It is possible to estimate recursive path models using ordinary least squares regression, but using the SAS proc calis can make the processes easier and will also provide estimates of direct and indirect effects.
Let’s say that we want to estimate the following path model using the hsb2 (hsb2.sas7bdat) dataset.
We will begin computing the correlation between the two exogenous variables, read and write. We assume that the data file, hsb2.sas7bdat, is located in the data directory on the C: drive. You may need to change these values for your particular computer configuration.
proc corr data='C:datahsb2'; var read write; run; The CORR Procedure 2 Variables: READ WRITE Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum Label READ 200 52.23000 10.25294 10446 28.00000 76.00000 reading score WRITE 200 52.77500 9.47859 10555 31.00000 67.00000 writing score Pearson Correlation Coefficients, N = 200 Prob > |r| under H0: Rho=0 READ WRITE READ 1.00000 0.59678 reading score <.0001 WRITE 0.59678 1.00000 writing score <.0001
This path analysis is really just two regression models. The first model is math = constant + read + write while the second model is science = constant + math + read + write. In proc calis we set up the model by entering the response variable with each predictor. In the effpart part of the command we list the paths for direct and indirect effects.
proc calis data='C:datahsb2'; path /* specification of path model */ science <- math , science <- read , science <- write, math <- read , math <- write; effpart /* for direct and indirect effects */ science <- read write; run;
We can now run the proc calis command which produces the output shown below. There is a lot of output but we will be focusing on the standardized results given near the end and shown in bold.
The CALIS Procedure Covariance Structure Analysis: Model and Initial Values Modeling Information Data Set WC000001.HSB2 N Records Read 200 N Records Used 200 N Obs 200 Model Type PATH Analysis Covariances Variables in the Model Endogenous Manifest MATH SCIENCE Latent Exogenous Manifest READ WRITE Latent Number of Endogenous Variables = 2 Number of Exogenous Variables = 2 Initial Estimates for PATH List ----------Path---------- Parameter Estimate SCIENCE <--- MATH _Parm1 . SCIENCE <--- READ _Parm2 . SCIENCE <--- WRITE _Parm3 . MATH <--- READ _Parm4 . MATH <--- WRITE _Parm5 . Initial Estimates for Variance Parameters Variance Type Variable Parameter Estimate Exogenous READ _Add1 . WRITE _Add2 . Error MATH _Add3 . SCIENCE _Add4 . WRITE READ _Add5 . NOTE: Parameters with prefix '_Add' are added by PROC CALIS. Simple Statistics Variable Mean Std Dev READ reading score 52.23000 10.25294 WRITE writing score 52.77500 9.47859 MATH math score 52.64500 9.36845 SCIENCE science score 51.85000 9.90089 The SAS System 08:25 Thursday, May 12, 2011 180 The CALIS Procedure Covariance Structure Analysis: Optimization Initial Estimation Methods 1 Observed Moments of Variables 2 McDonald Method 3 Two-Stage Least Squares Optimization Start Parameter Estimates N Parameter Estimate Gradient 1 _Parm1 0.31901 -1.151E-16 2 _Parm2 0.30153 1.8496E-16 3 _Parm3 0.20653 -2.468E-32 4 _Parm4 0.41695 -6.681E-16 5 _Parm5 0.34112 2.5981E-31 6 _Add1 105.12271 8.882E-34 7 _Add2 89.84359 4.4965E-34 8 _Add3 42.54028 6.5484E-18 9 _Add4 49.01931 7.4888E-19 10 _Add5 57.99673 6.3985E-34 Value of Objective Function = 0 Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 10 Functions (Observations) 10 Optimization Start Active Constraints 0 Objective Function 0 Max Abs Gradient Element 6.681129E-16 Radius 1 Optimization Results Iterations 0 Function Calls 4 Jacobian Calls 1 Active Constraints 0 Objective Function 0 Max Abs Gradient Element 6.681129E-16 Lambda 0 Actual Over Pred Change 0 Radius 1 Convergence criterion (ABSGCONV=0.00001) satisfied. Fit Summary Modeling Info N Observations 200 N Variables 4 N Moments 10 N Parameters 10 N Active Constraints 0 Baseline Model Function Value 1.8576 Baseline Model Chi-Square 369.6536 Baseline Model Chi-Square DF 6 