There are several ways to reshape data from a long to a wide format in SAS. For example, you can reshape your data using proc transpose or reshaping the data in a data step. The following will illustrate how to reshape data from long to wide using the data step.
Example 1: Reshaping one variable
We will begin with a small data set with only one variable to be reshaped. We will use the variables year and faminc (for family income) to create three new variables: faminc96, faminc97 and faminc98. First, let’s look at the data set and use proc print to display it.
DATA long ; INPUT famid year faminc ; CARDS ; 1 96 40000 1 97 40500 1 98 41000 2 96 45000 2 97 45400 2 98 45800 3 96 75000 3 97 76000 3 98 77000 ; RUN ;PROC PRINT DATA=long ; RUN ;Obs famid year faminc 1 1 96 40000 2 1 97 40500 3 1 98 41000 4 2 96 45000 5 2 97 45400 6 2 98 45800 7 3 96 75000 8 3 97 76000 9 3 98 77000
Now let’s look at the program. The first step in the reshaping process is sorting the data (using proc sort) on an identification variable (famid) and saving the sorted data set (longsort). Next we write a data step to do the actual reshaping. We will explain each of the statements in the data step in order.
PROC SORT DATA=long OUT=longsort ; BY famid ; RUN ; DATA wide1 ; SET longsort ; BY famid ; KEEP famid faminc96 -faminc98 ; RETAIN faminc96 - faminc98 ; ARRAY afaminc(96:98) faminc96 - faminc98 ; IF first.famid THEN DO; DO i = 96 to 98 ; afaminc( i ) = . ; END; END; afaminc( year ) = faminc ; IF last.famid THEN OUTPUT ; RUN;
The new data set is named wide1 on the data statement. The old set, longsort, upon which the new data set will based, is named on the set statement. Please note that you must use the sorted version of the old set in order for the reshaping to work properly. The identification variable (famid) is used on the by statement. Please note that this must be the same identification variable on which the data were sorted. If the by statement is omitted, then the if-then-do statements (which occur later in the data step) will not work properly, and SAS will issue an error message.
Next, a keep statement is used to keep the desired variables in the new data set. We will keep the identification variable (famid) and the three variables we are creating, faminc96, faminc97 and faminc98. Any variable that is not listed on the keep statement will not be present in the new data set. A retain statement is used to tell SAS to retain the current values of the variables listed. If the retain statement is omitted, only the values for faminc98 are placed in the new data set, while all of the data for faminc96 and faminc97 will be missing.
An array statement is used to define the variables faminc96, faminc97 and faminc98. In our example, we have named the array afaminc. In parenthesis we have given the first and last value of the array separated by a colon (:). The new variable names are then listed. We can list the first and last new variable names separated by a dash because the names are numerically consecutive. This is especially convenient when there are a large number of variables being defined by the array.
We use an if-then-do statement to set the conditions for a do-loop. The by statement that we used above not only caused SAS to process the data in the groups defined by the variable (famid) given on the by statement, it also caused SAS to create two temporary variables: first.famid and last.famid. Temporary variables are variables that you can use during a data step but do not appear in the new data set. The value of first.famid is always zero except when SAS is processing the first row of data for a given value of famid, then first.famid is one. In other words, first.famid is an indicator variable that is one when it is true that SAS is processing the first row of data for a given value of famid, and zero when it is not. The variable last.famid is created with the same logic, except that it equals one when SAS is processing the last row of data for a given value of famid and zero otherwise. You can now see why the data needed to be sorted on famid before we began the data step.
In the do-loop, we set i (you can use any name that you like) equal to the range we used in the array statement. We then set the array with i as the index variable equal to missing, which in SAS is a dot (.). As SAS processes the data through this loop, the missing values will be replaced with the data. If some of the data are missing, the missing value will not be altered. Please note that you can set the array equal to any value and that value will appear in any place that there is missing data.
