Table 6.2, page 157. Number of surviving bacteria (units of 100)
get file 'D:p157.sav'. list.
t n_t 1 355 2 211 3 197 4 166 5 142 6 106 7 104 8 60 9 56 10 38 11 36 12 32 13 21 14 19 15 15 Number of cases read: 15 Number of cases listed: 15
Table 6.3 and Figure 6.5-6.6, page 159
regression /dependent = n_t /method enter = t /scatter (n_t, t) (*sresid, t).
Table 6.4 and Figure 6.7-6.8, page 160-161
compute lnn_t = ln(n_t). exe. regression /dependent = lnn_t /method enter = t /scatter (lnn_t, t) (*sresid, t).
Table 6.6, page 164. Number of Injury Incidents Y and Proportion of Total Flights N
data list list /y n. begin data. 11 .095 7 .192 7 .075 19 .2078 9 .1382 4. .054 3 .1292 1 .0503 3 .0629 end data. list.
y n 11.00 .10 7.00 .19 7.00 .08 19.00 .21 9.00 .14 4.00 .05 3.00 .13 1.00 .05 3.00 .06 Number of cases read: 9 Number of cases listed: 9
Table 6.7 and Figure 6.10-6.11, page 164-165
regression /dependent = y /method enter = n /scatter (y, n) (*sresid, n).
Table 6.8 and Figure 6.12, page 165-166. Transforming y to sqrt(y)
compute sqrty = sqrt(y). exe. regression /dependent = sqrty /method enter = n /scatter (*sresid, n).
Table 6.9, page 167. Number of Supervised Workers and Supervisors in 27 Industrial Establishments
get file 'D:p167.sav'. list.
x y 294 30 247 32 267 37 358 44 423 47 311 49 450 56 534 62 438 68 697 78 688 80 630 84 709 88 627 97 615 100 999 109 1022 114 1015 117 700 106 850 128 980 130 1025 160 1021 97 1200 180 1250 112 1500 210 1650 135 Number of cases read: 27 Number of cases listed: 27
Table 6.10 and Figure 6.13-6.14, page 167-168
regression /dependent = y /method enter = x /scatter (y, x) (*sresid, x).
Table 6.11 and Figure 6.15, page 169. Removal of heteroscedasticity by transforming y by y/x and x by 1/x. This transformation eliminates the linear relation.
NOTE: The R^2 does not match the book and the extra graph of y/x versus 1/x reveals this phenomena.
compute yx = y/x. compute x1 = 1/x. exe. regression /dependent = yx /method enter = x1 /scatter (*sresid, x1) (yx, x1).
Table 6.12 and Figure 6.16-6.17, page 171
compute lny = ln(y). exe. regression /dependent = lny /method enter = x /scatter (lny, x) (*sresid, x).
Table 6.13 and Figure 6.18-6.20, page 172-173. LnY is regressed on X and X^2
compute x2 = x**2. exe. regression /dependent = lny /method enter = x x2 /scatter (*sresid, *pred) (*sresid, x) (*sresid, x2).
Figure 6.21, page 175. The brain data: Scatter plots of Brain Weight versus Body Weight
get file 'D:p176.sav'.
graph /scatter = bodyweig with brainwei.
Power transformations, page 175
compute y1 = brainwei**.5. compute y2 = ln(brainwei). compute y3 = brainwei**-.5. compute y4 = brainwei**-1. compute x1 = bodyweig**.5. compute x2 = ln(bodyweig). compute x3 = bodyweig**-.5. compute x4 = bodyweig**-1. exe.
Figure 6.21, page 175
graph /scatterplot = x1 with y1.
graph /scatterplot = x2 with y2.
graph /scatterplot = x3 with y3.
graph /scatterplot = x4 with y4.