UN(2,2) schid 0 . . . Residual 75.2360 4.7748 15.76 <.0001 Fit Statistics -2 Res Log Likelihood 3746.0 AIC (smaller is better) 3752.0 AICC (smaller is better) 3752.0 BIC (smaller is better) 3755.4 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 51.2578 0.8556 22 59.91 <.0001 ses 4.3173 0.5613 22 7.69 <.0001
Page 93, 4.4.3 Adding ‘PercentMinorities’ (Model 3), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = ses percmin / solution ; random intercept / subject=schid type=un ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 10.6974 4.3367 2.47 0.0068 Residual 75.1727 4.7693 15.76 <.0001 Fit Statistics -2 Res Log Likelihood 3741.6 AIC (smaller is better) 3745.6 AICC (smaller is better) 3745.6 BIC (smaller is better) 3747.9 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 53.1266 1.1780 21 45.10 <.0001 ses 4.2988 0.5618 495 7.65 <.0001 percmin -0.8094 0.3647 495 -2.22 0.0269
Page 95, 4.4.4 Adding ‘MeanSES’ (Model 4), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = ses percmin meanses / solution ; random intercept / subject=schid type=un ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 8.8432 3.9345 2.25 0.0123 Residual 75.2413 4.7777 15.75 <.0001 Fit Statistics -2 Res Log Likelihood 3735.6 AIC (smaller is better) 3739.6 AICC (smaller is better) 3739.6 BIC (smaller is better) 3741.9 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 53.0969 1.1025 20 48.16 <.0001 ses 3.8848 0.6098 495 6.37 <.0001 percmin -0.6922 0.3456 495 -2.00 0.0458 meanses 2.8052 1.4792 495 1.90 0.0585
Page 95, 4.4.5 Analyses with NELS-88, models 2 and 3 (we do not have these data, so these analyses are omitted).
Page 99, 4.5.1 Analysis with class size and a cross level interaction (Model 1), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework ratio / solution ; random intercept homework / subject=schid type=un ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 63.4439 21.7601 2.92 0.0018 UN(2,1) schid -27.6790 10.6264 -2.60 0.0092 UN(2,2) schid 17.7255 6.2584 2.83 0.0023 Residual 53.3063 3.4673 15.37 <.0001 Fit Statistics -2 Res Log Likelihood 3636.6 AIC (smaller is better) 3644.6 AICC (smaller is better) 3644.7 BIC (smaller is better) 3649.2 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 47.9615 4.0831 21 11.75 <.0001 homework 1.9794 0.9285 22 2.13 0.0444 ratio -0.09442 0.2124 473 -0.44 0.6568
Page 100, 4.5.2 Interaction between ‘Ratio’ and ‘HomeWork’ (Model 2), SAS Program.
proc mixed data="c:immimm23" covtest; class schid; model math = homework homework*ratio / solution ; random intercept homework / subject=schid type=un ; run;
And the results are
Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z UN(1,1) schid 62.5534 21.4199 2.92 0.0017 UN(2,1) schid -27.7993 10.6543 -2.61 0.0091 UN(2,2) schid 18.0944 6.3898 2.83 0.0023 Residual 53.2978 3.4664 15.38 <.0001 Fit Statistics -2 Res Log Likelihood 3637.9 AIC (smaller is better) 3645.9 AICC (smaller is better) 3646.0 BIC (smaller is better) 3650.4 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 46.3306 1.7606 22 26.32 <.0001 homework 2.8841 2.1568 21 1.34 0.1955 homework*ratio -0.05259 0.1123 473 -0.47 0.6398
Page 100, 4.5.3 Reporting the modeling session with NELS-88 (we do not have these data, so these analyses are omitted).