After ending the do-loop and the if-then-do statement, we set the array with year as the index variable equal to faminc, the variable in the old data set. (Please note that you must have an end statement for each do.) It is at this point that the data in the variable faminc are associated with the new variables.
Finally, we use an if-then statement to have SAS output the data to the new data set each time it encounters the last occurrence of each value of famid. If this statement is omitted, SAS will output the results of its processing after each cycle of the loop, and we will end up with nine records instead of three. At long last, it is time to look at the new data set with a proc print to ensure that the reshaping went as desired, and we can see that it did.
PROC PRINT DATA=wide1; RUN;Obs famid faminc96 faminc97 faminc98 1 1 40000 40500 41000 2 2 45000 45400 45800 3 3 75000 76000 77000
Example 2: Reshaping two variables
This example is very similar to the last example, except that in this example we will be reshaping two variables, faminc and spend.
DATA long2; INPUT famid year faminc spend ; CARDS; 1 96 40000 38000 1 97 40500 39000 1 98 41000 40000 2 96 45000 42000 2 97 45400 43000 2 98 45800 44000 3 96 75000 70000 3 97 76000 71000 3 98 77000 72000 ; RUN ;
We will modify the previous data step by adding the new variable to two statements that were present in the previous example and adding three new statements. In reshaping the data from long to wide, we will create six new variables: faminc96, faminc97, faminc98, spend96, spend97 and spend98. The six variables are listed on both the keep and the retain statements. Following the same logic as in the previous example, we include an array statement to define the variables spend96, spend97 and spend98. We have named the array aspend. We have also included this array in the do-loop. The third added statement sets aspend with year as the index variable equal to spend. As before, we run a proc print on the new data set to ensure that the reshaping was done correctly.
PROC SORT DATA=long2 OUT=longsrt2 ; BY famid ; RUN ; DATA wide2 ; SET longsrt2 ; BY famid ; KEEP famid faminc96-faminc98 spend96-spend98 ; RETAIN faminc96-faminc98 spend96-spend98 ; ARRAY afaminc(96:98) faminc96-faminc98 ; ARRAY aspend(96:98) spend96-spend98 ; IF first.famid THEN DO; DO i = 96 to 98 ; afaminc( i ) = 0 ; aspend( i ) = 0 ; END; END; afaminc( year ) = faminc ; aspend( year ) = spend ; IF last.famid THEN OUTPUT ; RUN; PROC PRINT DATA=wide2; RUN;Obs famid faminc96 faminc97 faminc98 spend96 spend97 spend98 1 1 40000 40500 41000 38000 39000 40000 2 2 45000 45400 45800 42000 43000 44000 3 3 75000 76000 77000 70000 71000 72000
Please note that you can reshape as many variables as you want in a single data step. All you need to do is list the variables on both the keep and retain statements and add an array statement, include the array in the do-loop and add a statement setting the array with the proper index variable equal to the desired variable in the old data set.
Example 3: Two variables that identify the wide record
In this example, we have two variables that, when taken together, identify the wide record. In the data set below, the variables famid and birth together uniquely identify each wide record. (Please note that the data shown below are in long format, so famid and birth do not uniquely identify each record.) We will reshape one variable, ht (for height) from long to wide format.
DATA long3; INPUT famid birth age ht ; CARDS; 1 1 1 2.8 1 1 2 3.4 1 2 1 2.9 1 2 2 3.8 1 3 1 2.2 1 3 2 2.9 2 1 1 2.0 2 1 2 3.2 2 2 1 1.8 2 2 2 2.8 2 3 1 1.9 2 3 2 2.4 3 1 1 2.2 3 1 2 3.3 3 2 1 2.3 3 2 2 3.4 3 3 1 2.1 3 3 2 2.9 ; RUN;
You will notice that the program used to reshape these data is very similar to the program used in example 1. Clearly, the variable names are different. The other important difference is that the data are sorted on both famid and birth in the proc sort, and both famid and birth are given in the by statement.
