page 32 Table 2.1 An example of the coding of the design variables for race, coded at three levels.
get file='lowbwt.sav'.recode race (2=1) (else=0) into race2. recode race (3=1) (else=0) into race3. execute.
list race race2 race3 / cases=from 1 to 3.
RACE RACE2 RACE3
2.00 1.00 .00 3.00 .00 1.00 1.00 .00 .00
Number of cases read: 3 Number of cases listed: 3
page 36 Table 2.2 Estimated coefficients for a multiple logistic regression model using the variables age, weight at last menstrual period (lwt), race and number of first trimester physician visits from the low birth weight study.
LOGISTIC REGRESSION VAR=low /METHOD=ENTER age lwt race2 race3 ftv /PRINT=SUMMARY.
Unweighted Cases(a) | N | Percent | |
---|---|---|---|
Selected Cases | Included in Analysis | 189 | 100.0 |
Missing Cases | 0 | .0 | |
Total | 189 | 100.0 | |
Unselected Cases | 0 | .0 | |
Total | 189 | 100.0 | |
a If weight is in effect, see classification table for the total number of cases. |
Original Value | Internal Value |
---|---|
.00 | 0 |
1.00 | 1 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 0 | < 2500g | .00 | 130 | 0 | 100.0 |
1.00 | 59 | 0 | .0 | ||
Overall Percentage | |
|
68.8 | ||
a Constant is included in the model. | |||||
b The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 0 | Constant | -.790 | .157 | 25.327 | 1 | .000 | .454 |
|
Score | df | Sig. | ||
---|---|---|---|---|---|
Step 0 | Variables | AGE | 2.674 | 1 | .102 |
LWT | 5.438 | 1 | .020 | ||
RACE2 | 1.727 | 1 | .189 | ||
RACE3 | 1.797 | 1 | .180 | ||
FTV | .749 | 1 | .387 | ||
Overall Statistics | 11.388 | 5 | .044 |
|
Chi-square | df | Sig. | |
---|---|---|---|---|
Step 1 | Step | 12.099 | 5 | .033 |
Block | 12.099 | 5 | .033 | |
Model | 12.099 | 5 | .033 |
Step | -2 Log likelihood | Cox & Snell R Square | Nagelkerke R Square |
---|---|---|---|
1 | 222.573 | .062 | .087 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 1 | < 2500g | .00 | 125 | 5 | 96.2 |
1.00 | 54 | 5 | 8.5 | ||
Overall Percentage | |
|
68.8 | ||
a The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 1(a) | AGE | -.024 | .034 | .499 | 1 | .480 | .976 |
LWT | -.014 | .007 | 4.741 | 1 | .029 | .986 | |
RACE2 | 1.004 | .498 | 4.066 | 1 | .044 | 2.729 | |
RACE3 | .433 | .362 | 1.430 | 1 | .232 | 1.542 | |
FTV | -.049 | .167 | .087 | 1 | .768 | .952 | |
Constant | 1.295 | 1.071 | 1.461 | 1 | .227 | 3.651 | |
a Variable(s) entered on step 1: AGE, LWT, RACE2, RACE3, FTV. |
page 38 Table 2.3 Estimated coefficients for a multiple logistic regression model using the variables lwt and race from the low birth weight study.
LOGISTIC REGRESSION VAR=low /METHOD=ENTER lwt race2 race3.
Unweighted Cases(a) | N | Percent | |
---|---|---|---|
Selected Cases | Included in Analysis | 189 | 100.0 |
Missing Cases | 0 | .0 | |
Total | 189 | 100.0 | |
Unselected Cases | 0 | .0 | |
Total | 189 | 100.0 | |
a If weight is in effect, see classification table for the total number of cases. |
Original Value | Internal Value |
---|---|
.00 | 0 |
1.00 | 1 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 0 | < 2500g | .00 | 130 | 0 | 100.0 |
1.00 | 59 | 0 | .0 | ||
Overall Percentage | |
|
68.8 | ||
a Constant is included in the model. | |||||
b The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 0 | Constant | -.790 | .157 | 25.327 | 1 | .000 | .454 |
|
Score | df | Sig. | ||
---|---|---|---|---|---|
Step 0 | Variables | LWT | 5.438 | 1 | .020 |
RACE2 | 1.727 | 1 | .189 | ||
RACE3 | 1.797 | 1 | .180 | ||
Overall Statistics | 10.757 | 3 | .013 |
|
Chi-square | df | Sig. | |
---|---|---|---|---|
Step 1 | Step | 11.413 | 3 | .010 |
Block | 11.413 | 3 | .010 | |
Model | 11.413 | 3 | .010 |
Step | -2 Log likelihood | Cox & Snell R Square | Nagelkerke R Square |
---|---|---|---|
1 | 223.259 | .059 | .082 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 1 | < 2500g | .00 | 124 | 6 | 95.4 |
1.00 | 53 | 6 | 10.2 | ||
Overall Percentage | |
|
68.8 | ||
a The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 1(a) | LWT | -.015 | .006 | 5.587 | 1 | .018 | .985 |
RACE2 | 1.081 | .488 | 4.906 | 1 | .027 | 2.948 | |
RACE3 | .481 | .357 | 1.816 | 1 | .178 | 1.617 | |
Constant | .805 | .845 | .908 | 1 | .341 | 2.238 | |
a Variable(s) entered on step 1: LWT, RACE2, RACE3. |
page 42 Table 2.4 Estimated covariance matrix of the estimated coefficients in Table 2.3.
