Limitations of Linear Regression
page 218 Figure 7.1 Linear regression of a dichotomous Y variable (0=open schools, 1=close schools) on a measurement X variable (years lived in town). We will use the toxic data set.
symbol1 i=r; proc gplot data=toxic; plot close*lived=1; run; quit;
The Logit Regression Model
page 222 Figure 7.4 Logit regression of school-closing opinion on years lived in town, also showing linear regression line.
proc logistic data=toxic descending; model close=lived; output out=toxic1 predicted=pred; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 199.267 SC 214.242 205.328 -2 Log L 209.212 195.267 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 13.9444 1 0.0002 Score 12.6827 1 0.0004 Wald 11.3985 1 0.0007 Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 0.4600 0.2626 3.0688 0.0798 lived 1 -0.0410 0.0121 11.3985 0.0007 The LOGISTIC Procedure Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.960 0.937 0.983 Association of Predicted Probabilities and Observed Responses Percent Concordant 65.2 Somers' D 0.328 Percent Discordant 32.4 Gamma 0.336 Percent Tied 2.4 Tau-a 0.162 Pairs 5742 c 0.664
proc sort data=toxic1; by lived; run; symbol1 v=circle i=r c=black; symbol2 i=join c=blue; proc gplot data=toxic1; plot close*lived=1 pred*lived=2 / overlay; run; quit;
Figure 7.4
page 224 Table 7.1 Logit regression of school-closing opinion on years lived in town.
proc logistic data=toxic descending; model close=lived; run; quit;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 199.267 SC 214.242 205.328 -2 Log L 209.212 195.267 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 13.9444 1 0.0002 Score 12.6827 1 0.0004 Wald 11.3985 1 0.0007 Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 0.4600 0.2626 3.0688 0.0798 lived 1 -0.0410 0.0121 11.3985 0.0007 The LOGISTIC Procedure Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.960 0.937 0.983 Association of Predicted Probabilities and Observed Responses Percent Concordant 65.2 Somers' D 0.328 Percent Discordant 32.4 Gamma 0.336 Percent Tied 2.4 Tau-a 0.162 Pairs 5742 c 0.664
Hypothesis Tests and Confidence Intervals
page 226 Table 7.2 Logit regression of school-closing opinion on years lived in town, education, contamination, and HSC meetings.
proc logistic data=toxic descending; model close=lived educ contam hsc; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 159.382 SC 214.242 174.534 -2 Log L 209.212 149.382 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 59.8299 4 <.0001 Score 52.8451 4 <.0001 Wald 37.6991 4 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 1.7314 1.3020 1.7684 0.1836 lived 1 -0.0465 0.0149 9.6978 0.0018 educ 1 -0.1659 0.0899 3.4039 0.0650 contam 1 1.2081 0.4654 6.7389 0.0094 hsc 1 2.1729 0.4641 21.9187 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.955 0.927 0.983 educ 0.847 0.710 1.010 contam 3.347 1.344 8.334 hsc 8.784 3.537 21.814 Association of Predicted Probabilities and Observed Responses Percent Concordant 83.8 Somers' D 0.679 Percent Discordant 15.9 Gamma 0.681 Percent Tied 0.3 Tau-a 0.335 Pairs 5742 c 0.840
page 227 Table 7.3 Logit regression of school-closing on seven background variables.
proc logistic data=toxic descending; model close=lived educ contam hsc female kids nodad; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. > Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 157.049 SC 214.242 181.293 -2 Log L 209.212 141.049 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 68.1622 7 <.0001 Score 57.0383 7 <.0001 Wald 36.0921 7 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.8934 1.6029 3.2583 0.0711 lived 1 -0.0466 0.0170 7.5489 0.0060 educ 1 -0.2060 0.0932 4.8863 0.0271 contam 1 1.2820 0.4814 7.0929 0.0077 hsc 1 2.4179 0.5096 22.5077 <.0001 female 1 -0.0515 0.5571 0.0086 0.9263 kids 1 -0.6705 0.5656 1.4055 0.2358 nodad 1 -2.2256 0.9991 4.9626 0.0259 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.954 0.923 0.987 educ 0.814 0.678 0.977 contam 3.604 1.403 9.257 hsc 11.222 4.133 30.470 female 0.950 0.319 2.830 kids 0.511 0.169 1.550 nodad 0.108 0.015 0.765 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.4 Somers' D 0.709 Percent Discordant 14.5 Gamma 0.710 Percent Tied 0.1 Tau-a 0.350 Pairs 5742 c 0.855
page 228 Table 7.4 Reduced model with male/nonparent interaction term.
proc logistic data=toxic descending; model close=lived educ contam hsc nodad; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853
page 232 Figure 7.5 Conditional effects of years lived in town, at proclosing (top), average, and anticlosing levels of other X variables.
proc logistic data=toxic descending; model close=lived educ contam hsc nodad; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853
data toxic5; set toxic; lhat1=3.17-.04*(lived); phat1=1/(1+exp(-lhat1)); lhat2=.387-.04*(lived); phat2=1/(1+exp(-lhat2)); lhat3=-2.14-.04*(lived); phat3=1/(1+exp(-lhat3)); run; proc sort data=toxic5; by lived; run; axis1 order=(0 to 90 by 10) minor=none; axis2 label =(a=90 'Probability of Favoring School Closing') minor=none; symbol1 i=join w=2 c =red line=23; symbol2 i=join w=2 c =black line=1; symbol3 i=join w=2 c =green line=2; proc gplot data=toxic5; plot phat1*lived phat2*lived phat3*lived / overlay vaxis=axis2 haxis=axis1; run; quit;
Figure 7.5
Interpretation
page 232 Figure 7.6 Conditional effects of contamination, at proclosing, average, and anticlosing levels of other X variables.
proc logistic data=toxic descending; model close=lived educ contam hsc nodad; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853
data toxic6; set toxic; lhat1=3.22+1.3*(contam); phat1=1/(1+exp(-lhat1)); lhat2=-.7681+1.3*(contam); phat2=1/(1+exp(-lhat2)); lhat3=-6.79+1.3*(contam); phat3=1/(1+exp(-lhat3)); run; proc sort data=toxic6; by contam; run; axis1 order=(0 1) minor=none; axis2 label =(a=90 'Probability of Favoring School Closing') minor=none; symbol1 w=2 c=red i=join line=23; symbol2 w=2 c=black i=join line=1; symbol3 w=2 c=green i=join line=2; proc gplot data=toxic6; plot phat1*contam=1 phat2*contam=2 phat3*contam=3 / overlay vaxis=axis2 haxis=axis1; run; quit;
Figure 7.6
Statistical Problems
page 234 Table 7.5 Cross-tabulation and logit analysis with perfect one-way discrimination.
data powd; input less mother cnt; cards; 0 0 202 0 1 79 1 0 44 1 1 0 ; run; proc logistic data=powd descending; model less=mother; weight cnt; run;
The LOGISTIC Procedure Model Information Data Set WORK.POWD Response Variable less Number of Response Levels 2 Number of Observations 3 Weight Variable cnt Sum of Weights 325 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Total Value less Frequency Weight 1 1 1 44.00000 2 0 2 281.00000 NOTE: 1 observation having zero frequency or weight was excluded since it does not contribute to the analysis. Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 259.722 235.074 SC 258.821 233.272 -2 Log L 257.722 231.074 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 26.6481 1 <.0001 Score 16.3426 1 <.0001 Wald 0.0003 1 0.9861 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -1.5241 0.1664 83.9235 <.0001 mother 1 -16.5630 952.2 0.0003 0.9861 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits mother <0.001 <0.001 >999.999 Association of Predicted Probabilities and Observed Responses Percent Concordant 50.0 Somers' D 0.500 Percent Discordant 0.0 Gamma 1.000 Percent Tied 50.0 Tau-a 0.333 Pairs 2 c 0.750
Diagnostic Graphs
page 239 Figure 7.7 Poorness-of-fit statistic delta-chi-squared p versus predicted probability of favoring closed schools – X patterns 131 and 3 are poorly fit (high delta-chi-squared p values).
proc logistic data=toxic descending; model close=lived educ contam hsc nodad; output out=toxic7 prob=p resdev=dr h=pii reschi=pr difchisq=dfg; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853
symbol1 v=circle i=none; axis1 order=(0 to 1 by .2); axis2 order=(0 to 30 by 5)label=(r=0 a=90); proc gplot data=toxic7; plot dfg*p / haxis=axis1 vaxis=axis2 hminor=1 vminor=0; run; quit;
Figure 7.7
page 240 Figure 7.8 Poorness-of-fit statistic delta-chi-squared d versus predicted probability of favoring closed schools – X patterns 131, 3, 27, 62, and 115 are poorly fit (high delta-chi-squared d values).
proc logistic data=toxic descending; model close=lived educ contam hsc nodad / influence; ods output Influence=toxic9; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853 The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 1 15.0000 12.0000 0 0 0 1.4714 | | * | 2 15.0000 13.0000 0 1.0000 0 0.5196 | |* | 3 5.0000 16.0000 0 0 0 1.7884 | | * | 4 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 5 3.0000 18.0000 0 1.0000 0 0.6697 | |* | 6 13.0000 12.0000 1.0000 1.0000 0 0.2365 | * | 7 3.0000 12.0000 0 1.0000 0 0.3712 | |* | 8 3.0000 17.0000 1.0000 1.0000 1.0000 0.7534 | |* | 9 13.0000 14.0000 0 0 0 1.7216 | | * | 10 13.0000 12.0000 0 1.0000 0 0.4526 | |* | 11 3.0000 13.0000 1.0000 1.0000 0 0.2140 | * | 12 7.0000 12.0000 0 1.0000 0 0.4019 | |* | 13 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 14 5.0000 12.0000 0 1.0000 0 0.3863 | |* | 15 3.0000 13.0000 1.0000 1.0000 0 0.2140 | * | 16 11.0000 16.0000 1.0000 0 0 -0.9503 | *| | 17 4.0000 16.0000 0 0 0 -0.5704 | *| | 18 1.0000 12.0000 0 1.0000 0 0.3568 | |* | 19 55.0000 12.0000 0 0 0 -0.3075 | * | 20 49.0000 16.0000 1.0000 0 0 -0.4474 | *| | 21 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 22 50.0000 12.0000 0 0 0 -0.3396 | *| | 23 4.0000 14.0000 0 0 0 1.4403 | | * | 24 6.0000 16.0000 0 0 1.0000 -0.2307 | * | 25 5.0000 14.0000 0 0 0 1.4691 | | * | 26 6.0000 13.0000 1.0000 1.0000 0 0.2271 | * | 27 32.0000 13.0000 1.0000 0 0 1.1880 | | * | 28 5.0000 12.0000 0 0 0 -0.8286 | *| | 29 21.0000 12.0000 0 0 0 -0.6034 | *| | 30 24.0000 12.0000 0 0 0 -0.5686 | *| | 31 24.0000 12.0000 0 0 1.0000 -0.2393 | * | 32 30.0000 13.0000 0 0 0 2.1856 | | * | 33 37.0000 12.0000 0 0 0 -0.4394 | *| | 34 7.0000 10.0000 1.0000 1.0000 0 0.1725 | * | 35 3.0000 20.0000 0 0 0 -0.3926 | *| | 36 35.0000 12.0000 0 0 0 -0.4572 | *| | 37 18.0000 16.0000 0 0 0 -0.4321 | *| | 38 15.0000 12.0000 0 0 0 1.4714 | | * | 39 16.0000 16.0000 0 0 0 -0.4496 | *| | 40 10.0000 8.0000 1.0000 0 1.0000 -0.8959 | *| | 41 4.0000 12.0000 1.0000 1.0000 0 0.1978 | * | 42 56.0000 14.0000 1.0000 1.0000 1.0000 -0.6234 | *| | 43 28.0000 12.0000 0 0 0 -0.5252 | *| | 44 51.0000 8.0000 1.0000 0 0 1.0590 | | * | 45 4.0000 12.0000 0 0 0 -0.8452 | *| | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 1 1.5180 | | * | 0.0177 | * | 2 0.6914 | | * | 0.0350 | * | 3 1.6939 | | * | 0.0269 | * | 4 0.3113 | |* | 0.0167 | * | 5 0.8608 | | * | 0.0720 | * | 6 0.3299 | |* | 0.0180 | * | 7 0.5082 | | * | 0.0307 | * | 8 0.9482 | | * | 0.1718 | * | 9 1.6596 | | * | 0.0152 | * | 10 0.6105 | | * | 0.0334 | * | 11 0.2993 | |* | 0.0159 | * | 12 0.5472 | | * | 0.0314 | * | 13 0.3113 | |* | 0.0167 | * | 14 0.5274 | | * | 0.0310 | * | 15 0.2993 | |* | 0.0159 | * | 16 -1.1344 | * | | 0.0629 | * | 17 -0.7505 | * | | 0.0280 | * | 18 0.4896 | | * | 0.0305 | * | 19 -0.4251 | *| | 0.0326 | * | 20 -0.6041 | * | | 0.0807 | * | 21 0.3113 | |* | 0.0167 | * | 22 -0.4672 | *| | 0.0306 | * | 23 1.4987 | | * | 0.0227 | * | 24 -0.3221 | *| | 0.0343 | * | 25 1.5166 | | * | 0.0215 | * | 26 0.3171 | |* | 0.0167 | * | 27 1.3268 | | * | 0.0582 | * | 28 -1.0225 | * | | 0.0286 | * | 29 -0.7880 | * | | 0.0161 | * | 30 -0.7485 | * | | 0.0165 | * | 31 -0.3337 | *| | 0.0274 | * | 32 1.8729 | | * | 0.0174 | * | 33 -0.5942 | * | | 0.0229 | * | 34 0.2421 | |* | 0.0144 | * | 35 -0.5354 | * | | 0.0521 | * | 36 -0.6161 | * | | 0.0217 | * | 37 -0.5852 | * | | 0.0210 | * | 38 1.5180 | | * | 0.0177 | * | 39 -0.6068 | * | | 0.0212 | * | 40 -1.0856 | * | | 0.1812 | *| 41 0.2771 | |* | 0.0149 | * | 42 -0.8103 | * | | 0.1739 | * | 43 -0.6980 | * | | 0.0178 | * | 44 1.2265 | | * | 0.1317 | * | 45 -1.0383 | * | | 0.0304 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 0.1028 | | * | -0.0293 | * | 2 0.0205 | * | -0.00590 | * | 3 -0.1057 | * | | -0.0591 | *| | 4 0.0101 | * | -0.00802 | * | 5 -0.0881 | *| | -0.0203 | * | 6 0.0102 | * | -0.00649 | * | 7 0.0339 | |* | -0.0304 | * | 8 -0.1303 | * | | -0.0807 | *| | 9 -0.0121 | * | -0.00935 | * | 10 0.0347 | |* | -0.0155 | * | 11 0.00772 | * | -0.0109 | * | 12 0.0347 | |* | -0.0260 | * | 13 0.0101 | * | -0.00802 | * | 14 0.0344 | |* | -0.0284 | * | 15 0.00772 | * | -0.0109 | * | 16 0.0953 | | * | 0.00749 | * | 17 0.0322 | |* | 0.0230 | * | 18 0.0334 | |* | -0.0319 | * | 19 0.0134 | * | -0.0516 | *| | 20 0.0854 | |* | -0.1040 | *| | 21 0.0101 | * | -0.00802 | * | 22 0.0120 | * | -0.0533 | *| | 23 0.0351 | |* | -0.1047 | *| | 24 0.0135 | * | 0.00635 | * | 25 0.0303 | |* | -0.0951 | *| | 26 0.00755 | * | -0.00989 | * | 27 -0.0476 | *| | 0.1363 | |* | 28 -0.0930 | * | | 0.0825 | |* | 29 -0.0280 | * | -0.0138 | * | 30 -0.0201 | * | -0.0242 | * | 31 0.00188 | * | -0.00201 | * | 32 -0.0447 | *| | 0.1856 | | * | 33 0.00262 | * | -0.0494 | *| | 34 0.0121 | * | -0.00803 | * | 35 0.0672 | |* | -0.00211 | * | 36 0.000172 | * | -0.0473 | * | 37 0.0372 | |* | -0.0202 | * | 38 0.1028 | | * | -0.0293 | * | 39 0.0372 | |* | -0.0163 | * | 40 -0.2277 | * | | 0.1818 | | * | 41 0.00977 | * | -0.00993 | * | 42 0.1437 | | * | -0.1846 | * | | 43 -0.0112 | * | -0.0350 | * | 44 0.1391 | | * | 0.2202 | | * | 45 -0.0986 | * | | 0.0913 | |* | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 -0.0658 | *| | -0.0737 | * | | 2 -0.0177 | * | -0.0262 | *| | 3 0.1764 | | * | -0.0920 | * | | 4 -0.0109 | * | 0.0177 | * | 5 0.1073 | | * | -0.0447 | *| | 6 -0.0114 | * | 0.0197 | * | 7 -0.0292 | *| | -0.0126 | * | 8 0.1407 | | * | 0.0970 | | * | 9 0.0612 | |* | -0.0872 | * | | 10 -0.0322 | *| | -0.0196 | * | 11 -0.00755 | * | 0.0165 | * | 12 -0.0307 | *| | -0.0151 | * | 13 -0.0109 | * | 0.0177 | * | 14 -0.0300 | *| | -0.0138 | * | 15 -0.00755 | * | 0.0165 | * | 16 -0.1151 | * | | -0.1787 | * | | 17 -0.0556 | *| | 0.0294 | |* | 18 -0.0284 | *| | -0.0115 | * | 19 -0.00969 | * | 0.0132 | * | 20 -0.0762 | *| | -0.0568 | *| | 21 -0.0109 | * | 0.0177 | * | 22 -0.00887 | * | 0.0152 | * | 23 0.0242 | * | -0.0728 | * | | 24 -0.0184 | * | 0.0128 | * | 25 0.0280 | |* | -0.0743 | * | | 26 -0.00771 | * | 0.0183 | * | 27 0.0348 | |* | 0.2159 | | * | 28 0.0608 | |* | 0.0400 | |* | 29 0.0174 | * | 0.0304 | |* | 30 0.0121 | * | 0.0286 | |* | 31 -0.00403 | * | 0.0135 | * | 32 0.0625 | |* | -0.1069 | * | | 33 -0.00284 | * | 0.0213 | * | 34 -0.0125 | * | 0.0112 | * | 35 -0.0825 | * | | 0.0194 | * | 36 -0.00124 | * | 0.0224 | * | 37 -0.0468 | *| | 0.0211 | * | 38 -0.0658 | *| | -0.0737 | * | | 39 -0.0483 | *| | 0.0222 | * | 40 0.2161 | | * | -0.1477 | * | | 41 -0.00984 | * | 0.0143 | * | 42 -0.1060 | * | | -0.0619 | *| | 43 0.00627 | * | 0.0263 | |* | 44 -0.1891 | * | | 0.2162 | | * | 45 0.0646 | |* | 0.0406 | |* | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 -0.0637 | *| | -0.0306 | *| | 2 0.0846 | | * | -0.0250 | *| | 3 -0.1144 | * | | 0.0242 | |* | 4 0.0190 | * | -0.00989 | * | 5 0.1053 | | * | -0.00686 | * | 6 0.0212 | * | -0.0113 | * | 7 0.0506 | |* | -0.0142 | * | 8 0.0862 | | * | 0.2650 | | * | 9 -0.0913 | * | | -0.00793 | * | 10 0.0703 | |* | -0.0222 | * | 11 0.0170 | * | -0.00805 | * | 12 0.0578 | |* | -0.0170 | * | 13 0.0190 | * | -0.00989 | * | 14 0.0541 | |* | -0.0155 | * | 15 0.0170 | * | -0.00805 | * | 16 0.0792 | | * | 0.0304 | |* | 17 0.0368 | |* | -0.00815 | * | 18 0.0472 | |* | -0.0129 | * | 19 0.00987 | * | 0.00860 | * | 20 0.0316 | |* | 0.0199 | * | 21 0.0190 | * | -0.00989 | * | 22 0.0115 | * | 0.00957 | * | 23 -0.0800 | * | | 0.000911 | * | 24 0.0143 | * | -0.0395 | *| | 25 -0.0813 | * | | 8.4E-6 | * | 26 0.0190 | * | -0.00922 | * | 27 -0.0757 | * | | -0.0832 | * | | 28 0.0363 | |* | 0.0130 | * | 29 0.0256 | |* | 0.0141 | * | 30 0.0238 | * | 0.0139 | * | 31 0.0123 | * | -0.0373 | *| | 32 -0.0955 | * | | -0.0405 | *| | 33 0.0169 | * | 0.0121 | * | 34 0.0125 | * | -0.00682 | * | 35 0.0288 | |* | -0.0134 | * | 36 0.0178 | * | 0.0124 | * | 37 0.0245 | |* | -0.00224 | * | 38 -0.0637 | *| | -0.0306 | *| | 39 0.0260 | |* | -0.00285 | * | 40 0.0885 | | * | -0.2952 | * | | 41 0.0152 | * | -0.00756 | * | 42 -0.0734 | * | | -0.1662 | * | | 43 0.0215 | * | 0.0134 | * | 44 -0.0344 | *| | -0.1437 | * | | 45 0.0371 | |* | 0.0127 | * | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 1 0.0396 | * | 0.0389 | * | 2 0.0101 |* | 0.00979 |* | 3 0.0909 | * | 0.0885 | * | 4 0.000859 |* | 0.000845 |* | 5 0.0375 | * | 0.0348 | * | 6 0.00104 |* | 0.00102 |* | 7 0.00450 |* | 0.00436 |* | 8 0.1422 | * | 0.1178 | * | 9 0.0466 | * | 0.0459 | * | 10 0.00733 |* | 0.00709 |* | 11 0.000751 |* | 0.000739 |* | 12 0.00540 |* | 0.00523 |* | 13 0.000859 |* | 0.000845 |* | 14 0.00492 |* | 0.00477 |* | 15 0.000751 |* | 0.000739 |* | 16 0.0647 | * | 0.0606 | * | 17 0.00962 |* | 0.00935 |* | 18 0.00413 |* | 0.00400 |* | 19 0.00330 |* | 0.00319 |* | 20 0.0191 |* | 0.0176 |* | 21 0.000859 |* | 0.000845 |* | 22 0.00375 |* | 0.00364 |* | 23 0.0494 | * | 0.0483 | * | 24 0.00196 |* | 0.00189 |* | 25 0.0484 | * | 0.0473 | * | 26 0.000892 |* | 0.000877 |* | 27 0.0927 | * | 0.0873 | * | 28 0.0208 | * | 0.0202 | * | 29 0.00607 |* | 0.00597 |* | 30 0.00551 |* | 0.00542 |* | 31 0.00166 |* | 0.00161 |* | 32 0.0859 | * | 0.0844 | * | 33 0.00464 |* | 0.00453 |* | 34 0.000441 |* | 0.000434 |* | 35 0.00894 |* | 0.00848 |* | 36 0.00473 |* | 0.00463 |* | 37 0.00409 |* | 0.00401 |* | 38 0.0396 | * | 0.0389 | * | 39 0.00448 |* | 0.00438 |* | 40 0.2170 | * | 0.1777 | * | 41 0.000601 |* | 0.000592 |* | 42 0.0991 | * | 0.0818 | * | 43 0.00510 |* | 0.00501 |* | 44 0.1959 | * | 0.1701 | * | 45 0.0231 | * | 0.0224 | * | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 1 2.3432 | * | 2.2040 | * | 2 0.4878 | * | 0.2798 |* | 3 2.9578 | * | 3.2867 | * | 4 0.0978 |* | 0.0505 |* | 5 0.7759 | * | 0.4833 |* | 6 0.1098 |* | 0.0569 |* | 7 0.2626 | * | 0.1422 |* | 8 1.0169 | * | 0.6854 |* | 9 2.8003 | * | 3.0097 | * | 10 0.3799 | * | 0.2120 |* | 11 0.0903 |* | 0.0465 |* | 12 0.3047 | * | 0.1667 |* | 13 0.0978 |* | 0.0505 |* | 14 0.2829 | * | 0.1540 |* | 15 0.0903 |* | 0.0465 |* | 16 1.3475 | * | 0.9636 | * | 17 0.5727 | * | 0.3347 |* | 18 0.2437 | * | 0.1313 |* | 19 0.1839 |* | 0.0978 |* | 20 0.3825 | * | 0.2177 |* | 21 0.0978 |* | 0.0505 |* | 22 0.2219 |* | 0.1190 |* | 23 2.2945 | * | 2.1226 | * | 24 0.1056 |* | 0.0551 |* | 25 2.3474 | * | 2.2056 | * | 26 0.1015 |* | 0.0525 |* | 27 1.8477 | * | 1.4987 | * | 28 1.0657 | * | 0.7069 |* | 29 0.6270 | * | 0.3701 |* | 30 0.5656 | * | 0.3287 |* | 31 0.1130 |* | 0.0589 |* | 32 3.5921 | * | 4.8613 | * | 33 0.3576 | * | 0.1976 |* | 34 0.0591 |* | 0.0302 |* | 35 0.2952 | * | 0.1626 |* | 36 0.3842 | * | 0.2136 |* | 37 0.3464 | * | 0.1908 |* | 38 2.3432 | * | 2.2040 | * | 39 0.3726 | * | 0.2065 |* | 40 1.3562 | * | 0.9803 | * | 41 0.0774 |* | 0.0397 |* | 42 0.7385 | * | 0.4705 |* | 43 0.4923 | * | 0.2809 |* | 44 1.6743 | * | 1.2916 | * | 45 1.1005 | * | 0.7368 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 46 29.0000 12.0000 1.0000 1.0000 0 0.3247 | * | 47 20.0000 12.0000 0 0 0 1.6247 | | * | 48 39.0000 14.0000 0 0 1.0000 -0.1460 | * | 49 27.0000 12.0000 0 0 0 -0.5357 | *| | 50 10.0000 12.0000 0 0 0 -0.7504 | *| | 51 20.0000 12.0000 0 0 1.0000 -0.2591 | * | 52 5.0000 14.0000 0 0 0 1.4691 | | * | 53 24.0000 12.0000 0 0 1.0000 -0.2393 | * | 54 12.0000 18.0000 0 0 0 -0.3998 | *| | 55 4.0000 12.0000 0 0 1.0000 -0.3557 | *| | 56 9.0000 8.0000 1.0000 0 1.0000 1.0943 | | * | 57 35.0000 12.0000 1.0000 1.0000 0 0.3658 | |* | 58 22.0000 12.0000 1.0000 1.0000 0 0.2827 | * | 59 40.0000 12.0000 1.0000 0 0 1.2618 | | * | 60 27.0000 12.0000 1.0000 1.0000 0 0.3121 | * | 61 65.0000 9.0000 0 0 1.0000 -0.1426 | * | 62 38.0000 12.0000 0 0 0 -0.4308 | *| | 63 54.0000 12.0000 0 0 1.0000 -0.1320 | * | 64 30.0000 9.0000 0 0 0 1.4749 | | * | 65 40.0000 12.0000 1.0000 1.0000 0 -2.4761 | * | | 66 29.0000 10.0000 0 1.0000 1.0000 1.2132 | | * | 67 3.0000 16.0000 0 1.0000 0 0.5501 | |* | 68 65.0000 12.0000 0 0 1.0000 -0.1062 | * | 69 15.0000 16.0000 1.0000 0 0 1.1392 | | * | 70 25.0000 14.0000 1.0000 1.0000 0 0.3652 | |* | 71 22.0000 16.0000 0 0 0 -0.3992 | *| | 72 5.0000 12.0000 0 1.0000 0 0.3863 | |* | 73 45.0000 13.0000 0 0 0 -0.3398 | *| | 74 6.0000 12.0000 0 1.0000 0 0.3940 | |* | 75 15.0000 14.0000 1.0000 0 0 0.9358 | |* | 76 36.0000 12.0000 1.0000 0 0 -0.8579 | *| | 77 20.0000 16.0000 0 0 0 -0.4153 | *| | 78 3.0000 12.0000 1.0000 1.0000 0 0.1940 | * | 79 13.0000 17.0000 1.0000 0 0 -0.8278 | *| | 80 42.0000 12.0000 0 0 0 -0.3979 | *| | 81 18.0000 14.0000 0 0 0 1.9009 | | * | 82 6.0000 12.0000 0 0 0 -0.8124 | *| | 83 4.0000 16.0000 0 0 0 1.7533 | | * | 84 30.0000 12.0000 0 1.0000 0 -1.5772 | * | | 85 8.0000 16.0000 1.0000 0 0 -1.0085 | * | | 86 36.0000 9.0000 0 0 0 -0.6020 | *| | 87 4.0000 12.0000 0 0 0 -0.8452 | *| | 88 35.0000 8.0000 0 0 1.0000 -0.2851 | * | 89 36.0000 13.0000 0 0 1.0000 -0.1710 | * | 90 5.0000 16.0000 0 0 0 -0.5592 | *| | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 46 0.4478 | |* | 0.0310 | * | 47 1.6074 | | * | 0.0162 | * | 48 -0.2054 | *| | 0.0142 | * | 49 -0.7104 | * | | 0.0174 | * | 50 -0.9452 | * | | 0.0217 | * | 51 -0.3604 | *| | 0.0315 | * | 52 1.5166 | | * | 0.0215 | * | 53 -0.3337 | *| | 0.0274 | * | 54 -0.5446 | * | | 0.0326 | * | 55 -0.4882 | *| | 0.0606 | * | 56 1.2548 | | * | 0.1846 | *| 57 0.5011 | | * | 0.0408 | * | 58 0.3921 | |* | 0.0236 | * | 59 1.3802 | | * | 0.0711 | * | 60 0.4312 | |* | 0.0285 | * | 61 -0.2006 | *| | 0.0177 | * | 62 -0.5835 | * | | 0.0236 | * | 63 -0.1859 | *| | 0.0132 | * | 64 1.5201 | | * | 0.0439 | * | 65 -1.9821 | * | | 0.0521 | * | 66 1.3453 | | * | 0.1431 | * | 67 0.7272 | | * | 0.0450 | * | 68 -0.1497 | * | 0.0108 | * | 69 1.2899 | | * | 0.0625 | * | 70 0.5004 | | * | 0.0339 | * | 71 -0.5438 | * | | 0.0211 | * | 72 0.5274 | | * | 0.0310 | * | 73 -0.4675 | *| | 0.0258 | * | 74 0.5372 | | * | 0.0311 | * | 75 1.1216 | | * | 0.0490 | * | 76 -1.0503 | * | | 0.0648 | * | 77 -0.5642 | * | | 0.0210 | * | 78 0.2718 | |* | 0.0146 | * | 79 -1.0217 | * | | 0.0735 | * | 80 -0.5422 | * | | 0.0261 | * | 81 1.7487 | | * | 0.0144 | * | 82 -1.0068 | * | | 0.0270 | * | 83 1.6761 | | * | 0.0280 | * | 84 -1.5806 | * | | 0.0531 | * | 85 -1.1846 | * | | 0.0639 | * | 86 -0.7864 | * | | 0.0450 | * | 87 -1.0383 | * | | 0.0304 | * | 88 -0.3954 | *| | 0.0430 | * | 89 -0.2401 | *| | 0.0170 | * | 90 -0.7376 | * | | 0.0269 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 