Version info: Code for this page was tested in SAS 9.3.
For this chapter, you will need to use the syntax provided in Appendix A to access the School and Mice datasets.
Figure 18.2, page 466 is not reproduced.
Table 18.2, page 468 Estimated coefficients from three naive linear regression models ignoring the hierarchical structure of the school data. Note that for Model 3, we believe there is a typo where the coefficient for “Three hours” was copied for “Four or more hours”.
PROC SORT data = School; by descending newSCHTYPE descending newHW; RUN; /* Table 18.2 */ PROC GLM data = School order = data; class newSCHTYPE; model MATH = newSCHTYPE / solution; RUN; The GLM Procedure Dependent Variable: MATH Sum of Source DF Squares Mean Square F Value Pr > F Model 1 7517.11179 7517.11179 74.89 <.0001 Error 517 51890.93446 100.36931 Corrected Total 518 59408.04624 R-Square Coeff Var Root MSE MATH Mean 0.126534 19.36960 10.01845 51.72254 Source DF Type I SS Mean Square F Value Pr > F newSCHTYPE 1 7517.111786 7517.111786 74.89 <.0001 Source DF Type III SS Mean Square F Value Pr > F newSCHTYPE 1 7517.111786 7517.111786 74.89 <.0001 Standard Parameter Estimate Error t Value Pr > |t| Intercept 56.49009901 B 0.70489558 80.14 <.0001 newSCHTYPE 1 -7.80555642 B 0.90194247 -8.65 <.0001 newSCHTYPE 0 0.00000000 B . . . NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable. PROC GLM data = School order = data; class newSCHTYPE; model MATH = newSCHTYPE SES / solution; RUN; The GLM Procedure Dependent Variable: MATH Sum of Source DF Squares Mean Square F Value Pr > F Model 2 14923.96488 7461.98244 86.56 <.0001 Error 516 44484.08136 86.20946 Corrected Total 518 59408.04624 R-Square Coeff Var Root MSE MATH Mean 0.251211 17.95137 9.284905 51.72254 Source DF Type I SS Mean Square F Value Pr > F newSCHTYPE 1 7517.111786 7517.111786 87.20 <.0001 SES 1 7406.853097 7406.853097 85.92 <.0001 Source DF Type III SS Mean Square F Value Pr > F newSCHTYPE 1 621.850871 621.850871 7.21 0.0075 SES 1 7406.853097 7406.853097 85.92 <.0001 Standard Parameter Estimate Error t Value Pr > |t| Intercept 53.37221655 B 0.73479649 72.64 <.0001 newSCHTYPE 1 -2.69017405 B 1.00164705 -2.69 0.0075 newSCHTYPE 0 0.00000000 B . . . SES 5.14426413 0.55498834 9.27 <.0001 NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable. PROC GLM data = School order = data; class newSCHTYPE newHW; model MATH = newSCHTYPE SES newHW / solution; RUN; The GLM Procedure Dependent Variable: MATH Sum of Source DF Squares Mean Square F Value Pr > F Model 7 20787.19803 2969.59972 39.29 <.0001 Error 511 38620.84821 75.57896 Corrected Total 518 59408.04624 R-Square Coeff Var Root MSE MATH Mean 0.349905 16.80818 8.693616 51.72254 Source DF Type I SS Mean Square F Value Pr > F newSCHTYPE 1 7517.111786 7517.111786 99.46 <.0001 SES 1 7406.853097 7406.853097 98.00 <.0001 newHW 5 5863.233151 1172.646630 15.52 <.0001 Source DF Type III SS Mean Square F Value Pr > F newSCHTYPE 1 215.042228 215.042228 2.85 0.0923 SES 1 4888.876929 4888.876929 64.69 <.0001 newHW 5 5863.233151 1172.646630 15.52 <.0001 Standard Parameter Estimate Error t Value Pr > |t| Intercept 51.37485359 B 1.50805261 34.07 <.0001 newSCHTYPE 1 -1.60459840 B 0.95127248 -1.69 0.0923 newSCHTYPE 0 0.00000000 B . . . SES 4.27563995 0.53161476 8.04 <.0001 newHW 5 8.07390470 B 1.91180028 4.22 <.0001 newHW 4 7.56010333 B 1.88968358 4.00 <.0001 newHW 3 5.20851187 B 1.85282204 2.81 0.0051 newHW 2 0.22640909 B 1.57858349 0.14 0.8860 newHW 1 -1.39021887 B 1.46388306 -0.95 0.3427 newHW 0 0.00000000 B . . . NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
Table 18.3, page 472 Estimated coefficients from three random slope regression models accounting for the hierarchical structure of the school data.