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.0000 Chi-Square 0.0000 Chi-Square DF 0 Pr > Chi-Square . Z-Test of Wilson & Hilferty . Hoelter Critical N . Root Mean Square Residual (RMSR) 0.0000 Standardized RMSR (SRMSR) 0.0000 Goodness of Fit Index (GFI) 1.0000 Parsimony Index Adjusted GFI (AGFI) . Parsimonious GFI 0.0000 RMSEA Estimate . Probability of Close Fit . ECVI Estimate 0.1031 ECVI Lower 90% Confidence Limit . ECVI Upper 90% Confidence Limit . Akaike Information Criterion 20.0000 Bozdogan CAIC 62.9832 Schwarz Bayesian Criterion 52.9832 McDonald Centrality 1.0000 Incremental Index Bentler Comparative Fit Index 1.0000 Bentler-Bonett NFI 1.0000 Bentler-Bonett Non-normed Index . Bollen Normed Index Rho1 . Bollen Non-normed Index Delta2 1.0000 James et al. Parsimonious NFI 0.0000 PATH List Standard ----------Path---------- Parameter Estimate Error t Value SCIENCE <--- MATH _Parm1 0.31901 0.07610 4.19224 SCIENCE <--- READ _Parm2 0.30153 0.06816 4.42376 SCIENCE <--- WRITE _Parm3 0.20653 0.07023 2.94075 MATH <--- READ _Parm4 0.41695 0.05620 7.41912 MATH <--- WRITE _Parm5 0.34112 0.06079 5.61144 Variance Parameters Variance Standard Type Variable Parameter Estimate Error t Value Exogenous READ _Add1 105.12271 10.53865 9.97497 WRITE _Add2 89.84359 9.00690 9.97497 Error MATH _Add3 42.54028 4.26470 9.97497 SCIENCE _Add4 49.01931 4.91423 9.97497 Covariances Among Exogenous Variables Standard Var1 Var2 Parameter Estimate Error t Value WRITE READ _Add5 57.99673 8.02265 7.22912 Squared Multiple Correlations Error Total Variable Variance Variance R-Square MATH 42.54028 87.76781 0.5153 SCIENCE 49.01931 98.02764 0.4999 Stability Coefficient of Reciprocal Causation = 0 Stability Coefficient < 1 Total and Indirect Effects Converge Effects on SCIENCE Effect / Std Error / t Value / p Value Total Direct Indirect READ 0.4345 0.3015 0.1330 0.0629 0.0682 0.0364 6.9046 4.4238 3.6499 <.0001 <.0001 0.000262 WRITE 0.3153 0.2065 0.1088 0.0681 0.0702 0.0324 4.6323 2.9407 3.3585 <.0001 0.003274 0.000784 Standardized Results for PATH List Standard ----------Path---------- Parameter Estimate Error t Value SCIENCE <--- MATH _Parm1 0.30185 0.07073 4.26791 SCIENCE <--- READ _Parm2 0.31225 0.06919 4.51278 SCIENCE <--- WRITE _Parm3 0.19772 0.06676 2.96177 MATH <--- READ _Parm4 0.45631 0.05793 7.87688 MATH <--- WRITE _Parm5 0.34513 0.05977 5.77390 Standardized Results for Variance Parameters Variance Standard Type Variable Parameter Estimate Error t Value Exogenous READ _Add1 1.00000 WRITE _Add2 1.00000 Error MATH _Add3 0.48469 0.04933 9.82568 SCIENCE _Add4 0.50006 0.05013 9.97553 Standardized Results for Covariances Among Exogenous Variables Standard Var1 Var2 Parameter Estimate Error t Value WRITE READ _Add5 0.59678 0.04564 13.07520 Standardized Effects on SCIENCE Effect / Std Error / tValue / pValue Total Direct Indirect READ 0.4500 0.3123 0.1377 0.0613 0.0692 0.0369 7.3450 4.5128 3.7366 <.0001 <.0001 0.000186 WRITE 0.3019 0.1977 0.1042 0.0637 0.0668 0.0305 4.7392 2.9618 3.4152 <.0001 0.003059 0.000637
We will focus our attention on the bolded parts of the output above which include the standardized results for path list, standardized results for variance parameters and the standardized effects on science. We will use the standardized estimates as our path coefficients and the square root of the variance estimates for the error. The error values are sqrt(0.48469) = .69619681 (approx = 0.7) for math and sqrt(0.50006) = .70714921 (approx = 0.7) for science. Now we can add the path coefficients and errors to the path diagram as shown below.
The proc calis also provides estimates of the direct, indirect and total effect for the two exogenous variables because we included the effpart substatement in our model. From these results we see that the indirect effect of read is about one third that of the direct effect. While for write the indirect effect is a bit more than half the size of the direct effect. For this example, the estimates for all of the direct and indirect effects were statistically significant. This is not necessarily a very common occurrence.