Table 6.2, page 157. Number of surviving bacteria (units of 100)
get file 'D:p157.sav'. list.
t n_t
1 355
2 211
3 197
4 166
5 142
6 106
7 104
8 60
9 56
10 38
11 36
12 32
13 21
14 19
15 15
Number of cases read: 15 Number of cases listed: 15
Table 6.3 and Figure 6.5-6.6, page 159
regression /dependent = n_t /method enter = t /scatter (n_t, t) (*sresid, t).







Table 6.4 and Figure 6.7-6.8, page 160-161
compute lnn_t = ln(n_t). exe. regression /dependent = lnn_t /method enter = t /scatter (lnn_t, t) (*sresid, t).







Table 6.6, page 164. Number of Injury Incidents Y and Proportion of Total Flights N
data list list /y n. begin data. 11 .095 7 .192 7 .075 19 .2078 9 .1382 4. .054 3 .1292 1 .0503 3 .0629 end data. list.
y n
11.00 .10
7.00 .19
7.00 .08
19.00 .21
9.00 .14
4.00 .05
3.00 .13
1.00 .05
3.00 .06
Number of cases read: 9 Number of cases listed: 9
Table 6.7 and Figure 6.10-6.11, page 164-165
regression /dependent = y /method enter = n /scatter (y, n) (*sresid, n).







Table 6.8 and Figure 6.12, page 165-166. Transforming y to sqrt(y)
compute sqrty = sqrt(y). exe. regression /dependent = sqrty /method enter = n /scatter (*sresid, n).





Table 6.9, page 167. Number of Supervised Workers and Supervisors in 27 Industrial Establishments
get file 'D:p167.sav'. list.
x y
294 30
247 32
267 37
358 44
423 47
311 49
450 56
534 62
438 68
697 78
688 80
630 84
709 88
627 97
615 100
999 109
1022 114
1015 117
700 106
850 128
980 130
1025 160
1021 97
1200 180
1250 112
1500 210
1650 135
Number of cases read: 27 Number of cases listed: 27
Table 6.10 and Figure 6.13-6.14, page 167-168
regression /dependent = y /method enter = x /scatter (y, x) (*sresid, x).







Table 6.11 and Figure 6.15, page 169. Removal of heteroscedasticity by transforming y by y/x and x by 1/x. This transformation eliminates the linear relation.
NOTE: The R^2 does not match the book and the extra graph of y/x versus 1/x reveals this phenomena.
compute yx = y/x. compute x1 = 1/x. exe. regression /dependent = yx /method enter = x1 /scatter (*sresid, x1) (yx, x1).







Table 6.12 and Figure 6.16-6.17, page 171
compute lny = ln(y). exe. regression /dependent = lny /method enter = x /scatter (lny, x) (*sresid, x).







Table 6.13 and Figure 6.18-6.20, page 172-173. LnY is regressed on X and X^2
compute x2 = x**2. exe. regression /dependent = lny /method enter = x x2 /scatter (*sresid, *pred) (*sresid, x) (*sresid, x2).







Figure 6.21, page 175. The brain data: Scatter plots of Brain Weight versus Body Weight
get file 'D:p176.sav'.
graph /scatter = bodyweig with brainwei.

Power transformations, page 175
compute y1 = brainwei**.5. compute y2 = ln(brainwei). compute y3 = brainwei**-.5. compute y4 = brainwei**-1. compute x1 = bodyweig**.5. compute x2 = ln(bodyweig). compute x3 = bodyweig**-.5. compute x4 = bodyweig**-1. exe.
Figure 6.21, page 175
graph /scatterplot = x1 with y1.

graph /scatterplot = x2 with y2.

graph /scatterplot = x3 with y3.

graph /scatterplot = x4 with y4.