PROC SORT DATA=long3 OUT=longsrt3 ; BY famid birth ; RUN ; DATA wide3 ; SET longsrt3 ; BY famid birth ; KEEP famid ht1-ht2 ; RETAIN ht1-ht2 ; ARRAY aht(1:2) ht1-ht2 ; IF first.birth THEN DO; DO i = 1 to 2 ; aht( i ) = 0 ; END; END; aht( age ) = ht ; IF last.birth THEN OUTPUT ; RUN;
We will run a proc print on the new data set to ensure that the reshaping went as expected.
PROC PRINT DATA=wide3; RUN;
Example 4: A more realistic example
This example is very much like the first example, except that the variable names are different. In this example, we will reshape the variable inc (for income). This is a more realistic example of reshaping data from long to wide in that there are many more records (300, instead of nine) and six time points (instead of three). Despite being a much larger data set, you will notice that the program to reshape it is almost identical to the program used to reshape the tiny data set in example 1.
data long4; input id year inc ; cards; 1 90 66483 1 91 69146 1 92 74643 1 93 79783 1 94 81710 1 95 86143 2 90 17510 2 91 17947 2 92 19484 2 93 20979 2 94 21268 2 95 22998 3 90 57947 3 91 62964 3 92 68717 3 93 70957 3 94 75198 3 95 75722 4 90 64831 4 91 71060 4 92 71918 4 93 72514 4 94 73100 4 95 74379 5 90 18904 5 91 19949 5 92 21335 5 93 22237 5 94 23829 5 95 23913 6 90 32057 6 91 34770 6 92 35834 6 93 37387 6 94 40899 6 95 42372 7 90 60551 7 91 64869 7 92 67983 7 93 70498 7 94 71253 7 95 75177 8 90 16553 8 91 18189 8 92 18349 8 93 19815 8 94 21739 8 95 22980 9 90 32611 9 91 33465 9 92 35961 9 93 36416 9 94 37183 9 95 40627 10 90 61379 10 91 66002 10 92 67936 10 93 70513 10 94 74405 10 95 76009 11 90 24065 11 91 24229 11 92 25709 11 93 26121 11 94 26617 11 95 28142 12 90 32975 12 91 36185 12 92 37601 12 93 41336 12 94 43399 12 95 43670 13 90 69548 13 91 71341 13 92 72455 13 93 76552 13 94 80538 13 95 85330 14 90 50274 14 91 53349 14 92 55900 14 93 59375 14 94 61216 14 95 63911 15 90 72011 15 91 73334 15 92 76248 15 93 77724 15 94 78638 15 95 80582 16 90 18911 16 91 20046 16 92 21343 16 93 21630 16 94 22330 16 95 23081 17 90 68841 17 91 75410 17 92 80806 17 93 81327 17 94 81571 17 95 86499 18 90 28099 18 91 30716 18 92 32986 18 93 36097 18 94 39124 18 95 39866 19 90 17302 19 91 18778 19 92 18872 19 93 19884 19 94 20665 19 95 21855 20 90 16291 20 91 16674 20 92 16770 20 93 17182 20 94 17979 20 95 18917 21 90 43244 21 91 46545 21 92 47633 21 93 50744 21 94 54734 21 95 59075 22 90 56393 22 91 59120 22 92 60801 22 93 61404 22 94 63111 22 95 69278 23 90 47347 23 91 49571 23 92 50101 23 93 51345 23 94 56463 23 95 56927 24 90 16076 24 