0.00686 | * | 0.0125 | * | 47 0.0815 | |* | 0.0261 | * | 48 0.00686 | * | -0.00697 | * | 49 -0.0133 | * | -0.0326 | * | 50 -0.0681 | *| | 0.0440 | * | 51 0.000263 | * | 0.00168 | * | 52 0.0303 | |* | -0.0951 | *| | 53 0.00188 | * | -0.00201 | * | 54 0.0521 | |* | -0.0133 | * | 55 -0.0137 | * | 0.0327 | * | 56 0.2847 | | * | -0.2338 | * | | 57 0.00308 | * | 0.0271 | * | 58 0.00922 | * | 0.00144 | * | 59 -0.0309 | *| | 0.2068 | | * | 60 0.00772 | * | 0.00881 | * | 61 0.00143 | * | -0.0118 | * | 62 0.00373 | * | -0.0503 | *| | 63 0.00446 | * | -0.00869 | * | 64 0.2178 | | * | 0.0710 | |* | 65 0.0110 | * | -0.2700 | * | | 66 0.0988 | | * | 0.0262 | * | 67 -0.0208 | * | -0.0296 | * | 68 0.00381 | * | -0.00756 | * | 69 -0.1313 | * | | 0.0284 | * | 70 -0.00964 | * | 0.0154 | * | 71 0.0367 | |* | -0.0264 | * | 72 0.0344 | |* | -0.0284 | * | 73 0.0175 | * | -0.0481 | *| | 74 0.0346 | |* | -0.0272 | * | 75 -0.0194 | * | -0.00666 | * | 76 0.00772 | * | -0.1137 | *| | 77 0.0370 | |* | -0.0236 | * | 78 0.00967 | * | -0.0101 | * | 79 0.1283 | | * | -0.0204 | * | 80 0.00744 | * | -0.0528 | *| | 81 -0.0422 | *| | 0.0517 | |* | 82 -0.0877 | *| | 0.0741 | |* | 83 -0.0991 | * | | -0.0706 | *| | 84 -0.0534 | *| | -0.1319 | *| | 85 0.0894 | | * | 0.0330 | * | 86 -0.0722 | *| | -0.0535 | *| | 87 -0.0986 | * | | 0.0913 | |* | 88 -0.0190 | * | -0.00667 | * | 89 0.00613 | * | -0.00729 | * | 90 0.0331 | |* | 0.0185 | * | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 -0.0128 | * | 0.0343 | |* | 47 -0.0509 | *| | -0.0819 | * | | 48 -0.00707 | * | 0.00568 | * | 49 0.00762 | * | 0.0269 | |* | 50 0.0441 | |* | 0.0371 | |* | 51 -0.00338 | * | 0.0154 | * | 52 0.0280 | |* | -0.0743 | * | | 53 -0.00403 | * | 0.0135 | * | 54 -0.0635 | *| | 0.0193 | * | 55 0.00348 | * | 0.0264 | |* | 56 -0.2690 | * | | 0.1822 | | * | 57 -0.0123 | * | 0.0421 | |* | 58 -0.0126 | * | 0.0270 | |* | 59 0.00267 | * | 0.2279 | | * | 60 -0.0128 | * | 0.0320 | |* | 61 -0.00005 | * | 0.00544 | * | 62 -0.00357 | * | 0.0208 | * | 63 -0.00390 | * | 0.00474 | * | 64 -0.2122 | * | | -0.0753 | * | | 65 0.0677 | |* | -0.3057 | * | | 66 -0.1155 | * | | -0.1692 | * | | 67 0.0332 | |* | -0.0299 | *| | 68 -0.00316 | * | 0.00321 | * | 69 0.1492 | | * | 0.2101 | | * | 70 0.00420 | * | 0.0416 | |* | 71 -0.0437 | *| | 0.0190 | * | 72 -0.0300 | *| | -0.0138 | * | 73 -0.0160 | * | 0.0152 | * | 74 -0.0303 | *| | -0.0144 | * | 75 0.0306 | |* | 0.1766 | | * | 76 0.00737 | * | -0.1581 | * | | 77 -0.0453 | *| | 0.0200 | * | 78 -0.00965 | * | 0.0138 | * | 79 -0.1449 | * | | -0.1515 | * | | 80 -0.00597 | * | 0.0188 | * | 81 0.0842 | | * | -0.0954 | * | | 82 0.0572 | |* | 0.0394 | |* | 83 0.1709 | | * | -0.0904 | * | | 84 0.0731 | |* | 0.0973 | | * | 85 -0.1143 | * | | -0.1918 | * | | 86 0.0740 | |* | 0.0310 | |* | 87 0.0646 | |* | 0.0406 | |* | 88 0.0190 | * | 0.0182 | * | 89 -0.00653 | * | 0.00751 | * | 90 -0.0551 | *| | 0.0288 | |* | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 0.0379 | |* | -0.0227 | * | 47 -0.0692 | *| | -0.0373 | *| | 48 0.00547 | * | -0.0144 | * | 49 0.0221 | * | 0.0135 | * | 50 0.0328 | |* | 0.0138 | * | 51 0.0143 | * | -0.0438 | *| | 52 -0.0813 | * | | 8.4E-6 | * | 53 0.0123 | * | -0.0373 | *| | 54 0.0255 | |* | -0.00752 | * | 55 0.0254 | |* | -0.0832 | * | | 56 -0.1085 | * | | 0.3636 | | *| 57 0.0470 | |* | -0.0293 | *| | 58 0.0294 | |* | -0.0168 | * | 59 -0.0732 | *| | -0.1057 | * | | 60 0.0353 | |* | -0.0208 | * | 61 0.00398 | * | -0.0116 | * | 62 0.0164 | * | 0.0119 | * | 63 0.00409 | * | -0.0109 | * | 64 -0.0387 | *| | -0.0788 | * | | 65 -0.3444 | * | | 0.2221 | | * | 66 0.2058 | | * | 0.3801 | | *| 67 0.0840 | | * | -0.0125 | * | 68 0.00272 | * | -0.00694 | * | 69 -0.0953 | * | | -0.0393 | *| | 70 0.0435 | |* | -0.0237 | * | 71 0.0217 | * | -0.00123 | * | 72 0.0541 | |* | -0.0155 | * | 73 0.0128 | * | 0.00720 | * | 74 0.0559 | |* | -0.0163 | * | 75 -0.0631 | *| | -0.0472 | *| | 76 0.0493 | |* | 0.0701 | |* | 77 0.0230 | * | -0.00171 | * | 78 0.0146 | * | -0.00723 | * | 79 0.0756 | | * | 0.0207 | * | 80 0.0146 | * | 0.0111 | * | 81 -0.0974 | * | | -0.0135 | * | 82 0.0356 | |* | 0.0132 | * | 83 -0.1131 | * | | 0.0250 | |* | 84 -0.2951 | * | | 0.1120 | | * | 85 0.0834 | | * | 0.0302 | |* | 86 0.0158 | * | 0.0328 | |* | 87 0.0371 | |* | 0.0127 | * | 88 0.0131 | * | -0.0466 | *| | 89 0.00700 | * | -0.0193 | * | 90 0.0358 | |* | -0.00758 | * | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 46 0.00349 |* | 0.00338 |* | 47 0.0441 | * | 0.0434 | * | 48 0.000311 |* | 0.000307 |* | 49 0.00518 |* | 0.00509 |* | 50 0.0128 |* | 0.0125 |* | 51 0.00225 |* | 0.00218 |* | 52 0.0484 | * | 0.0473 | * | 53 0.00166 |* | 0.00161 |* | 54 0.00558 |* | 0.00539 |* | 55 0.00870 |* | 0.00817 |* | 56 0.3324 | * | 0.2711 | * | 57 0.00593 |* | 0.00569 |* | 58 0.00197 |* | 0.00193 |* | 59 0.1313 | * | 0.1219 | * | 60 0.00295 |* | 0.00286 |* | 61 0.000372 |* | 0.000366 |* | 62 0.00459 |* | 0.00448 |* | 63 0.000236 |* | 0.000233 |* | 64 0.1045 | * | 0.0999 | * | 65 0.3555 | * | 0.3370 | * | 66 0.2869 | * | 0.2458 | * | 67 0.0149 |* | 0.0142 |* | 68 0.000125 |* | 0.000123 |* | 69 0.0922 | * | 0.0865 | * | 70 0.00484 |* | 0.00468 |* | 71 0.00351 |* | 0.00343 |* | 72 0.00492 |* | 0.00477 |* | 73 0.00314 |* | 0.00305 |* | 74 0.00515 |* | 0.00499 |* | 75 0.0474 | * | 0.0451 | * | 76 0.0545 | * | 0.0510 | * | 77 0.00378 |* | 0.00370 |* | 78 0.000567 |* | 0.000559 |* | 79 0.0587 | * | 0.0544 | * | 80 0.00436 |* | 0.00425 |* | 81 0.0536 | * | 0.0528 | * | 82 0.0188 |* | 0.0183 |* | 83 0.0909 | * | 0.0884 | * | 84 0.1474 | * | 0.1396 | * | 85 0.0742 | * | 0.0695 | * | 86 0.0179 |* | 0.0171 |* | 87 0.0231 | * | 0.0224 | * | 88 0.00381 |* | 0.00365 |* | 89 0.000514 |* | 0.000505 |* | 90 0.00889 |* | 0.00865 |* | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 46 0.2039 |* | 0.1088 |* | 47 2.6272 | * | 2.6831 | * | 48 0.0425 |* | 0.0216 |* | 49 0.5097 | * | 0.2921 |* | 50 0.9059 | * | 0.5756 |* | 51 0.1321 |* | 0.0693 |* | 52 2.3474 | * | 2.2056 | * | 53 0.1130 |* | 0.0589 |* | 54 0.3020 | * | 0.1653 |* | 55 0.2465 | * | 0.1347 |* | 56 1.8457 | * | 1.4685 | * | 57 0.2568 | * | 0.1395 |* | 58 0.1557 |* | 0.0818 |* | 59 2.0270 | * | 1.7142 | * | 60 0.1888 |* | 0.1003 |* | 61 0.0406 |* | 0.0207 |* | 62 0.3449 | * | 0.1900 |* | 63 0.0348 |* | 0.0177 |* | 64 2.4107 | * | 2.2752 | * | 65 4.2658 | * | 6.4679 | * | 66 2.0557 | * | 1.7176 | * | 67 0.5431 | * | 0.3169 |* | 68 0.0225 |* | 0.0114 |* | 69 1.7503 | * | 1.3842 | * | 70 0.2550 | * | 0.1380 |* | 71 0.2992 | * | 0.1628 |* | 72 0.2829 | * | 0.1540 |* | 73 0.2217 |* | 0.1186 |* | 74 0.2936 | * | 0.1602 |* | 75 1.3031 | * | 0.9208 | * | 76 1.1541 | * | 0.7870 |* | 77 0.3220 | * | 0.1762 |* | 78 0.0744 |* | 0.0382 |* | 79 1.0982 | * | 0.7397 |* | 80 0.2982 | * | 0.1626 |* | 81 3.1109 | * | 3.6664 | * | 82 1.0319 | * | 0.6783 |* | 83 2.8976 | * | 3.1623 | * | 84 2.6380 | * | 2.6272 | * | 85 1.4728 | * | 1.0865 | * | 86 0.6355 | * | 0.3795 |* | 87 1.1005 | * | 0.7368 |* | 88 0.1600 |* | 0.0850 |* | 89 0.0581 |* | 0.0297 |* | 90 0.5528 | * | 0.3213 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 91 19.0000 16.0000 0 1.0000 1.0000 -0.5571 | *| | 92 18.0000 15.0000 0 0 0 -0.4768 | *| | 93 81.0000 6.0000 0 0 1.0000 -0.1395 | * | 94 6.0000 18.0000 0 1.0000 0 -1.4070 | * | | 95 2.0000 14.0000 0 1.0000 0 0.4431 | |* | 96 1.0000 12.0000 1.0000 1.0000 0 -5.3644 |* | | 97 21.0000 12.0000 1.0000 1.0000 1.0000 0.6584 | |* | 98 21.0000 12.0000 1.0000 1.0000 0 0.2771 | * | 99 68.0000 12.0000 0 0 0 4.2075 | | * | 100 41.0000 12.0000 0 0 0 -0.4059 | *| | 101 34.0000 12.0000 0 0 1.0000 -0.1963 | * | 102 9.0000 12.0000 1.0000 1.0000 0 0.2184 | * | 103 9.0000 12.0000 1.0000 1.0000 0 0.2184 | * | 104 35.0000 15.0000 0 1.0000 0 -1.0635 | * | | 105 6.0000 7.0000 0 0 0 -1.3282 | * | | 106 14.0000 16.0000 0 0 0 -0.4678 | *| | 107 6.0000 16.0000 0 1.0000 0 -1.7128 | * | | 108 20.0000 8.0000 0 0 0 -0.9121 | *| | 109 21.0000 9.0000 0 0 0 1.2339 | | * | 110 19.0000 12.0000 0 0 0 -0.6278 | *| | 111 12.0000 12.0000 0 1.0000 0 0.4438 | |* | 112 10.0000 12.0000 0 0 0 1.3326 | | * | 113 9.0000 12.0000 0 0 0 -0.7655 | *| | 114 8.0000 15.0000 1.0000 0 0 -1.1127 | * | | 115 12.0000 16.0000 0 0 0 -0.4867 | *| | 116 20.0000 12.0000 0 0 0 -0.6155 | *| | 117 17.0000 12.0000 0 0 0 -0.6532 | *| | 118 6.0000 14.0000 1.0000 0 0 0.7829 | |* | 119 13.0000 15.0000 0 0 0 -0.5265 | *| | 120 55.0000 12.0000 0 1.0000 0 -0.9609 | *| | 121 2.0000 12.0000 0 0 0 -0.8794 | *| | 122 53.0000 12.0000 0 0 0 -0.3200 | * | 123 31.0000 13.0000 0 0 1.0000 -0.1888 | * | 124 20.0000 12.0000 0 0 0 -0.6155 | *| | 125 5.0000 14.0000 0 1.0000 0 0.4702 | |* | 126 24.0000 12.0000 0 0 0 -0.5686 | *| | 127 65.0000 9.0000 1.0000 0 1.0000 -0.2729 | * | 128 21.0000 12.0000 0 0 1.0000 -0.2540 | * | 129 28.0000 14.0000 0 0 0 -0.4315 | *| | 130 1.0000 15.0000 1.0000 0 0 0.7823 | |* | 131 1.0000 15.0000 0 0 0 -0.6679 | *| | 132 15.0000 15.0000 1.0000 0 0 1.0325 | | * | 133 5.0000 12.0000 0 0 0 -0.8286 | *| | 134 1.0000 16.0000 0 1.0000 0 0.5288 | |* | 135 30.0000 10.0000 0 1.0000 0 0.5208 | |* | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 91 -0.7353 | * | | 0.1219 | * | 92 -0.6401 | * | | 0.0171 | * | 93 -0.1963 | *| | 0.0240 | * | 94 -1.4777 | * | | 0.0743 | * | 95 0.5987 | | * | 0.0331 | * | 96 -2.6053 |* | | 0.0142 | * | 97 0.8487 | | * | 0.1161 | * | 98 0.3847 | |* | 0.0228 | * | 99 2.4202 | | * | 0.0347 | * | 100 -0.5523 | * | | 0.0255 | * | 101 -0.2750 | *| | 0.0203 | * | 102 0.3053 | |* | 0.0164 | * | 103 0.3053 | |* | 0.0164 | * | 104 -1.2301 | * | | 0.0823 | * | 105 -1.4260 | * | | 0.1055 | * | 106 -0.6291 | * | | 0.0216 | * | 107 -1.6550 | * | | 0.0461 | * | 108 -1.1003 | * | | 0.0668 | * | 109 1.3603 | | * | 0.0467 | * | 110 -0.8152 | * | | 0.0163 | * | 111 0.5996 | | * | 0.0330 | * | 112 1.4289 | | * | 0.0217 | * | 113 -0.9604 | * | | 0.0229 | * | 114 -1.2694 | * | | 0.0556 | * | 115 -0.6521 | * | | 0.0223 | * | 116 -0.8015 | * | | 0.0162 | * | 117 -0.8430 | * | | 0.0168 | * | 118 0.9778 | | * | 0.0518 | * | 119 -0.6995 | * | | 0.0177 | * | 120 -1.1437 | * | | 0.1361 | * | 121 -1.0704 | * | | 0.0342 | * | 122 -0.4415 | *| | 0.0319 | * | 123 -0.2647 | *| | 0.0194 | * | 124 -0.8015 | * | | 0.0162 | * | 125 0.6321 | | * | 0.0334 | * | 126 -0.7485 | * | | 0.0165 | * | 127 -0.3791 | *| | 0.0565 | * | 128 -0.3536 | *| | 0.0304 | * | 129 -0.5843 | * | | 0.0171 | * | 130 0.9772 | | * | 0.0604 | * | 131 -0.8589 | * | | 0.0282 | * | 132 1.2047 | | * | 0.0542 | * | 133 -1.0225 | * | | 0.0286 | * | 134 0.7022 | | * | 0.0445 | * | 135 0.6928 | | * | 0.0554 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 0.0860 | |* | -0.0175 | * | 92 0.0268 | * | -0.0180 | * | 93 -0.00153 | * | -0.0144 | * | 94 0.2055 | | * | 0.0103 | * | 95 0.0170 | * | -0.0335 | * | 96 -0.2723 | * | | 0.3000 | | * | 97 0.00499 | * | -0.0197 | * | 98 0.00942 | * | 0.000259 | * | 99 -0.2414 | * | | 0.7633 | | *| 100 0.00661 | * | -0.0523 | *| | 101 0.00409 | * | -0.00723 | * | 102 0.0101 | * | -0.00844 | * | 103 0.0101 | * | -0.00844 | * | 104 0.1354 | | * | -0.1987 | * | | 105 -0.4715 |* | | 0.2377 | | * | 106 0.0371 | |* | -0.0117 | * | 107 0.0843 | |* | 0.0587 | |* | 108 -0.2275 | * | | 0.0419 | * | 109 0.2348 | | * | -0.0255 | * | 110 -0.0339 | *| | -0.00571 | * | 111 0.0348 | |* | -0.0176 | * | 112 0.1208 | | * | -0.0781 | *| | 113 -0.0727 | *| | 0.0510 | |* | 114 0.0449 | |* | 0.0536 | |* | 115 0.0366 | |* | -0.00645 | * | 116 -0.0309 | *| | -0.00987 | * | 117 -0.0404 | *| | 0.00337 | * | 118 0.0110 | * | -0.0613 | *| | 119 0.0233 | * | -0.00398 | * | 120 0.0639 | |* | -0.3123 | * | | 121 -0.1103 | * | | 0.1099 | |* | 122 0.0129 | * | -0.0524 | *| | 123 0.00614 | * | -0.00613 | * | 124 -0.0309 | *| | -0.00987 | * | 125 0.0146 | * | -0.0283 | * | 126 -0.0201 | * | -0.0242 | * | 127 0.00583 | * | -0.0402 | * | 128 0.000717 | * | 0.000650 | * | 129 0.0204 | * | -0.0351 | * | 130 -0.00998 | * | -0.0808 | *| | 131 0.00510 | * | 0.0532 | |* | 132 -0.0702 | *| | 0.00915 | * | 133 -0.0930 | * | | 0.0825 | |* | 134 -0.0162 | * | -0.0349 | * | 135 0.0563 | |* | 0.0258 | * | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 -0.0914 | * | | 0.0718 | | * | 92 -0.0374 | *| | 0.0237 | |* | 93 0.00379 | * | 0.00525 | * | 94 -0.2418 | * | | 0.0984 | | * | 95 -0.00914 | * | -0.0188 | * | 96 0.2671 | | * | -0.3704 |* | | 97 -0.0171 | * | 0.0788 | | * | 98 -0.0125 | * | 0.0260 | |* | 99 0.1711 | | * | -0.1582 | * | | 100 -0.00544 | * | 0.0193 | * | 101 -0.00466 | * | 0.00955 | * | 102 -0.0107 | * | 0.0171 | * | 103 -0.0107 | * | 0.0171 | * | 104 -0.1192 | * | | 0.0873 | | * | 105 0.4304 | | *| 0.0492 | |* | 106 -0.0497 | *| | 0.0233 | |* | 107 -0.1186 | * | | 0.0986 | | * | 108 0.2139 | | * | 0.0433 | |* | 109 -0.2164 | * | | -0.0605 | *| | 110 0.0213 | * | 0.0316 | |* | 111 -0.0320 | *| | -0.0188 | * | 112 -0.0783 | *| | -0.0658 | *| | 113 0.0472 | |* | 0.0377 | |* | 114 -0.0700 | *| | -0.2118 | * | | 115 -0.0511 | *| | 0.0244 | |* | 116 0.0193 | * | 0.0310 | |* | 117 0.0256 | * | 0.0328 | |* | 118 0.00672 | * | 0.1479 | | * | 119 -0.0383 | *| | 0.0266 | |* | 120 -0.0166 | * | 0.0863 | | * | 121 0.0724 | |* | 0.0417 | |* | 122 -0.00943 | * | 0.0140 | * | 123 -0.00704 | * | 0.00893 | * | 124 0.0193 | * | 0.0310 | |* | 125 -0.00724 | * | -0.0214 | * | 126 0.0121 | * | 0.0286 | |* | 127 0.00190 | * | -0.0153 | * | 128 -0.00357 | * | 0.0149 | * | 129 -0.0250 | * | 0.0208 | * | 130 0.0339 | |* | 0.1490 | | * | 131 -0.0357 | *| | 0.0342 | |* | 132 0.0846 | | * | 0.1932 | | * | 133 0.0608 | |* | 0.0400 | |* | 134 0.0289 | |* | -0.0276 | *| | 135 -0.0638 | *| | -0.0267 | *| | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 -0.0571 | *| | -0.1761 | * | | 92 0.0259 | |* | 0.000285 | * | 93 0.00312 | * | -0.00982 | * | 94 -0.2254 | * | | 0.0176 | * | 95 0.0637 | |* | -0.0138 | * | 96 -0.3904 |* | | 0.1900 | | * | 97 0.0899 | | * | 0.1729 | | * | 98 0.0284 | |* | -0.0161 | * | 99 -0.1144 | * | | -0.1111 | * | | 100 0.0151 | * | 0.0113 | * | 101 0.00857 | * | -0.0249 | *| | 102 0.0183 | * | -0.00946 | * | 103 0.0183 | * | -0.00946 | * | 104 -0.1994 | * | | 0.0629 | |* | 105 0.00917 | * | 0.0782 | | * | 106 0.0276 | |* | -0.00352 | * | 107 -0.2687 | * | | 0.0433 | |* | 108 0.0167 | * | 0.0547 | |* | 109 -0.0315 | *| | -0.0622 | *| | 110 0.0268 | |* | 0.0141 | * | 111 0.0681 | |* | -0.0213 | * | 112 -0.0582 | *| | -0.0245 | *| | 113 0.0335 | |* | 0.0137 | * | 114 0.0820 | | * | 0.0419 | |* | 115 0.0293 | |* | -0.00427 | * | 116 0.0262 | |* | 0.0141 | * | 117 0.0281 | |* | 0.0142 | * | 118 -0.0498 | *| | -0.0338 | *| | 119 0.0298 | |* | -0.00111 | * | 120 -0.2111 | * | | 0.1008 | | * | 121 0.0385 | |* | 0.0122 | * | 122 0.0105 | * | 0.00899 | * | 123 0.00841 | * | -0.0237 | * | 124 0.0262 | |* | 0.0141 | * | 125 0.0700 | |* | -0.0159 | * | 126 0.0238 | * | 0.0139 | * | 127 0.0150 | * | -0.0357 | *| | 128 0.0138 | * | -0.0421 | *| | 129 0.0203 | * | 0.00480 | * | 130 -0.0552 | *| | -0.0252 | *| | 131 0.0411 | |* | -0.00657 | * | 132 -0.0782 | * | | -0.0440 | *| | 133 0.0363 | |* | 0.0130 | * | 134 0.0791 | | * | -0.0112 | * | 135 0.0952 | | * | -0.0406 | *| | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 91 0.0490 | * | 0.0431 | * | 92 0.00402 |* | 0.00395 |* | 93 0.000490 |* | 0.000479 |* | 94 0.1717 | * | 0.1590 | * | 95 0.00696 |* | 0.00673 |* | 96 0.4201 | * | 0.4142 | * | 97 0.0644 | * | 0.0569 | * | 98 0.00183 |* | 0.00179 |* | 99 0.6595 | *| 0.6366 | *| 100 0.00442 |* | 0.00431 |* | 101 0.000817 |* | 0.000800 |* | 102 0.000808 |* | 0.000794 |* | 103 0.000808 |* | 0.000794 |* | 104 0.1105 | * | 0.1014 | * | 105 0.2326 | * | 0.2081 | * | 106 0.00494 |* | 0.00483 |* | 107 0.1485 | * | 0.1416 | * | 108 0.0638 | * | 0.0596 | * | 109 0.0783 | * | 0.0746 | * | 110 0.00663 |* | 0.00652 |* | 111 0.00694 |* | 0.00671 |* | 112 0.0403 | * | 0.0394 | * | 113 0.0140 |* | 0.0137 |* | 114 0.0772 | * | 0.0729 | * | 115 0.00551 |* | 0.00539 |* | 116 0.00633 |* | 0.00623 |* | 117 0.00740 |* | 0.00728 |* | 118 0.0353 | * | 0.0335 | * | 119 0.00509 |* | 0.00500 |* | 120 0.1683 | * | 0.1454 | * | 121 0.0284 | * | 0.0274 | * | 122 0.00348 |* | 0.00337 |* | 123 0.000718 |* | 0.000704 |* | 124 0.00633 |* | 0.00623 |* | 125 0.00791 |* | 0.00765 |* | 126 0.00551 |* | 0.00542 |* | 127 0.00473 |* | 0.00446 |* | 128 0.00208 |* | 0.00202 |* | 129 0.00329 |* | 0.00323 |* | 130 0.0419 | * | 0.0394 | * | 131 0.0133 |* | 0.0129 |* | 132 0.0645 | * | 0.0610 | * | 133 0.0208 | * | 0.0202 | * | 134 0.0136 |* | 0.0130 |* | 135 0.0168 |* | 0.0159 |* | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 91 0.5837 | * | 0.3535 |* | 92 0.4136 | * | 0.2313 |* | 93 0.0390 |* | 0.0199 |* | 94 2.3426 | * | 2.1386 | * | 95 0.3652 | * | 0.2030 |* | 96 7.2016 | *| 29.1911 | *| 97 0.7772 | * | 0.4904 |* | 98 0.1498 |* | 0.0786 |* | 99 6.4939 | * | 18.3396 | * | 100 0.3093 | * | 0.1691 |* | 101 0.0764 |* | 0.0393 |* | 102 0.0940 |* | 0.0485 |* | 103 0.0940 |* | 0.0485 |* | 104 1.6146 | * | 1.2324 | * | 105 2.2416 | * | 1.9722 | * | 106 0.4006 | * | 0.2237 |* | 107 2.8807 | * | 3.0752 | * | 108 1.2703 | * | 0.8915 |* | 109 1.9251 | * | 1.5971 | * | 110 0.6711 | * | 0.4007 |* | 111 0.3662 | * | 0.2036 |* | 112 2.0812 | * | 1.8151 | * | 113 0.9360 | * | 0.5996 |* | 114 1.6842 | * | 1.3110 | * | 115 0.4306 | * | 0.2423 |* | 116 0.6487 | * | 0.3851 |* | 117 0.7180 | * | 0.4340 |* | 118 0.9896 | * | 0.6464 |* | 119 0.4943 | * | 0.2822 |* | 120 1.4535 | * | 1.0687 | * | 121 1.1731 | * | 0.8007 |* | 122 0.1983 |* | 0.1058 |* | 123 0.0707 |* | 0.0363 |* | 124 0.6487 | * | 0.3851 |* | 125 0.4071 | * | 0.2287 |* | 126 0.5656 | * | 0.3287 |* | 127 0.1482 |* | 0.0790 |* | 128 0.1270 |* | 0.0665 |* | 129 0.3447 | * | 0.1894 |* | 130 0.9942 | * | 0.6513 |* | 131 0.7506 | * | 0.4590 |* | 132 1.5123 | * | 1.1271 | * | 133 1.0657 | * | 0.7069 |* | 134 0.5061 | * | 0.2926 |* | 135 0.4959 | * | 0.2872 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 136 11.0000 12.0000 0 0 0 1.3592 | | * | 137 5.0000 16.0000 0 1.0000 0 0.5724 | |* | 138 4.0000 12.0000 0 0 0 -0.8452 | *| | 139 5.0000 16.0000 0 1.0000 0 0.5724 | |* | 140 13.0000 12.0000 0 0 0 -0.7071 | *| | 141 17.0000 12.0000 0 0 0 -0.6532 | *| | 142 2.0000 13.0000 1.0000 0 0 0.6555 | |* | 143 5.0000 16.0000 0 0 0 -0.5592 | *| | 144 1.0000 16.0000 0 0 0 1.6520 | | * | 145 30.0000 12.0000 0 0 0 -0.5048 | *| | 146 1.0000 12.0000 1.0000 0 0 -1.7169 | * | | 147 50.0000 8.0000 0 0 1.0000 -0.2118 | * | 148 2.0000 12.0000 1.0000 0 0 -1.6832 | * | | 149 2.0000 15.0000 0 0 0 -0.6547 | *| | 150 12.0000 18.0000 0 0 0 -0.3998 | *| | 151 7.0000 20.0000 0 0 1.0000 -0.1526 | * | 152 26.0000 12.0000 0 0 1.0000 -0.2300 | * | 153 22.0000 12.0000 0 0 0 1.6904 | | * | Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 136 1.4467 | | * | 0.0207 | * | 137 0.7529 | | * | 0.0456 | * | 138 -1.0383 | * | | 0.0304 | * | 139 0.7529 | | * | 0.0456 | * | 140 -0.9005 | * | | 0.0189 | * | 141 -0.8430 | * | | 0.0168 | * | 142 0.8455 | | * | 0.0530 | * | 143 -0.7376 | * | | 0.0269 | * | 144 1.6225 | | * | 0.0317 | * | 145 -0.6738 | * | | 0.0188 | * | 146 -1.6572 | * | | 0.0543 | * | 147 -0.2963 | *| | 0.0292 | * | 148 -1.6393 | * | | 0.0537 | * | 149 -0.8447 | * | | 0.0267 | * | 150 -0.5446 | * | | 0.0326 | * | 151 -0.2146 | *| | 0.0248 | * | 152 -0.3211 | *| | 0.0257 | * | 153 1.6432 | | * | 0.0162 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 0.1175 | | * | -0.0689 | *| | 137 -0.0260 | * | -0.0234 | * | 138 -0.0986 | * | | 0.0913 | |* | 139 -0.0260 | * | -0.0234 | * | 140 -0.0552 | *| | 0.0248 | * | 141 -0.0404 | *| | 0.00337 | * | 142 0.0464 | |* | -0.0778 | *| | 143 0.0331 | |* | 0.0185 | * | 144 -0.0796 | *| | -0.1038 | *| | 145 -0.00749 | * | -0.0394 | * | 146 -0.1919 | * | | 0.2298 | | * | 147 -0.00575 | * | -0.0140 | * | 148 -0.1840 | * | | 0.2152 | | * | 149 0.00725 | * | 0.0469 | * | 150 0.0521 | |* | -0.0133 | * | 151 0.0145 | * | -0.00037 | * | 152 0.00251 | * | -0.00345 | * | 153 0.0720 | |* | 0.0499 | |* | Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 -0.0760 | *| | -0.0674 | *| | 137 0.0379 | |* | -0.0323 | *| | 138 0.0646 | |* | 0.0406 | |* | 139 0.0379 | |* | -0.0323 | *| | 140 0.0355 | |* | 0.0353 | |* | 141 0.0256 | * | 0.0328 | |* | 142 -0.0305 | *| | 0.1202 | | * | 143 -0.0551 | *| | 0.0288 | |* | 144 0.1549 | | * | -0.0856 | * | | 145 0.00380 | * | 0.0252 | |* | 146 0.1530 | | * | -0.3043 | * | | 147 0.00735 | * | 0.0109 | * | 148 0.1474 | | * | -0.3002 | * | | 149 -0.0362 | *| | 0.0335 | |* | 150 -0.0635 | *| | 0.0193 | * | 151 -0.0170 | * | 0.00626 | * | 152 -0.00426 | * | 0.0126 | * | 153 -0.0444 | *| | -0.0852 | * | | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 -0.0593 | *| | -0.0257 | *| | 137 0.0890 | | * | -0.0140 | * | 138 0.0371 | |* | 0.0127 | * | 139 0.0890 | | * | -0.0140 | * | 140 0.0307 | |* | 0.0141 | * | 141 0.0281 | |* | 0.0142 | * | 142 -0.0341 | *| | -0.0300 | *| | 143 0.0358 | |* | -0.00758 | * | 144 -0.1090 | * | | 0.0273 | |* | 145 0.0204 | * | 0.0132 | * | 146 0.0727 | |* | 0.0859 | | * | 147 0.00772 | * | -0.0254 | *| | 148 0.0723 | |* | 0.0860 | | * | 149 0.0400 | |* | -0.00598 | * | 150 0.0255 | |* | -0.00752 | * | 151 0.00776 | * | -0.0190 | * | 152 0.0115 | * | -0.0344 | *| | 153 -0.0714 | *| | -0.0400 | *| | Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 136 0.0398 | * | 0.0390 | * | 137 0.0164 |* | 0.0157 |* | 138 0.0231 | * | 0.0224 | * | 139 0.0164 |* | 0.0157 |* | 140 0.00984 |* | 0.00965 |* | 141 0.00740 |* | 0.00728 |* | 142 0.0254 | * | 0.0240 | * | 143 0.00889 |* | 0.00865 |* | 144 0.0923 | * | 0.0893 | * | 145 0.00497 |* | 0.00488 |* | 146 0.1790 | * | 0.1693 | * | 147 0.00139 |* | 0.00135 |* | 148 0.1698 | * | 0.1607 | * | 149 0.0121 |* | 0.0118 |* | 150 0.00558 |* | 0.00539 |* | 151 0.000607 |* | 0.000592 |* | 152 0.00143 |* | 0.00139 |* | 153 0.0478 | * | 0.0470 | * | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 136 2.1319 | * | 1.8865 | * | 137 0.5825 | * | 0.3433 |* | 138 1.1005 | * | 0.7368 |* | 139 0.5825 | * | 0.3433 |* | 140 0.8206 | * | 0.5097 |* | 141 0.7180 | * | 0.4340 |* | 142 0.7389 | * | 0.4537 |* | 143 0.5528 | * | 0.3213 |* | 144 2.7217 | * | 2.8186 | * | 145 0.4589 | * | 0.2597 |* | 146 2.9156 | * | 3.1172 | * | 147 0.0891 |* | 0.0462 |* | 148 2.8481 | * | 2.9940 | * | 149 0.7253 | * | 0.4405 |* | 150 0.3020 | * | 0.1653 |* | 151 0.0467 |* | 0.0239 |* | 152 0.1045 |* | 0.0543 |* | 153 2.7471 | * | 2.9046 | * |
Below is the rest of the code for Figure 7.8.