/* Table 18.3 */ PROC MIXED data = School order = data noclprint; class newSCHTYPE SCHOOL; model MATH = newSCHTYPE / solution; random Int / type = un sub=SCHOOL; RUN; The Mixed Procedure Model Information Data Set WORK.SCHOOL Dependent Variable MATH Covariance Structure Unstructured Subject Effect SCHOOL Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 2 Columns in X 3 Columns in Z Per Subject 1 Subjects 23 Max Obs Per Subject 67 Number of Observations Number of Observations Read 519 Number of Observations Used 519 Number of Observations Not Used 0 Iteration History Iteration Evaluations -2 Res Log Like Criterion 0 1 3861.02842646 1 3 3789.18082462 0.00034325 2 1 3788.60625480 0.00004068 3 1 3788.54373285 0.00000078 4 1 3788.54261121 0.00000000 Convergence criteria met. Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) SCHOOL 19.1533 Residual 81.2337 Fit Statistics -2 Res Log Likelihood 3788.5 AIC (smaller is better) 3792.5 AICC (smaller is better) 3792.6 BIC (smaller is better) 3794.8 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 72.49 <.0001 Solution for Fixed Effects new Standard Effect SCHTYPE Estimate Error DF t Value Pr > |t| Intercept 54.6684 1.7402 21 31.41 <.0001 newSCHTYPE 1 -5.9060 2.1369 496 -2.76 0.0059 newSCHTYPE 0 0 . . . . Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F newSCHTYPE 1 496 7.64 0.0059 PROC MIXED data = School order = data noclprint; class newSCHTYPE SCHOOL; model MATH = newSCHTYPE SES / solution; random Int / type = un sub=SCHOOL; RUN; [some output ommitted] Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) SCHOOL 12.2516 Residual 75.2895 Fit Statistics -2 Res Log Likelihood 3741.4 AIC (smaller is better) 3745.4 AICC (smaller is better) 3745.4 BIC (smaller is better) 3747.6 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 39.39 <.0001 Solution for Fixed Effects new Standard Effect SCHTYPE Estimate Error DF t Value Pr > |t| Intercept 52.8099 1.4733 21 35.85 <.0001 newSCHTYPE 1 -2.4527 1.8448 495 -1.33 0.1843 newSCHTYPE 0 0 . . . . SES 4.1319 0.5869 495 7.04 <.0001 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F newSCHTYPE 1 495 1.77 0.1843 SES 1 495 49.56 <.0001 PROC MIXED data = School order = data noclprint; class newSCHTYPE newHW SCHOOL; model MATH = newSCHTYPE SES newHW / solution; random Int / type = un sub=SCHOOL; RUN; [some output ommitted] Covariance Parameter Estimates Cov Parm Subject Estimate UN(1,1) SCHOOL 11.8628 Residual 65.8440 Fit Statistics -2 Res Log Likelihood 3657.4 AIC (smaller is better) 3661.4 AICC (smaller is better) 3661.4 BIC (smaller is better) 3663.7 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 1 38.62 <.0001 Solution for Fixed Effects new new Standard Effect SCHTYPE HW Estimate Error DF t Value Pr > |t| Intercept 50.9881 1.9106 21 26.69 <.0001 newSCHTYPE 1 -1.6503 1.7931 490 -0.92 0.3578 newSCHTYPE 0 0 . . . . SES 3.4652 0.5578 490 6.21 <.0001 newHW 5 7.7219 1.8686 490 4.13 <.0001 newHW 4 7.6464 1.8339 490 4.17 <.0001 newHW 3 5.3106 1.8002 490 2.95 0.0033 newHW 2 0.7257 1.5419 490 0.47 0.6381 newHW 1 -1.2868 1.4251 490 -0.90 0.3670 newHW 0 0 . . . . Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F newSCHTYPE 1 490 0.85 0.3578 SES 1 490 38.60 <.0001 newHW 5 490 15.45 <.0001
Figure 18.3 is not reproduced.
Table 18.4, page 480 is not reproduced. To create it, you can simply run models for all pairwise combination of variables.
Figure 18.4, page 483 Weight over time for 14 Mice.
/*Figure 18.4 page 483 */ symbol1 value = circle color = black interpol = join repeat = 14; PROC GPLOT data = Mice; plot WEIGHT * DAY = ID / nolegend; RUN; QUIT;
Table 18.5, page 485Estimates for random intercept and random slope models with different correlation structures. Note that these are complex random effects models to be fitting on only 14 mice. The parameter estimates vary between packages, with some reporting Errors or warnings in the optimization.
DATA Mice; set Mice; cDAY = DAY; RUN; PROC SORT data = Mice; by cDAY; RUN; /* Table 18.5, page 485*/ PROC MIXED data = Mice METHOD=ML noclprint; class ID cDay; model WEIGHT = DAY / solution; random int DAY / subject = ID; repeated cDAY / subject = ID type = AR(1); RUN; The Mixed Procedure Model Information Data Set WORK.MICE Dependent Variable WEIGHT Covariance Structures Variance Components, Autoregressive Subject Effects ID, ID Estimation Method ML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment Dimensions Covariance Parameters 4 Columns in X 2 Columns in Z Per Subject 2 Subjects 14 Max Obs Per Subject 7 Number of Observations Number of Observations Read 98 Number of Observations Used 98 Number of Observations Not Used 0 Iteration History Iteration Evaluations -2 Log Like Criterion 0 1 1189.14416371 1 3 1084.16542429 0.00090715 2 2 1083.77544184 0.00005750 3 1 1083.74783386 0.00000073 4 1 1083.74749894 0.00000000 Convergence criteria met. Covariance Parameter Estimates Cov Parm Subject Estimate Intercept ID 0 DAY ID 25.7119 AR(1) ID 0.7166 Residual 5931.47 Fit Statistics -2 Log Likelihood 1083.7 AIC (smaller is better) 1093.7 AICC (smaller is better) 1094.4 BIC (smaller is better) 1096.9 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 156.82 22.0092 13 7.13 <.0001 DAY 41.0553 2.0202 13 20.32 <.0001 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F DAY 1 13 413.02 <.0001 PROC MIXED data = Mice METHOD=ML noclprint; class ID cDay; model WEIGHT = DAY / solution; random int DAY / subject = ID; repeated cDAY / subject = ID type = cs; RUN; Covariance Parameter Estimates Cov Parm Subject Estimate Intercept ID 0 DAY ID 50.4134 CS ID -533.47 Residual 3734.32 Fit Statistics -2 Log Likelihood 1118.3 AIC (smaller is better) 1128.3 AICC (smaller is better) 1129.0 BIC (smaller is better) 1131.5 Solution for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept 180.41 11.3171 13 15.94 <.0001 DAY 41.0544 2.1586 13 19.02 <.0001 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F DAY 1 13 361.73 <.0001