91 17217 24 92 17296 24 93 17900 24 94 18171 24 95 18366 25 90 65906 25 91 69679 25 92 76131 25 93 77676 25 94 81980 25 95 85426 26 90 58586 26 91 61188 26 92 66542 26 93 69267 26 94 71063 26 95 74549 27 90 61674 27 91 66584 27 92 69185 27 93 75193 27 94 78647 27 95 81898 28 90 31673 28 91 31883 28 92 32774 28 93 34485 28 94 36929 28 95 39751 29 90 63412 29 91 67593 29 92 69911 29 93 73092 29 94 80105 29 95 81840 30 90 27684 30 91 28439 30 92 30861 30 93 31406 30 94 32960 30 95 35530 31 90 71873 31 91 76449 31 92 80848 31 93 88691 31 94 94149 31 95 97431 32 90 62177 32 91 63812 32 92 64235 32 93 65703 32 94 69985 32 95 71136 33 90 37684 33 91 38258 33 92 39208 33 93 39489 33 94 39745 33 95 41236 34 90 64013 34 91 66398 34 92 71877 34 93 75610 34 94 76395 34 95 79644 35 90 16011 35 91 16847 35 92 17746 35 93 19123 35 94 19183 35 95 19996 36 90 49215 36 91 52195 36 92 52343 36 93 56365 36 94 58752 36 95 59354 37 90 15774 37 91 16643 37 92 17605 37 93 18781 37 94 18996 37 95 19685 38 90 29106 38 91 31693 38 92 31852 38 93 34505 38 94 35806 38 95 36179 39 90 25147 39 91 26923 39 92 28785 39 93 30987 39 94 34036 39 95 34106 40 90 71978 40 91 79144 40 92 80453 40 93 86580 40 94 95164 40 95 96155 41 90 46166 41 91 47579 41 92 49455 41 93 53849 41 94 56630 41 95 57473 42 90 55810 42 91 59443 42 92 65291 42 93 66065 42 94 69009 42 95 74365 43 90 49642 43 91 50603 43 92 53917 43 93 54858 43 94 58470 43 95 59767 44 90 21348 44 91 22361 44 92 23412 44 93 24038 44 94 24774 44 95 25828 45 90 44361 45 91 48720 45 92 51356 45 93 54927 45 94 56670 45 95 58800 46 90 56509 46 91 60517 46 92 61532 46 93 65077 46 94 69594 46 95 73089 47 90 39097 47 91 40293 47 92 43237 47 93 44809 47 94 48782 47 95 53091 48 90 18685 48 91 19405 48 92 20165 48 93 20316 48 94 22197 48 95 23557 49 90 73103 49 91 76243 49 92 76778 49 93 82734 49 94 86279 49 95 86784 50 90 48129 50 91 49267 50 92 53799 50 93 58768 50 94 63011 50 95 66461 ; run; PROC SORT DATA=long4 OUT=longsrt4 ; BY id ; RUN ; DATA wide4 ; SET longsrt4 ; BY id ; KEEP id inc90-inc95 ; RETAIN inc90-inc95 ; ARRAY ainc(90:95) inc90-inc95 ; IF first.id THEN DO; DO i = 90 to 95 ; ainc( i ) = 0 ; END; END; ainc( year ) = inc ; IF last.id THEN OUTPUT ; RUN;
Because of the size of the data set, we will limit the proc print to the first five observations in the new data set to save space. Please note that the first five observations in the wide data set consist of the first 25 observations in the long data set. We will also run a proc means both data sets as well as our usual proc print to ensure that the reshaping was successful.