data toxic10; set toxic9; CaseNum=_n_; run; data toxic20; set toxic7; CaseNum=_n_; run; proc sort data=toxic10; by CaseNum; proc sort data=toxic9; by CaseNum; run; proc sort data=toxic20; by CaseNum; run; data toxic11; merge toxic9 toxic10 toxic20; by CaseNum; run; symbol1 v=circle i=none; axis1 order=(0 to 1 by .2); axis2 order=(0 to 8 by 1); proc gplot data=toxic11; plot DifDev*p / haxis=axis1 vaxis=axis2 hminor=1 vminor=0; run; quit;
Figure 7.8
page 241 Figure 7.9 Influence statistic delta-B versus predicted probability of favoring closed schools – patterns 131, 3, 115, 44 and 94 are most influential (high delta-B values).
symbol1 v=circle i=none; axis1 order=(0 to 1 by .2); axis2 order=(0 to .8 by .1) label=(r=0 a=90); proc gplot data=toxic11; plot C*p / haxis=axis1 vaxis=axis2; run; quit;
page 242 Figure 7.10 Delta-chi-squared d versus p-hat with symbols proportional to delta-B – large, high circles indicate influential, poorly fit X patterns.
proc logistic data=toxic descending; model close=lived educ contam hsc nodad / influence; ods output Influence=toxic13; run;
The LOGISTIC Procedure Model Information Data Set WORK.TOXIC Response Variable close Number of Response Levels 2 Number of Observations 153 Link Function Logit Optimization Technique Fisher's scoring Response Profile Ordered Total Value close Frequency 1 1 66 2 0 87 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 211.212 154.652 SC 214.242 172.835 -2 Log L 209.212 142.652 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 66.5591 5 <.0001 Score 56.2791 5 <.0001 Wald 36.3426 5 <.0001 The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 2.1822 1.3301 2.6915 0.1009 lived 1 -0.0396 0.0155 6.5589 0.0104 educ 1 -0.1967 0.0926 4.5092 0.0337 contam 1 1.2985 0.4766 7.4221 0.0064 hsc 1 2.2785 0.4904 21.5904 <.0001 nodad 1 -1.7308 0.7252 5.6952 0.0170 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits lived 0.961 0.932 0.991 educ 0.821 0.685 0.985 contam 3.664 1.440 9.325 hsc 9.762 3.734 25.523 nodad 0.177 0.043 0.734 Association of Predicted Probabilities and Observed Responses Percent Concordant 85.2 Somers' D 0.706 Percent Discordant 14.6 Gamma 0.707 Percent Tied 0.2 Tau-a 0.349 Pairs 5742 c 0.853 The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 1 15.0000 12.0000 0 0 0 1.4714 | | * | 2 15.0000 13.0000 0 1.0000 0 0.5196 | |* | 3 5.0000 16.0000 0 0 0 1.7884 | | * | 4 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 5 3.0000 18.0000 0 1.0000 0 0.6697 | |* | 6 13.0000 12.0000 1.0000 1.0000 0 0.2365 | * | 7 3.0000 12.0000 0 1.0000 0 0.3712 | |* | 8 3.0000 17.0000 1.0000 1.0000 1.0000 0.7534 | |* | 9 13.0000 14.0000 0 0 0 1.7216 | | * | 10 13.0000 12.0000 0 1.0000 0 0.4526 | |* | 11 3.0000 13.0000 1.0000 1.0000 0 0.2140 | * | 12 7.0000 12.0000 0 1.0000 0 0.4019 | |* | 13 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 14 5.0000 12.0000 0 1.0000 0 0.3863 | |* | 15 3.0000 13.0000 1.0000 1.0000 0 0.2140 | * | 16 11.0000 16.0000 1.0000 0 0 -0.9503 | *| | 17 4.0000 16.0000 0 0 0 -0.5704 | *| | 18 1.0000 12.0000 0 1.0000 0 0.3568 | |* | 19 55.0000 12.0000 0 0 0 -0.3075 | * | 20 49.0000 16.0000 1.0000 0 0 -0.4474 | *| | 21 10.0000 12.0000 1.0000 1.0000 0 0.2228 | * | 22 50.0000 12.0000 0 0 0 -0.3396 | *| | 23 4.0000 14.0000 0 0 0 1.4403 | | * | 24 6.0000 16.0000 0 0 1.0000 -0.2307 | * | 25 5.0000 14.0000 0 0 0 1.4691 | | * | 26 6.0000 13.0000 1.0000 1.0000 0 0.2271 | * | 27 32.0000 13.0000 1.0000 0 0 1.1880 | | * | 28 5.0000 12.0000 0 0 0 -0.8286 | *| | 29 21.0000 12.0000 0 0 0 -0.6034 | *| | 30 24.0000 12.0000 0 0 0 -0.5686 | *| | 31 24.0000 12.0000 0 0 1.0000 -0.2393 | * | 32 30.0000 13.0000 0 0 0 2.1856 | | * | 33 37.0000 12.0000 0 0 0 -0.4394 | *| | 34 7.0000 10.0000 1.0000 1.0000 0 0.1725 | * | 35 3.0000 20.0000 0 0 0 -0.3926 | *| | 36 35.0000 12.0000 0 0 0 -0.4572 | *| | 37 18.0000 16.0000 0 0 0 -0.4321 | *| | 38 15.0000 12.0000 0 0 0 1.4714 | | * | 39 16.0000 16.0000 0 0 0 -0.4496 | *| | 40 10.0000 8.0000 1.0000 0 1.0000 -0.8959 | *| | 41 4.0000 12.0000 1.0000 1.0000 0 0.1978 | * | 42 56.0000 14.0000 1.0000 1.0000 1.0000 -0.6234 | *| | 43 28.0000 12.0000 0 0 0 -0.5252 | *| | 44 51.0000 8.0000 1.0000 0 0 1.0590 | | * | 45 4.0000 12.0000 0 0 0 -0.8452 | *| | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 1 1.5180 | | * | 0.0177 | * | 2 0.6914 | | * | 0.0350 | * | 3 1.6939 | | * | 0.0269 | * | 4 0.3113 | |* | 0.0167 | * | 5 0.8608 | | * | 0.0720 | * | 6 0.3299 | |* | 0.0180 | * | 7 0.5082 | | * | 0.0307 | * | 8 0.9482 | | * | 0.1718 | * | 9 1.6596 | | * | 0.0152 | * | 10 0.6105 | | * | 0.0334 | * | 11 0.2993 | |* | 0.0159 | * | 12 0.5472 | | * | 0.0314 | * | 13 0.3113 | |* | 0.0167 | * | 14 0.5274 | | * | 0.0310 | * | 15 0.2993 | |* | 0.0159 | * | 16 -1.1344 | * | | 0.0629 | * | 17 -0.7505 | * | | 0.0280 | * | 18 0.4896 | | * | 0.0305 | * | 19 -0.4251 | *| | 0.0326 | * | 20 -0.6041 | * | | 0.0807 | * | 21 0.3113 | |* | 0.0167 | * | 22 -0.4672 | *| | 0.0306 | * | 23 1.4987 | | * | 0.0227 | * | 24 -0.3221 | *| | 0.0343 | * | 25 1.5166 | | * | 0.0215 | * | 26 0.3171 | |* | 0.0167 | * | 27 1.3268 | | * | 0.0582 | * | 28 -1.0225 | * | | 0.0286 | * | 29 -0.7880 | * | | 0.0161 | * | 30 -0.7485 | * | | 0.0165 | * | 31 -0.3337 | *| | 0.0274 | * | 32 1.8729 | | * | 0.0174 | * | 33 -0.5942 | * | | 0.0229 | * | 34 0.2421 | |* | 0.0144 | * | 35 -0.5354 | * | | 0.0521 | * | 36 -0.6161 | * | | 0.0217 | * | 37 -0.5852 | * | | 0.0210 | * | 38 1.5180 | | * | 0.0177 | * | 39 -0.6068 | * | | 0.0212 | * | 40 -1.0856 | * | | 0.1812 | *| 41 0.2771 | |* | 0.0149 | * | 42 -0.8103 | * | | 0.1739 | * | 43 -0.6980 | * | | 0.0178 | * | 44 1.2265 | | * | 0.1317 | * | 45 -1.0383 | * | | 0.0304 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 0.1028 | | * | -0.0293 | * | 2 0.0205 | * | -0.00590 | * | 3 -0.1057 | * | | -0.0591 | *| | 4 0.0101 | * | -0.00802 | * | 5 -0.0881 | *| | -0.0203 | * | 6 0.0102 | * | -0.00649 | * | 7 0.0339 | |* | -0.0304 | * | 8 -0.1303 | * | | -0.0807 | *| | 9 -0.0121 | * | -0.00935 | * | 10 0.0347 | |* | -0.0155 | * | 11 0.00772 | * | -0.0109 | * | 12 0.0347 | |* | -0.0260 | * | 13 0.0101 | * | -0.00802 | * | 14 0.0344 | |* | -0.0284 | * | 15 0.00772 | * | -0.0109 | * | 16 0.0953 | | * | 0.00749 | * | 17 0.0322 | |* | 0.0230 | * | 18 0.0334 | |* | -0.0319 | * | 19 0.0134 | * | -0.0516 | *| | 20 0.0854 | |* | -0.1040 | *| | 21 0.0101 | * | -0.00802 | * | 22 0.0120 | * | -0.0533 | *| | 23 0.0351 | |* | -0.1047 | *| | 24 0.0135 | * | 0.00635 | * | 25 0.0303 | |* | -0.0951 | *| | 26 0.00755 | * | -0.00989 | * | 27 -0.0476 | *| | 0.1363 | |* | 28 -0.0930 | * | | 0.0825 | |* | 29 -0.0280 | * | -0.0138 | * | 30 -0.0201 | * | -0.0242 | * | 31 0.00188 | * | -0.00201 | * | 32 -0.0447 | *| | 0.1856 | | * | 33 0.00262 | * | -0.0494 | *| | 34 0.0121 | * | -0.00803 | * | 35 0.0672 | |* | -0.00211 | * | 36 0.000172 | * | -0.0473 | * | 37 0.0372 | |* | -0.0202 | * | 38 0.1028 | | * | -0.0293 | * | 39 0.0372 | |* | -0.0163 | * | 40 -0.2277 | * | | 0.1818 | | * | 41 0.00977 | * | -0.00993 | * | 42 0.1437 | | * | -0.1846 | * | | 43 -0.0112 | * | -0.0350 | * | 44 0.1391 | | * | 0.2202 | | * | 45 -0.0986 | * | | 0.0913 | |* | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 -0.0658 | *| | -0.0737 | * | | 2 -0.0177 | * | -0.0262 | *| | 3 0.1764 | | * | -0.0920 | * | | 4 -0.0109 | * | 0.0177 | * | 5 0.1073 | | * | -0.0447 | *| | 6 -0.0114 | * | 0.0197 | * | 7 -0.0292 | *| | -0.0126 | * | 8 0.1407 | | * | 0.0970 | | * | 9 0.0612 | |* | -0.0872 | * | | 10 -0.0322 | *| | -0.0196 | * | 11 -0.00755 | * | 0.0165 | * | 12 -0.0307 | *| | -0.0151 | * | 13 -0.0109 | * | 0.0177 | * | 14 -0.0300 | *| | -0.0138 | * | 15 -0.00755 | * | 0.0165 | * | 16 -0.1151 | * | | -0.1787 | * | | 17 -0.0556 | *| | 0.0294 | |* | 18 -0.0284 | *| | -0.0115 | * | 19 -0.00969 | * | 0.0132 | * | 20 -0.0762 | *| | -0.0568 | *| | 21 -0.0109 | * | 0.0177 | * | 22 -0.00887 | * | 0.0152 | * | 23 0.0242 | * | -0.0728 | * | | 24 -0.0184 | * | 0.0128 | * | 25 0.0280 | |* | -0.0743 | * | | 26 -0.00771 | * | 0.0183 | * | 27 0.0348 | |* | 0.2159 | | * | 28 0.0608 | |* | 0.0400 | |* | 29 0.0174 | * | 0.0304 | |* | 30 0.0121 | * | 0.0286 | |* | 31 -0.00403 | * | 0.0135 | * | 32 0.0625 | |* | -0.1069 | * | | 33 -0.00284 | * | 0.0213 | * | 34 -0.0125 | * | 0.0112 | * | 35 -0.0825 | * | | 0.0194 | * | 36 -0.00124 | * | 0.0224 | * | 37 -0.0468 | *| | 0.0211 | * | 38 -0.0658 | *| | -0.0737 | * | | 39 -0.0483 | *| | 0.0222 | * | 40 0.2161 | | * | -0.1477 | * | | 41 -0.00984 | * | 0.0143 | * | 42 -0.1060 | * | | -0.0619 | *| | 43 0.00627 | * | 0.0263 | |* | 44 -0.1891 | * | | 0.2162 | | * | 45 0.0646 | |* | 0.0406 | |* | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 1 -0.0637 | *| | -0.0306 | *| | 2 0.0846 | | * | -0.0250 | *| | 3 -0.1144 | * | | 0.0242 | |* | 4 0.0190 | * | -0.00989 | * | 5 0.1053 | | * | -0.00686 | * | 6 0.0212 | * | -0.0113 | * | 7 0.0506 | |* | -0.0142 | * | 8 0.0862 | | * | 0.2650 | | * | 9 -0.0913 | * | | -0.00793 | * | 10 0.0703 | |* | -0.0222 | * | 11 0.0170 | * | -0.00805 | * | 12 0.0578 | |* | -0.0170 | * | 13 0.0190 | * | -0.00989 | * | 14 0.0541 | |* | -0.0155 | * | 15 0.0170 | * | -0.00805 | * | 16 0.0792 | | * | 0.0304 | |* | 17 0.0368 | |* | -0.00815 | * | 18 0.0472 | |* | -0.0129 | * | 19 0.00987 | * | 0.00860 | * | 20 0.0316 | |* | 0.0199 | * | 21 0.0190 | * | -0.00989 | * | 22 0.0115 | * | 0.00957 | * | 23 -0.0800 | * | | 0.000911 | * | 24 0.0143 | * | -0.0395 | *| | 25 -0.0813 | * | | 8.4E-6 | * | 26 0.0190 | * | -0.00922 | * | 27 -0.0757 | * | | -0.0832 | * | | 28 0.0363 | |* | 0.0130 | * | 29 0.0256 | |* | 0.0141 | * | 30 0.0238 | * | 0.0139 | * | 31 0.0123 | * | -0.0373 | *| | 32 -0.0955 | * | | -0.0405 | *| | 33 0.0169 | * | 0.0121 | * | 34 0.0125 | * | -0.00682 | * | 35 0.0288 | |* | -0.0134 | * | 36 0.0178 | * | 0.0124 | * | 37 0.0245 | |* | -0.00224 | * | 38 -0.0637 | *| | -0.0306 | *| | 39 0.0260 | |* | -0.00285 | * | 40 0.0885 | | * | -0.2952 | * | | 41 0.0152 | * | -0.00756 | * | 42 -0.0734 | * | | -0.1662 | * | | 43 0.0215 | * | 0.0134 | * | 44 -0.0344 | *| | -0.1437 | * | | 45 0.0371 | |* | 0.0127 | * | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 1 0.0396 | * | 0.0389 | * | 2 0.0101 |* | 0.00979 |* | 3 0.0909 | * | 0.0885 | * | 4 0.000859 |* | 0.000845 |* | 5 0.0375 | * | 0.0348 | * | 6 0.00104 |* | 0.00102 |* | 7 0.00450 |* | 0.00436 |* | 8 0.1422 | * | 0.1178 | * | 9 0.0466 | * | 0.0459 | * | 10 0.00733 |* | 0.00709 |* | 11 0.000751 |* | 0.000739 |* | 12 0.00540 |* | 0.00523 |* | 13 0.000859 |* | 0.000845 |* | 14 0.00492 |* | 0.00477 |* | 15 0.000751 |* | 0.000739 |* | 16 0.0647 | * | 0.0606 | * | 17 0.00962 |* | 0.00935 |* | 18 0.00413 |* | 0.00400 |* | 19 0.00330 |* | 0.00319 |* | 20 0.0191 |* | 0.0176 |* | 21 0.000859 |* | 0.000845 |* | 22 0.00375 |* | 0.00364 |* | 23 0.0494 | * | 0.0483 | * | 24 0.00196 |* | 0.00189 |* | 25 0.0484 | * | 0.0473 | * | 26 0.000892 |* | 0.000877 |* | 27 0.0927 | * | 0.0873 | * | 28 0.0208 | * | 0.0202 | * | 29 0.00607 |* | 0.00597 |* | 30 0.00551 |* | 0.00542 |* | 31 0.00166 |* | 0.00161 |* | 32 0.0859 | * | 0.0844 | * | 33 0.00464 |* | 0.00453 |* | 34 0.000441 |* | 0.000434 |* | 35 0.00894 |* | 0.00848 |* | 36 0.00473 |* | 0.00463 |* | 37 0.00409 |* | 0.00401 |* | 38 0.0396 | * | 0.0389 | * | 39 0.00448 |* | 0.00438 |* | 40 0.2170 | * | 0.1777 | * | 41 0.000601 |* | 0.000592 |* | 42 0.0991 | * | 0.0818 | * | 43 0.00510 |* | 0.00501 |* | 44 0.1959 | * | 0.1701 | * | 45 0.0231 | * | 0.0224 | * | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 1 2.3432 | * | 2.2040 | * | 2 0.4878 | * | 0.2798 |* | 3 2.9578 | * | 3.2867 | * | 4 0.0978 |* | 0.0505 |* | 5 0.7759 | * | 0.4833 |* | 6 0.1098 |* | 0.0569 |* | 7 0.2626 | * | 0.1422 |* | 8 1.0169 | * | 0.6854 |* | 9 2.8003 | * | 3.0097 | * | 10 0.3799 | * | 0.2120 |* | 11 0.0903 |* | 0.0465 |* | 12 0.3047 | * | 0.1667 |* | 13 0.0978 |* | 0.0505 |* | 14 0.2829 | * | 0.1540 |* | 15 0.0903 |* | 0.0465 |* | 16 1.3475 | * | 0.9636 | * | 17 0.5727 | * | 0.3347 |* | 18 0.2437 | * | 0.1313 |* | 19 0.1839 |* | 0.0978 |* | 20 0.3825 | * | 0.2177 |* | 21 0.0978 |* | 0.0505 |* | 22 0.2219 |* | 0.1190 |* | 23 2.2945 | * | 2.1226 | * | 24 0.1056 |* | 0.0551 |* | 25 2.3474 | * | 2.2056 | * | 26 0.1015 |* | 0.0525 |* | 27 1.8477 | * | 1.4987 | * | 28 1.0657 | * | 0.7069 |* | 29 0.6270 | * | 0.3701 |* | 30 0.5656 | * | 0.3287 |* | 31 0.1130 |* | 0.0589 |* | 32 3.5921 | * | 4.8613 | * | 33 0.3576 | * | 0.1976 |* | 34 0.0591 |* | 0.0302 |* | 35 0.2952 | * | 0.1626 |* | 36 0.3842 | * | 0.2136 |* | 37 0.3464 | * | 0.1908 |* | 38 2.3432 | * | 2.2040 | * | 39 0.3726 | * | 0.2065 |* | 40 1.3562 | * | 0.9803 | * | 41 0.0774 |* | 0.0397 |* | 42 0.7385 | * | 0.4705 |* | 43 0.4923 | * | 0.2809 |* | 44 1.6743 | * | 1.2916 | * | 45 1.1005 | * | 0.7368 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 46 29.0000 12.0000 1.0000 1.0000 0 0.3247 | * | 47 20.0000 12.0000 0 0 0 1.6247 | | * | 48 39.0000 14.0000 0 0 1.0000 -0.1460 | * | 49 27.0000 12.0000 0 0 0 -0.5357 | *| | 50 10.0000 12.0000 0 0 0 -0.7504 | *| | 51 20.0000 12.0000 0 0 1.0000 -0.2591 | * | 52 5.0000 14.0000 0 0 0 1.4691 | | * | 53 24.0000 12.0000 0 0 1.0000 -0.2393 | * | 54 12.0000 18.0000 0 0 0 -0.3998 | *| | 55 4.0000 12.0000 0 0 1.0000 -0.3557 | *| | 56 9.0000 8.0000 1.0000 0 1.0000 1.0943 | | * | 57 35.0000 12.0000 1.0000 1.0000 0 0.3658 | |* | 58 22.0000 12.0000 1.0000 1.0000 0 0.2827 | * | 59 40.0000 12.0000 1.0000 0 0 1.2618 | | * | 60 27.0000 12.0000 1.0000 1.0000 0 0.3121 | * | 61 65.0000 9.0000 0 0 1.0000 -0.1426 | * | 62 38.0000 12.0000 0 0 0 -0.4308 | *| | 63 54.0000 12.0000 0 0 1.0000 -0.1320 | * | 64 30.0000 9.0000 0 0 0 1.4749 | | * | 65 40.0000 12.0000 1.0000 1.0000 0 -2.4761 | * | | 66 29.0000 10.0000 0 1.0000 1.0000 1.2132 | | * | 67 3.0000 16.0000 0 1.0000 0 0.5501 | |* | 68 65.0000 12.0000 0 0 1.0000 -0.1062 | * | 69 15.0000 16.0000 1.0000 0 0 1.1392 | | * | 70 25.0000 14.0000 1.0000 1.0000 0 0.3652 | |* | 71 22.0000 16.0000 0 0 0 -0.3992 | *| | 72 5.0000 12.0000 0 1.0000 0 0.3863 | |* | 73 45.0000 13.0000 0 0 0 -0.3398 | *| | 74 6.0000 12.0000 0 1.0000 0 0.3940 | |* | 75 15.0000 14.0000 1.0000 0 0 0.9358 | |* | 76 36.0000 12.0000 1.0000 0 0 -0.8579 | *| | 77 20.0000 16.0000 0 0 0 -0.4153 | *| | 78 3.0000 12.0000 1.0000 1.0000 0 0.1940 | * | 79 13.0000 17.0000 1.0000 0 0 -0.8278 | *| | 80 42.0000 12.0000 0 0 0 -0.3979 | *| | 81 18.0000 14.0000 0 0 0 1.9009 | | * | 82 6.0000 12.0000 0 0 0 -0.8124 | *| | 83 4.0000 16.0000 0 0 0 1.7533 | | * | 84 30.0000 12.0000 0 1.0000 0 -1.5772 | * | | 85 8.0000 16.0000 1.0000 0 0 -1.0085 | * | | 86 36.0000 9.0000 0 0 0 -0.6020 | *| | 87 4.0000 12.0000 0 0 0 -0.8452 | *| | 88 35.0000 8.0000 0 0 1.0000 -0.2851 | * | 89 36.0000 13.0000 0 0 1.0000 -0.1710 | * | 90 5.0000 16.0000 0 0 0 -0.5592 | *| | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 46 0.4478 | |* | 0.0310 | * | 47 1.6074 | | * | 0.0162 | * | 48 -0.2054 | *| | 0.0142 | * | 49 -0.7104 | * | | 0.0174 | * | 50 -0.9452 | * | | 0.0217 | * | 51 -0.3604 | *| | 0.0315 | * | 52 1.5166 | | * | 0.0215 | * | 53 -0.3337 | *| | 0.0274 | * | 54 -0.5446 | * | | 0.0326 | * | 55 -0.4882 | *| | 0.0606 | * | 56 1.2548 | | * | 0.1846 | *| 57 0.5011 | | * | 0.0408 | * | 58 0.3921 | |* | 0.0236 | * | 59 1.3802 | | * | 0.0711 | * | 60 0.4312 | |* | 0.0285 | * | 61 -0.2006 | *| | 0.0177 | * | 62 -0.5835 | * | | 0.0236 | * | 63 -0.1859 | *| | 0.0132 | * | 64 1.5201 | | * | 0.0439 | * | 65 -1.9821 | * | | 0.0521 | * | 66 1.3453 | | * | 0.1431 | * | 67 0.7272 | | * | 0.0450 | * | 68 -0.1497 | * | 0.0108 | * | 69 1.2899 | | * | 0.0625 | * | 70 0.5004 | | * | 0.0339 | * | 71 -0.5438 | * | | 0.0211 | * | 72 0.5274 | | * | 0.0310 | * | 73 -0.4675 | *| | 0.0258 | * | 74 0.5372 | | * | 0.0311 | * | 75 1.1216 | | * | 0.0490 | * | 76 -1.0503 | * | | 0.0648 | * | 77 -0.5642 | * | | 0.0210 | * | 78 0.2718 | |* | 0.0146 | * | 79 -1.0217 | * | | 0.0735 | * | 80 -0.5422 | * | | 0.0261 | * | 81 1.7487 | | * | 0.0144 | * | 82 -1.0068 | * | | 0.0270 | * | 83 1.6761 | | * | 0.0280 | * | 84 -1.5806 | * | | 0.0531 | * | 85 -1.1846 | * | | 0.0639 | * | 86 -0.7864 | * | | 0.0450 | * | 87 -1.0383 | * | | 0.0304 | * | 88 -0.3954 | *| | 0.0430 | * | 89 -0.2401 | *| | 0.0170 | * | 90 -0.7376 | * | | 0.0269 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 0.00686 | * | 0.0125 | * | 47 0.0815 | |* | 0.0261 | * | 48 0.00686 | * | -0.00697 | * | 49 -0.0133 | * | -0.0326 | * | 50 -0.0681 | *| | 0.0440 | * | 51 0.000263 | * | 0.00168 | * | 52 0.0303 | |* | -0.0951 | *| | 53 0.00188 | * | -0.00201 | * | 54 0.0521 | |* | -0.0133 | * | 55 -0.0137 | * | 0.0327 | * | 56 0.2847 | | * | -0.2338 | * | | 57 0.00308 | * | 0.0271 | * | 58 0.00922 | * | 0.00144 | * | 59 -0.0309 | *| | 0.2068 | | * | 60 0.00772 | * | 0.00881 | * | 61 0.00143 | * | -0.0118 | * | 62 0.00373 | * | -0.0503 | *| | 63 0.00446 | * | -0.00869 | * | 64 0.2178 | | * | 0.0710 | |* | 65 0.0110 | * | -0.2700 | * | | 66 0.0988 | | * | 0.0262 | * | 67 -0.0208 | * | -0.0296 | * | 68 0.00381 | * | -0.00756 | * | 69 -0.1313 | * | | 0.0284 | * | 70 -0.00964 | * | 0.0154 | * | 71 0.0367 | |* | -0.0264 | * | 72 0.0344 | |* | -0.0284 | * | 73 0.0175 | * | -0.0481 | *| | 74 0.0346 | |* | -0.0272 | * | 75 -0.0194 | * | -0.00666 | * | 76 0.00772 | * | -0.1137 | *| | 77 0.0370 | |* | -0.0236 | * | 78 0.00967 | * | -0.0101 | * | 79 0.1283 | | * | -0.0204 | * | 80 0.00744 | * | -0.0528 | *| | 81 -0.0422 | *| | 0.0517 | |* | 82 -0.0877 | *| | 0.0741 | |* | 83 -0.0991 | * | | -0.0706 | *| | 84 -0.0534 | *| | -0.1319 | *| | 85 0.0894 | | * | 0.0330 | * | 86 -0.0722 | *| | -0.0535 | *| | 87 -0.0986 | * | | 0.0913 | |* | 88 -0.0190 | * | -0.00667 | * | 89 0.00613 | * | -0.00729 | * | 90 0.0331 | |* | 0.0185 | * | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 -0.0128 | * | 0.0343 | |* | 47 -0.0509 | *| | -0.0819 | * | | 48 -0.00707 | * | 0.00568 | * | 49 0.00762 | * | 0.0269 | |* | 50 0.0441 | |* | 0.0371 | |* | 51 -0.00338 | * | 0.0154 | * | 52 0.0280 | |* | -0.0743 | * | | 53 -0.00403 | * | 0.0135 | * | 54 -0.0635 | *| | 0.0193 | * | 55 0.00348 | * | 0.0264 | |* | 56 -0.2690 | * | | 0.1822 | | * | 57 -0.0123 | * | 0.0421 | |* | 58 -0.0126 | * | 0.0270 | |* | 59 0.00267 | * | 0.2279 | | * | 60 -0.0128 | * | 0.0320 | |* | 61 -0.00005 | * | 0.00544 | * | 62 -0.00357 | * | 0.0208 | * | 63 -0.00390 | * | 0.00474 | * | 64 -0.2122 | * | | -0.0753 | * | | 65 0.0677 | |* | -0.3057 | * | | 66 -0.1155 | * | | -0.1692 | * | | 67 0.0332 | |* | -0.0299 | *| | 68 -0.00316 | * | 0.00321 | * | 69 0.1492 | | * | 0.2101 | | * | 70 0.00420 | * | 0.0416 | |* | 71 -0.0437 | *| | 0.0190 | * | 72 -0.0300 | *| | -0.0138 | * | 73 -0.0160 | * | 0.0152 | * | 74 -0.0303 | *| | -0.0144 | * | 75 0.0306 | |* | 0.1766 | | * | 76 0.00737 | * | -0.1581 | * | | 77 -0.0453 | *| | 0.0200 | * | 78 -0.00965 | * | 0.0138 | * | 79 -0.1449 | * | | -0.1515 | * | | 80 -0.00597 | * | 0.0188 | * | 81 0.0842 | | * | -0.0954 | * | | 82 0.0572 | |* | 0.0394 | |* | 83 0.1709 | | * | -0.0904 | * | | 84 0.0731 | |* | 0.0973 | | * | 85 -0.1143 | * | | -0.1918 | * | | 86 0.0740 | |* | 0.0310 | |* | 87 0.0646 | |* | 0.0406 | |* | 88 0.0190 | * | 0.0182 | * | 89 -0.00653 | * | 0.00751 | * | 90 -0.0551 | *| | 0.0288 | |* | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 46 0.0379 | |* | -0.0227 | * | 47 -0.0692 | *| | -0.0373 | *| | 48 0.00547 | * | -0.0144 | * | 49 0.0221 | * | 0.0135 | * | 50 0.0328 | |* | 0.0138 | * | 51 0.0143 | * | -0.0438 | *| | 52 -0.0813 | * | | 8.4E-6 | * | 53 0.0123 | * | -0.0373 | *| | 54 0.0255 | |* | -0.00752 | * | 55 0.0254 | |* | -0.0832 | * | | 56 -0.1085 | * | | 0.3636 | | *| 57 0.0470 | |* | -0.0293 | *| | 58 0.0294 | |* | -0.0168 | * | 59 -0.0732 | *| | -0.1057 | * | | 60 0.0353 | |* | -0.0208 | * | 61 0.00398 | * | -0.0116 | * | 62 0.0164 | * | 0.0119 | * | 63 0.00409 | * | -0.0109 | * | 64 -0.0387 | *| | -0.0788 | * | | 65 -0.3444 | * | | 0.2221 | | * | 66 0.2058 | | * | 0.3801 | | *| 67 0.0840 | | * | -0.0125 | * | 68 0.00272 | * | -0.00694 | * | 69 -0.0953 | * | | -0.0393 | *| | 70 0.0435 | |* | -0.0237 | * | 71 0.0217 | * | -0.00123 | * | 72 0.0541 | |* | -0.0155 | * | 73 0.0128 | * | 0.00720 | * | 74 0.0559 | |* | -0.0163 | * | 75 -0.0631 | *| | -0.0472 | *| | 76 0.0493 | |* | 0.0701 | |* | 77 0.0230 | * | -0.00171 | * | 78 0.0146 | * | -0.00723 | * | 79 0.0756 | | * | 0.0207 | * | 80 0.0146 | * | 0.0111 | * | 81 -0.0974 | * | | -0.0135 | * | 82 0.0356 | |* | 0.0132 | * | 83 -0.1131 | * | | 0.0250 | |* | 84 -0.2951 | * | | 0.1120 | | * | 85 0.0834 | | * | 0.0302 | |* | 86 0.0158 | * | 0.0328 | |* | 87 0.0371 | |* | 0.0127 | * | 88 0.0131 | * | -0.0466 | *| | 89 0.00700 | * | -0.0193 | * | 90 0.0358 | |* | -0.00758 | * | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 46 0.00349 |* | 0.00338 |* | 47 0.0441 | * | 0.0434 | * | 48 0.000311 |* | 0.000307 |* | 49 0.00518 |* | 0.00509 |* | 50 0.0128 |* | 0.0125 |* | 51 0.00225 |* | 0.00218 |* | 52 0.0484 | * | 0.0473 | * | 53 0.00166 |* | 0.00161 |* | 54 0.00558 |* | 0.00539 |* | 55 0.00870 |* | 0.00817 |* | 56 0.3324 | * | 0.2711 | * | 57 0.00593 |* | 0.00569 |* | 58 0.00197 |* | 0.00193 |* | 59 0.1313 | * | 0.1219 | * | 60 0.00295 |* | 0.00286 |* | 61 0.000372 |* | 0.000366 |* | 62 0.00459 |* | 0.00448 |* | 63 0.000236 |* | 0.000233 |* | 64 0.1045 | * | 0.0999 | * | 65 0.3555 | * | 0.3370 | * | 66 0.2869 | * | 0.2458 | * | 67 0.0149 |* | 0.0142 |* | 68 0.000125 |* | 0.000123 |* | 69 0.0922 | * | 0.0865 | * | 70 0.00484 |* | 0.00468 |* | 71 0.00351 |* | 0.00343 |* | 72 0.00492 |* | 0.00477 |* | 73 0.00314 |* | 0.00305 |* | 74 0.00515 |* | 0.00499 |* | 75 0.0474 | * | 0.0451 | * | 76 0.0545 | * | 0.0510 | * | 77 0.00378 |* | 0.00370 |* | 78 0.000567 |* | 0.000559 |* | 79 0.0587 | * | 0.0544 | * | 80 0.00436 |* | 0.00425 |* | 81 0.0536 | * | 0.0528 | * | 82 0.0188 |* | 0.0183 |* | 83 0.0909 | * | 0.0884 | * | 84 0.1474 | * | 0.1396 | * | 85 0.0742 | * | 0.0695 | * | 86 0.0179 |* | 0.0171 |* | 87 0.0231 | * | 0.0224 | * | 88 0.00381 |* | 0.00365 |* | 89 0.000514 |* | 0.000505 |* | 90 0.00889 |* | 0.00865 |* | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 46 0.2039 |* | 0.1088 |* | 47 2.6272 | * | 2.6831 | * | 48 0.0425 |* | 0.0216 |* | 49 0.5097 | * | 0.2921 |* | 50 0.9059 | * | 0.5756 |* | 51 0.1321 |* | 0.0693 |* | 52 2.3474 | * | 2.2056 | * | 53 0.1130 |* | 0.0589 |* | 54 0.3020 | * | 0.1653 |* | 55 0.2465 | * | 0.1347 |* | 56 1.8457 | * | 1.4685 | * | 57 0.2568 | * | 0.1395 |* | 58 0.1557 |* | 0.0818 |* | 59 2.0270 | * | 1.7142 | * | 60 0.1888 |* | 0.1003 |* | 61 0.0406 |* | 0.0207 |* | 62 0.3449 | * | 0.1900 |* | 63 0.0348 |* | 0.0177 |* | 64 2.4107 | * | 2.2752 | * | 65 4.2658 | * | 6.4679 | * | 66 2.0557 | * | 1.7176 | * | 67 0.5431 | * | 0.3169 |* | 68 0.0225 |* | 0.0114 |* | 69 1.7503 | * | 1.3842 | * | 70 0.2550 | * | 0.1380 |* | 71 0.2992 | * | 0.1628 |* | 72 0.2829 | * | 0.1540 |* | 73 0.2217 |* | 0.1186 |* | 74 0.2936 | * | 0.1602 |* | 75 1.3031 | * | 0.9208 | * | 76 1.1541 | * | 0.7870 |* | 77 0.3220 | * | 0.1762 |* | 78 0.0744 |* | 0.0382 |* | 79 1.0982 | * | 0.7397 |* | 80 0.2982 | * | 0.1626 |* | 81 3.1109 | * | 3.6664 | * | 82 1.0319 | * | 0.6783 |* | 83 2.8976 | * | 3.1623 | * | 84 2.6380 | * | 2.6272 | * | 85 1.4728 | * | 1.0865 | * | 86 0.6355 | * | 0.3795 |* | 87 1.1005 | * | 0.7368 |* | 88 0.1600 |* | 0.0850 |* | 89 0.0581 |* | 0.0297 |* | 90 0.5528 | * | 0.3213 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 91 19.0000 16.0000 0 1.0000 1.0000 -0.5571 | *| | 92 18.0000 15.0000 0 0 0 -0.4768 | *| | 93 81.0000 6.0000 0 0 1.0000 -0.1395 | * | 94 6.0000 18.0000 0 1.0000 0 -1.4070 | * | | 95 2.0000 14.0000 0 1.0000 0 0.4431 | |* | 96 1.0000 12.0000 1.0000 1.0000 0 -5.3644 |* | | 97 21.0000 12.0000 1.0000 1.0000 1.0000 0.6584 | |* | 98 21.0000 12.0000 1.0000 1.0000 0 0.2771 | * | 99 68.0000 12.0000 0 0 0 4.2075 | | * | 100 41.0000 12.0000 0 0 0 -0.4059 | *| | 101 34.0000 12.0000 0 0 1.0000 -0.1963 | * | 102 9.0000 12.0000 1.0000 1.0000 0 0.2184 | * | 103 9.0000 12.0000 1.0000 1.0000 0 0.2184 | * | 104 35.0000 15.0000 0 1.0000 0 -1.0635 | * | | 105 6.0000 7.0000 0 0 0 -1.3282 | * | | 106 14.0000 16.0000 0 0 0 -0.4678 | *| | 107 6.0000 16.0000 0 1.0000 0 -1.7128 | * | | 108 20.0000 8.0000 0 0 0 -0.9121 | *| | 109 21.0000 9.0000 0 0 0 1.2339 | | * | 110 19.0000 12.0000 0 0 0 -0.6278 | *| | 111 12.0000 12.0000 0 1.0000 0 0.4438 | |* | 112 10.0000 12.0000 0 0 0 1.3326 | | * | 113 9.0000 12.0000 0 0 0 -0.7655 | *| | 114 8.0000 15.0000 1.0000 0 0 -1.1127 | * | | 115 12.0000 16.0000 0 0 0 -0.4867 | *| | 116 20.0000 12.0000 0 0 0 -0.6155 | *| | 117 17.0000 12.0000 0 0 0 -0.6532 | *| | 118 6.0000 14.0000 1.0000 0 0 0.7829 | |* | 119 13.0000 15.0000 0 0 0 -0.5265 | *| | 120 55.0000 12.0000 0 1.0000 0 -0.9609 | *| | 121 2.0000 12.0000 0 0 0 -0.8794 | *| | 122 53.0000 12.0000 0 0 0 -0.3200 | * | 123 31.0000 13.0000 0 0 1.0000 -0.1888 | * | 124 20.0000 12.0000 0 0 0 -0.6155 | *| | 125 5.0000 14.0000 0 1.0000 0 0.4702 | |* | 126 24.0000 12.0000 0 0 0 -0.5686 | *| | 127 65.0000 9.0000 1.0000 0 1.0000 -0.2729 | * | 128 21.0000 12.0000 0 0 1.0000 -0.2540 | * | 129 28.0000 14.0000 0 0 0 -0.4315 | *| | 130 1.0000 15.0000 1.0000 0 0 0.7823 | |* | 131 1.0000 15.0000 0 0 0 -0.6679 | *| | 132 15.0000 15.0000 1.0000 0 0 1.0325 | | * | 133 5.0000 12.0000 0 0 0 -0.8286 | *| | 134 1.0000 16.0000 0 1.0000 0 0.5288 | |* | 135 30.0000 10.0000 0 1.0000 0 0.5208 | |* | The LOGISTIC Procedure Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 91 -0.7353 | * | | 0.1219 | * | 92 -0.6401 | * | | 0.0171 | * | 93 -0.1963 | *| | 0.0240 | * | 94 -1.4777 | * | | 0.0743 | * | 95 0.5987 | | * | 0.0331 | * | 96 -2.6053 |* | | 0.0142 | * | 97 0.8487 | | * | 0.1161 | * | 98 0.3847 | |* | 0.0228 | * | 99 2.4202 | | * | 0.0347 | * | 100 -0.5523 | * | | 0.0255 | * | 101 -0.2750 | *| | 0.0203 | * | 102 0.3053 | |* | 0.0164 | * | 103 0.3053 | |* | 0.0164 | * | 104 -1.2301 | * | | 0.0823 | * | 105 -1.4260 | * | | 0.1055 | * | 106 -0.6291 | * | | 0.0216 | * | 107 -1.6550 | * | | 0.0461 | * | 108 -1.1003 | * | | 0.0668 | * | 109 1.3603 | | * | 0.0467 | * | 110 -0.8152 | * | | 0.0163 | * | 111 0.5996 | | * | 0.0330 | * | 112 1.4289 | | * | 0.0217 | * | 113 -0.9604 | * | | 0.0229 | * | 114 -1.2694 | * | | 0.0556 | * | 115 -0.6521 | * | | 0.0223 | * | 116 -0.8015 | * | | 0.0162 | * | 117 -0.8430 | * | | 0.0168 | * | 118 0.9778 | | * | 0.0518 | * | 119 -0.6995 | * | | 0.0177 | * | 120 -1.1437 | * | | 0.1361 | * | 121 -1.0704 | * | | 0.0342 | * | 122 -0.4415 | *| | 0.0319 | * | 123 -0.2647 | *| | 0.0194 | * | 124 -0.8015 | * | | 0.0162 | * | 125 0.6321 | | * | 0.0334 | * | 126 -0.7485 | * | | 0.0165 | * | 127 -0.3791 | *| | 0.0565 | * | 128 -0.3536 | *| | 0.0304 | * | 129 -0.5843 | * | | 0.0171 | * | 130 0.9772 | | * | 0.0604 | * | 131 -0.8589 | * | | 0.0282 | * | 132 1.2047 | | * | 0.0542 | * | 133 -1.0225 | * | | 0.0286 | * | 134 0.7022 | | * | 0.0445 | * | 135 0.6928 | | * | 0.0554 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 0.0860 | |* | -0.0175 | * | 92 0.0268 | * | -0.0180 | * | 93 -0.00153 | * | -0.0144 | * | 94 0.2055 | | * | 0.0103 | * | 95 0.0170 | * | -0.0335 | * | 96 -0.2723 | * | | 0.3000 | | * | 97 0.00499 | * | -0.0197 | * | 98 0.00942 | * | 0.000259 | * | 99 -0.2414 | * | | 0.7633 | | *| 100 0.00661 | * | -0.0523 | *| | 101 0.00409 | * | -0.00723 | * | 102 0.0101 | * | -0.00844 | * | 103 0.0101 | * | -0.00844 | * | 104 0.1354 | | * | -0.1987 | * | | 105 -0.4715 |* | | 0.2377 | | * | 106 0.0371 | |* | -0.0117 | * | 107 0.0843 | |* | 0.0587 | |* | 108 -0.2275 | * | | 0.0419 | * | 109 0.2348 | | * | -0.0255 | * | 110 -0.0339 | *| | -0.00571 | * | 111 0.0348 | |* | -0.0176 | * | 112 0.1208 | | * | -0.0781 | *| | 113 -0.0727 | *| | 0.0510 | |* | 114 0.0449 | |* | 0.0536 | |* | 115 0.0366 | |* | -0.00645 | * | 116 -0.0309 | *| | -0.00987 | * | 117 -0.0404 | *| | 0.00337 | * | 118 0.0110 | * | -0.0613 | *| | 119 0.0233 | * | -0.00398 | * | 120 0.0639 | |* | -0.3123 | * | | 121 -0.1103 | * | | 0.1099 | |* | 122 0.0129 | * | -0.0524 | *| | 123 0.00614 | * | -0.00613 | * | 124 -0.0309 | *| | -0.00987 | * | 125 0.0146 | * | -0.0283 | * | 126 -0.0201 | * | -0.0242 | * | 127 0.00583 | * | -0.0402 | * | 128 0.000717 | * | 0.000650 | * | 129 0.0204 | * | -0.0351 | * | 130 -0.00998 | * | -0.0808 | *| | 131 0.00510 | * | 0.0532 | |* | 132 -0.0702 | *| | 0.00915 | * | 133 -0.0930 | * | | 0.0825 | |* | 134 -0.0162 | * | -0.0349 | * | 135 0.0563 | |* | 0.0258 | * | The LOGISTIC Procedure Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 -0.0914 | * | | 0.0718 | | * | 92 -0.0374 | *| | 0.0237 | |* | 93 0.00379 | * | 0.00525 | * | 94 -0.2418 | * | | 0.0984 | | * | 95 -0.00914 | * | -0.0188 | * | 96 0.2671 | | * | -0.3704 |* | | 97 -0.0171 | * | 0.0788 | | * | 98 -0.0125 | * | 0.0260 | |* | 99 0.1711 | | * | -0.1582 | * | | 100 -0.00544 | * | 0.0193 | * | 101 -0.00466 | * | 0.00955 | * | 102 -0.0107 | * | 0.0171 | * | 103 -0.0107 | * | 0.0171 | * | 104 -0.1192 | * | | 0.0873 | | * | 105 0.4304 | | *| 0.0492 | |* | 106 -0.0497 | *| | 0.0233 | |* | 107 -0.1186 | * | | 0.0986 | | * | 108 0.2139 | | * | 0.0433 | |* | 109 -0.2164 | * | | -0.0605 | *| | 110 0.0213 | * | 0.0316 | |* | 111 -0.0320 | *| | -0.0188 | * | 112 -0.0783 | *| | -0.0658 | *| | 113 0.0472 | |* | 0.0377 | |* | 114 -0.0700 | *| | -0.2118 | * | | 115 -0.0511 | *| | 0.0244 | |* | 116 0.0193 | * | 0.0310 | |* | 117 0.0256 | * | 0.0328 | |* | 118 0.00672 | * | 0.1479 | | * | 119 -0.0383 | *| | 0.0266 | |* | 120 -0.0166 | * | 0.0863 | | * | 121 0.0724 | |* | 0.0417 | |* | 122 -0.00943 | * | 0.0140 | * | 123 -0.00704 | * | 0.00893 | * | 124 0.0193 | * | 0.0310 | |* | 125 -0.00724 | * | -0.0214 | * | 126 0.0121 | * | 0.0286 | |* | 127 0.00190 | * | -0.0153 | * | 128 -0.00357 | * | 0.0149 | * | 129 -0.0250 | * | 0.0208 | * | 130 0.0339 | |* | 0.1490 | | * | 131 -0.0357 | *| | 0.0342 | |* | 132 0.0846 | | * | 0.1932 | | * | 133 0.0608 | |* | 0.0400 | |* | 134 0.0289 | |* | -0.0276 | *| | 135 -0.0638 | *| | -0.0267 | *| | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 91 -0.0571 | *| | -0.1761 | * | | 92 0.0259 | |* | 0.000285 | * | 93 0.00312 | * | -0.00982 | * | 94 -0.2254 | * | | 0.0176 | * | 95 0.0637 | |* | -0.0138 | * | 96 -0.3904 |* | | 0.1900 | | * | 97 0.0899 | | * | 0.1729 | | * | 98 0.0284 | |* | -0.0161 | * | 99 -0.1144 | * | | -0.1111 | * | | 100 0.0151 | * | 0.0113 | * | 101 0.00857 | * | -0.0249 | *| | 102 0.0183 | * | -0.00946 | * | 103 0.0183 | * | -0.00946 | * | 104 -0.1994 | * | | 0.0629 | |* | 105 0.00917 | * | 0.0782 | | * | 106 0.0276 | |* | -0.00352 | * | 107 -0.2687 | * | | 0.0433 | |* | 108 0.0167 | * | 0.0547 | |* | 109 -0.0315 | *| | -0.0622 | *| | 110 0.0268 | |* | 0.0141 | * | 111 0.0681 | |* | -0.0213 | * | 112 -0.0582 | *| | -0.0245 | *| | 113 0.0335 | |* | 0.0137 | * | 114 0.0820 | | * | 0.0419 | |* | 115 0.0293 | |* | -0.00427 | * | 116 0.0262 | |* | 0.0141 | * | 117 0.0281 | |* | 0.0142 | * | 118 -0.0498 | *| | -0.0338 | *| | 119 0.0298 | |* | -0.00111 | * | 120 -0.2111 | * | | 0.1008 | | * | 121 0.0385 | |* | 0.0122 | * | 122 0.0105 | * | 0.00899 | * | 123 0.00841 | * | -0.0237 | * | 124 0.0262 | |* | 0.0141 | * | 125 0.0700 | |* | -0.0159 | * | 126 0.0238 | * | 0.0139 | * | 127 0.0150 | * | -0.0357 | *| | 128 0.0138 | * | -0.0421 | *| | 129 0.0203 | * | 0.00480 | * | 130 -0.0552 | *| | -0.0252 | *| | 131 0.0411 | |* | -0.00657 | * | 132 -0.0782 | * | | -0.0440 | *| | 133 0.0363 | |* | 0.0130 | * | 134 0.0791 | | * | -0.0112 | * | 135 0.0952 | | * | -0.0406 | *| | The LOGISTIC Procedure Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 91 0.0490 | * | 0.0431 | * | 92 0.00402 |* | 0.00395 |* | 93 0.000490 |* | 0.000479 |* | 94 0.1717 | * | 0.1590 | * | 95 0.00696 |* | 0.00673 |* | 96 0.4201 | * | 0.4142 | * | 97 0.0644 | * | 0.0569 | * | 98 0.00183 |* | 0.00179 |* | 99 0.6595 | *| 0.6366 | *| 100 0.00442 |* | 0.00431 |* | 101 0.000817 |* | 0.000800 |* | 102 0.000808 |* | 0.000794 |* | 103 0.000808 |* | 0.000794 |* | 104 0.1105 | * | 0.1014 | * | 105 0.2326 | * | 0.2081 | * | 106 0.00494 |* | 0.00483 |* | 107 0.1485 | * | 0.1416 | * | 108 0.0638 | * | 0.0596 | * | 109 0.0783 | * | 0.0746 | * | 110 0.00663 |* | 0.00652 |* | 111 0.00694 |* | 0.00671 |* | 112 0.0403 | * | 0.0394 | * | 113 0.0140 |* | 0.0137 |* | 114 0.0772 | * | 0.0729 | * | 115 0.00551 |* | 0.00539 |* | 116 0.00633 |* | 0.00623 |* | 117 0.00740 |* | 0.00728 |* | 118 0.0353 | * | 0.0335 | * | 119 0.00509 |* | 0.00500 |* | 120 0.1683 | * | 0.1454 | * | 121 0.0284 | * | 0.0274 | * | 122 0.00348 |* | 0.00337 |* | 123 0.000718 |* | 0.000704 |* | 124 0.00633 |* | 0.00623 |* | 125 0.00791 |* | 0.00765 |* | 126 0.00551 |* | 0.00542 |* | 127 0.00473 |* | 0.00446 |* | 128 0.00208 |* | 0.00202 |* | 129 0.00329 |* | 0.00323 |* | 130 0.0419 | * | 0.0394 | * | 131 0.0133 |* | 0.0129 |* | 132 0.0645 | * | 0.0610 | * | 133 0.0208 | * | 0.0202 | * | 134 0.0136 |* | 0.0130 |* | 135 0.0168 |* | 0.0159 |* | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 91 0.5837 | * | 0.3535 |* | 92 0.4136 | * | 0.2313 |* | 93 0.0390 |* | 0.0199 |* | 94 2.3426 | * | 2.1386 | * | 95 0.3652 | * | 0.2030 |* | 96 7.2016 | *| 29.1911 | *| 97 0.7772 | * | 0.4904 |* | 98 0.1498 |* | 0.0786 |* | 99 6.4939 | * | 18.3396 | * | 100 0.3093 | * | 0.1691 |* | 101 0.0764 |* | 0.0393 |* | 102 0.0940 |* | 0.0485 |* | 103 0.0940 |* | 0.0485 |* | 104 1.6146 | * | 1.2324 | * | 105 2.2416 | * | 1.9722 | * | 106 0.4006 | * | 0.2237 |* | 107 2.8807 | * | 3.0752 | * | 108 1.2703 | * | 0.8915 |* | 109 1.9251 | * | 1.5971 | * | 110 0.6711 | * | 0.4007 |* | 111 0.3662 | * | 0.2036 |* | 112 2.0812 | * | 1.8151 | * | 113 0.9360 | * | 0.5996 |* | 114 1.6842 | * | 1.3110 | * | 115 0.4306 | * | 0.2423 |* | 116 0.6487 | * | 0.3851 |* | 117 0.7180 | * | 0.4340 |* | 118 0.9896 | * | 0.6464 |* | 119 0.4943 | * | 0.2822 |* | 120 1.4535 | * | 1.0687 | * | 121 1.1731 | * | 0.8007 |* | 122 0.1983 |* | 0.1058 |* | 123 0.0707 |* | 0.0363 |* | 124 0.6487 | * | 0.3851 |* | 125 0.4071 | * | 0.2287 |* | 126 0.5656 | * | 0.3287 |* | 127 0.1482 |* | 0.0790 |* | 128 0.1270 |* | 0.0665 |* | 129 0.3447 | * | 0.1894 |* | 130 0.9942 | * | 0.6513 |* | 131 0.7506 | * | 0.4590 |* | 132 1.5123 | * | 1.1271 | * | 133 1.0657 | * | 0.7069 |* | 134 0.5061 | * | 0.2926 |* | 135 0.4959 | * | 0.2872 |* | The LOGISTIC Procedure Regression Diagnostics Pearson Residual Covariates Case (1 unit = 0.67) Number lived educ contam hsc nodad Value -8 -4 0 2 4 6 8 136 11.0000 12.0000 0 0 0 1.3592 | | * | 137 5.0000 16.0000 0 1.0000 0 0.5724 | |* | 138 4.0000 12.0000 0 0 0 -0.8452 | *| | 139 5.0000 16.0000 0 1.0000 0 0.5724 | |* | 140 13.0000 12.0000 0 0 0 -0.7071 | *| | 141 17.0000 12.0000 0 0 0 -0.6532 | *| | 142 2.0000 13.0000 1.0000 0 0 0.6555 | |* | 143 5.0000 16.0000 0 0 0 -0.5592 | *| | 144 1.0000 16.0000 0 0 0 1.6520 | | * | 145 30.0000 12.0000 0 0 0 -0.5048 | *| | 146 1.0000 12.0000 1.0000 0 0 -1.7169 | * | | 147 50.0000 8.0000 0 0 1.0000 -0.2118 | * | 148 2.0000 12.0000 1.0000 0 0 -1.6832 | * | | 149 2.0000 15.0000 0 0 0 -0.6547 | *| | 150 12.0000 18.0000 0 0 0 -0.3998 | *| | 151 7.0000 20.0000 0 0 1.0000 -0.1526 | * | 152 26.0000 12.0000 0 0 1.0000 -0.2300 | * | 153 22.0000 12.0000 0 0 0 1.6904 | | * | Regression Diagnostics Deviance Residual Hat Matrix Diagonal Case (1 unit = 0.33) (1 unit = 0.01) Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16 136 1.4467 | | * | 0.0207 | * | 137 0.7529 | | * | 0.0456 | * | 138 -1.0383 | * | | 0.0304 | * | 139 0.7529 | | * | 0.0456 | * | 140 -0.9005 | * | | 0.0189 | * | 141 -0.8430 | * | | 0.0168 | * | 142 0.8455 | | * | 0.0530 | * | 143 -0.7376 | * | | 0.0269 | * | 144 1.6225 | | * | 0.0317 | * | 145 -0.6738 | * | | 0.0188 | * | 146 -1.6572 | * | | 0.0543 | * | 147 -0.2963 | *| | 0.0292 | * | 148 -1.6393 | * | | 0.0537 | * | 149 -0.8447 | * | | 0.0267 | * | 150 -0.5446 | * | | 0.0326 | * | 151 -0.2146 | *| | 0.0248 | * | 152 -0.3211 | *| | 0.0257 | * | 153 1.6432 | | * | 0.0162 | * | The LOGISTIC Procedure Regression Diagnostics Intercept lived Case DfBeta (1 unit = 0.06) DfBeta (1 unit = 0.1) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 0.1175 | | * | -0.0689 | *| | 137 -0.0260 | * | -0.0234 | * | 138 -0.0986 | * | | 0.0913 | |* | 139 -0.0260 | * | -0.0234 | * | 140 -0.0552 | *| | 0.0248 | * | 141 -0.0404 | *| | 0.00337 | * | 142 0.0464 | |* | -0.0778 | *| | 143 0.0331 | |* | 0.0185 | * | 144 -0.0796 | *| | -0.1038 | *| | 145 -0.00749 | * | -0.0394 | * | 146 -0.1919 | * | | 0.2298 | | * | 147 -0.00575 | * | -0.0140 | * | 148 -0.1840 | * | | 0.2152 | | * | 149 0.00725 | * | 0.0469 | * | 150 0.0521 | |* | -0.0133 | * | 151 0.0145 | * | -0.00037 | * | 152 0.00251 | * | -0.00345 | * | 153 0.0720 | |* | 0.0499 | |* | Regression Diagnostics educ contam Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 -0.0760 | *| | -0.0674 | *| | 137 0.0379 | |* | -0.0323 | *| | 138 0.0646 | |* | 0.0406 | |* | 139 0.0379 | |* | -0.0323 | *| | 140 0.0355 | |* | 0.0353 | |* | 141 0.0256 | * | 0.0328 | |* | 142 -0.0305 | *| | 0.1202 | | * | 143 -0.0551 | *| | 0.0288 | |* | 144 0.1549 | | * | -0.0856 | * | | 145 0.00380 | * | 0.0252 | |* | 146 0.1530 | | * | -0.3043 | * | | 147 0.00735 | * | 0.0109 | * | 148 0.1474 | | * | -0.3002 | * | | 149 -0.0362 | *| | 0.0335 | |* | 150 -0.0635 | *| | 0.0193 | * | 151 -0.0170 | * | 0.00626 | * | 152 -0.00426 | * | 0.0126 | * | 153 -0.0444 | *| | -0.0852 | * | | The LOGISTIC Procedure Regression Diagnostics hsc nodad Case DfBeta (1 unit = 0.05) DfBeta (1 unit = 0.05) Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8 136 -0.0593 | *| | -0.0257 | *| | 137 0.0890 | | * | -0.0140 | * | 138 0.0371 | |* | 0.0127 | * | 139 0.0890 | | * | -0.0140 | * | 140 0.0307 | |* | 0.0141 | * | 141 0.0281 | |* | 0.0142 | * | 142 -0.0341 | *| | -0.0300 | *| | 143 0.0358 | |* | -0.00758 | * | 144 -0.1090 | * | | 0.0273 | |* | 145 0.0204 | * | 0.0132 | * | 146 0.0727 | |* | 0.0859 | | * | 147 0.00772 | * | -0.0254 | *| | 148 0.0723 | |* | 0.0860 | | * | 149 0.0400 | |* | -0.00598 | * | 150 0.0255 | |* | -0.00752 | * | 151 0.00776 | * | -0.0190 | * | 152 0.0115 | * | -0.0344 | *| | 153 -0.0714 | *| | -0.0400 | *| | Regression Diagnostics Confidence Interval Displacement C Confidence Interval Displacement CBar Case (1 unit = 0.04) (1 unit = 0.04) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 136 0.0398 | * | 0.0390 | * | 137 0.0164 |* | 0.0157 |* | 138 0.0231 | * | 0.0224 | * | 139 0.0164 |* | 0.0157 |* | 140 0.00984 |* | 0.00965 |* | 141 0.00740 |* | 0.00728 |* | 142 0.0254 | * | 0.0240 | * | 143 0.00889 |* | 0.00865 |* | 144 0.0923 | * | 0.0893 | * | 145 0.00497 |* | 0.00488 |* | 146 0.1790 | * | 0.1693 | * | 147 0.00139 |* | 0.00135 |* | 148 0.1698 | * | 0.1607 | * | 149 0.0121 |* | 0.0118 |* | 150 0.00558 |* | 0.00539 |* | 151 0.000607 |* | 0.000592 |* | 152 0.00143 |* | 0.00139 |* | 153 0.0478 | * | 0.0470 | * | The LOGISTIC Procedure Regression Diagnostics Delta Deviance Delta Chi-Square Case (1 unit = 0.45) (1 unit = 1.82) Number Value 0 2 4 6 8 12 16 Value 0 2 4 6 8 12 16 136 2.1319 | * | 1.8865 | * | 137 0.5825 | * | 0.3433 |* | 138 1.1005 | * | 0.7368 |* | 139 0.5825 | * | 0.3433 |* | 140 0.8206 | * | 0.5097 |* | 141 0.7180 | * | 0.4340 |* | 142 0.7389 | * | 0.4537 |* | 143 0.5528 | * | 0.3213 |* | 144 2.7217 | * | 2.8186 | * | 145 0.4589 | * | 0.2597 |* | 146 2.9156 | * | 3.1172 | * | 147 0.0891 |* | 0.0462 |* | 148 2.8481 | * | 2.9940 | * | 149 0.7253 | * | 0.4405 |* | 150 0.3020 | * | 0.1653 |* | 151 0.0467 |* | 0.0239 |* | 152 0.1045 |* | 0.0543 |* | 153 2.7471 | * | 2.9046 | * |
Below is the rest of the code for Figure 7.10.
data toxic14; set toxic13; CaseNum=_n_; run; data toxic16; set toxic7; CaseNum=_n_; run; proc sort data=toxic16; by CaseNum; proc sort data=toxic14; by CaseNum; run; data toxic15; merge toxic14 toxic16; by CaseNum; run; symbol1 v=circle i=none; axis1 order=(0 to 1 by .2); axis2 order=(0 to 8 by 1); proc gplot data=toxic15; bubble DifDev*p=C / haxis=axis1 vaxis=axis2 hminor=1 vminor=0 bsize=10; run; quit;
Figure 7.10