LOGISTIC REGRESSION VAR=low /METHOD=ENTER lwt race2 race3 /PRINT=SUMMARY corr.
Unweighted Cases(a) | N | Percent | |
---|---|---|---|
Selected Cases | Included in Analysis | 189 | 100.0 |
Missing Cases | 0 | .0 | |
Total | 189 | 100.0 | |
Unselected Cases | 0 | .0 | |
Total | 189 | 100.0 | |
a If weight is in effect, see classification table for the total number of cases. |
Original Value | Internal Value |
---|---|
.00 | 0 |
1.00 | 1 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 0 | < 2500g | .00 | 130 | 0 | 100.0 |
1.00 | 59 | 0 | .0 | ||
Overall Percentage | |
|
68.8 | ||
a Constant is included in the model. | |||||
b The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 0 | Constant | -.790 | .157 | 25.327 | 1 | .000 | .454 |
|
Score | df | Sig. | ||
---|---|---|---|---|---|
Step 0 | Variables | LWT | 5.438 | 1 | .020 |
RACE2 | 1.727 | 1 | .189 | ||
RACE3 | 1.797 | 1 | .180 | ||
Overall Statistics | 10.757 | 3 | .013 |
|
Chi-square | df | Sig. | |
---|---|---|---|---|
Step 1 | Step | 11.413 | 3 | .010 |
Block | 11.413 | 3 | .010 | |
Model | 11.413 | 3 | .010 |
Step | -2 Log likelihood | Cox & Snell R Square | Nagelkerke R Square |
---|---|---|---|
1 | 223.259 | .059 | .082 |
|
Predicted | ||||
---|---|---|---|---|---|
< 2500g | Percentage Correct | ||||
Observed | .00 | 1.00 | |||
Step 1 | < 2500g | .00 | 124 | 6 | 95.4 |
1.00 | 53 | 6 | 10.2 | ||
Overall Percentage | |
|
68.8 | ||
a The cut value is .500 |
|
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|---|
Step 1(a) | LWT | -.015 | .006 | 5.587 | 1 | .018 | .985 |
RACE2 | 1.081 | .488 | 4.906 | 1 | .027 | 2.948 | |
RACE3 | .481 | .357 | 1.816 | 1 | .178 | 1.617 | |
Constant | .805 | .845 | .908 | 1 | .341 | 2.238 | |
a Variable(s) entered on step 1: LWT, RACE2, RACE3. |
|
Constant | LWT | RACE2 | RACE3 | |
---|---|---|---|---|---|
Step 1 | Constant | 1.000 | -.958 | .055 | -.343 |
LWT | -.958 | 1.000 | -.206 | .155 | |
RACE2 | .055 | -.206 | 1.000 | .306 | |
RACE3 | -.343 | .155 | .306 | 1.000 |
NOTE: for the variances: var=(se)**2
NOTE: for the covariances: cov=corr*se*se
lwt/lwt: (.006)**2 = .00036
lwt/race2: (.006)*(.488)*(-.206) = -.000603168
lwt/race3: (.006)*(.357)*(.155) = .00033201
lwt/constant: (.006)*(.845)*(-.958) = -.00485706
race2/race2: (.488)*2 = .238144
race2/race3: (.488)*(.357)*(.306) = .053310096
race2/constant: (.488)*(.845)*(.055) = .0226798
race3/race3: (.357)**2 = .127449
race3/constant: (.357)*(.845)*(-.343) = -.103471095
constant/constant: (.845)**2 = .714025