PROC PRINT DATA=wide4(obs=5) ; RUN;Obs id inc90 inc91 inc92 inc93 inc94 inc95 1 1 66483 69146 74643 79783 81710 86143 2 2 17510 17947 19484 20979 21268 22998 3 3 57947 62964 68717 70957 75198 75722 4 4 64831 71060 71918 72514 73100 74379 5 5 18904 19949 21335 22237 23829 23913 PROC PRINT DATA=long4(obs=25) ; RUN;Obs id year inc 1 1 90 66483 2 1 91 69146 3 1 92 74643 4 1 93 79783 5 1 94 81710 6 1 95 86143 7 2 90 17510 8 2 91 17947 9 2 92 19484 10 2 93 20979 11 2 94 21268 12 2 95 22998 13 3 90 57947 14 3 91 62964 15 3 92 68717 16 3 93 70957 17 3 94 75198 18 3 95 75722 19 4 90 64831 20 4 91 71060 21 4 92 71918 22 4 93 72514 23 4 94 73100 24 4 95 74379 25 5 90 18904 PROC MEANS DATA=wide4 ; VAR inc90-inc95 ; RUN;The MEANS Procedure Variable N Mean Std Dev Minimum Maximum ------------------------------------------------------------------------------ inc90 50 43899.32 19523.39 15774.00 73103.00 inc91 50 46380.70 20749.43 16643.00 79144.00 inc92 50 48519.58 21720.12 16770.00 80848.00 inc93 50 50842.28 22780.12 17182.00 88691.00 inc94 50 53289.02 23824.01 17979.00 95164.00 inc95 50 55379.00 24592.83 18366.00 97431.00 ------------------------------------------------------------------------------ PROC MEANS DATA=long4 ; CLASS year ; VAR inc ; RUN;The MEANS Procedure Analysis Variable : inc N year Obs N Mean Std Dev Minimum Maximum ------------------------------------------------------------------------------ 90 50 50 43899.32 19523.39 15774.00 73103.00 91 50 50 46380.70 20749.43 16643.00 79144.00 92 50 50 48519.58 21720.12 16770.00 80848.00 93 50 50 50842.28 22780.12 17182.00 88691.00 94 50 50 53289.02 23824.01 17979.00 95164.00 95 50 50 55379.00 24592.83 18366.00 97431.00 ------------------------------------------------------------------------------
Example 5: Reshaping with string (character) variables
This example is similar to example 2 except that we have a third variable to reshape, and this new variable, debt, is a string (i.e., character) variable. There are only two minor differences between adding a numeric variable to our “template” program and adding a string variable. The first is in the array statement for the string variable. Before listing the names of the variables to be created, you need to include a dollar sign ($) to tell SAS to create a string variable and the maximum number of characters allowed. In our example, we are allowing for three characters (since the maximum number of characters in “yes” or “no” is three). The second difference is that when setting the string variable equal to missing in the do-loop, you use open-quote close-quote to indicate a null string instead of setting it equal to a dot. A dot is a missing value only for a numeric variable; a null string is a missing value for a string variable.
data long5; length debt $ 3; input famid year faminc spend debt $ ; cards; 1 96 40000 38000 yes 1 97 40500 39000 yes 1 98 41000 40000 no 2 96 45000 42000 yes 2 97 45400 43000 no 2 98 45800 44000 no 3 96 75000 70000 no 3 97 76000 71000 no 3 98 77000 72000 no ; run; PROC SORT DATA=long5 OUT=long5srt ; BY famid ; RUN; DATA wide5 ; SET long5srt ; BY famid ; KEEP famid faminc96-faminc98 spend96-spend98 debt96-debt98 ; RETAIN faminc96-faminc98 spend96-spend98 debt96-debt98 ; ARRAY afaminc(96:98) faminc96-faminc98 ; ARRAY aspend(96:98) spend96-spend98 ; ARRAY adebt(96:98) $ 3 debt96-debt98 ; IF first.famid THEN DO; DO i = 96 to 98 ; afaminc( i ) = 0 ; aspend( i ) = 0 ; adebt( i ) = " " ; END; END; afaminc( year ) = faminc ; aspend( year ) = spend ; adebt( year ) = debt ; IF last.famid THEN OUTPUT ; RUN;
We will run a proc print on the new data set to ensure that the reshaping was successful.
PROC PRINT DATA=wide5 ; RUN; f f f a a a s s s m m m p p p d d d f i i i e e e e e e a n n n n n n b b b O m c c c d d d t t t b i 9 9 9 9 9 9 9 9 9 s d 6 7 8 6 7 8 6 7 8 1 1 40000 40500 41000 38000 39000 40000 yes yes no 2 2 45000 45400 45800 42000 43000 44000 yes no no 3 3 75000 76000 77000 70000 71000 72000 no no no