Page 433 Table 17.1
get file 'c:pma5depress.sav'. compute inccat = 0. if income ge 20 inccat = 1. crosstabs sex by inccat.
Page 434 Table 17.2
crosstabs sex by inccat by treat.
Page 435 Table 17.3
compute cesdcat = 0. if cesd ge 11 cesdcat = 1. crosstab sex by inccat by treat by cesdcat. frequencies var = treat cesdcat sex inccat.
Page 437 middle of the page
crosstabs sex by inccat /cells = expected.
Page 440 top of the page
crosstabs sex by inccat /statistics = chisq.
<some output omitted>
Page 441 Table 17.7
if (sex=1) sex1=-1. if (sex=2) sex1 =1. if (inccat=0) inccat1=-1. if (inccat=1) inccat1 =1. compute sexinc = sex1*inccat1. execute. genlog sex inccat with sex1 inccat1 sexinc /model = poisson /print = estim /plot = none /design inccat1 sex1 sexinc.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Data Information 294 cases are accepted. 0 cases are rejected because of missing data. 294 weighted cases will be used in the analysis. 4 cells are defined. 0 structural zeros are imposed by design. 0 sampling zeros are encountered. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Variable Information Factor Levels Value SEX 2 1.00 male 2.00 female INCCAT 2 .00 1.00 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Covariates SEX1 INCCAT1 SEXINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Model and Design Information Model: Poisson Design: Constant + INCCAT1 + SEX1 + SEXINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Correspondence Between Parameters and Terms of the Design Parameter Aliased Term 1 Constant 2 INCCAT1 3 SEX1 4 SEXINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Convergence Information Maximum number of iterations: 20 Relative difference tolerance: .001 Final relative difference: 9.12709E-14 Maximum likelihood estimation converged at iteration 1. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit Statistics Chi-Square DF Sig. Likelihood Ratio .0000 0 . Pearson .0000 0 . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Parameter Estimates Asymptotic 95% CI Parameter Estimate SE Z-value Lower Upper 1 4.2378 .0616 68.75 4.12 4.36 2 -.1774 .0616 -2.88 -.30 -.06 3 .2128 .0616 3.45 .09 .33 4 -.2042 .0616 -3.31 -.33 -.08
Page 446
Row 3 comparing all two-factor association and first order terms with saturated model
genlog sex treat inccat /model = poisson /print=none /plot=none /design inccat*sex inccat*treat sex*treat.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Data Information 294 cases are accepted. 0 cases are rejected because of missing data. 294 weighted cases will be used in the analysis. 8 cells are defined. 0 structural zeros are imposed by design. 0 sampling zeros are encountered. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Variable Information Factor Levels Value SEX 2 1.00 male 2.00 female TREAT 2 Has a doctor prescribed or recommended that you take 1.00 yes 2.00 no INCCAT 2 .00 1.00 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Model and Design Information Model: Poisson Design: Constant + SEX*INCCAT + TREAT*INCCAT + SEX*TREAT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Correspondence Between Parameters and Terms of the Design Parameter Aliased Term 1 Constant 2 [SEX = 1.00]*[INCCAT = .00] 3 [SEX = 1.00]*[INCCAT = 1.00] 4 [SEX = 2.00]*[INCCAT = .00] 5 x [SEX = 2.00]*[INCCAT = 1.00] 6 [TREAT = 1.00]*[INCCAT = .00] 7 [TREAT = 1.00]*[INCCAT = 1.00] 8 x [TREAT = 2.00]*[INCCAT = .00] 9 x [TREAT = 2.00]*[INCCAT = 1.00] 10 [SEX = 1.00]*[TREAT = 1.00] 11 x [SEX = 1.00]*[TREAT = 2.00] 12 x [SEX = 2.00]*[TREAT = 1.00] Parameter Aliased Term 13 x [SEX = 2.00]*[TREAT = 2.00] Note: 'x' indicates an aliased (or a redundant) parameter. These parameters are set to zero. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Convergence Information Maximum number of iterations: 20 Relative difference tolerance: .001 Final relative difference: .0003 Maximum likelihood estimation converged at iteration 2. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit Statistics Chi-Square DF Sig. Likelihood Ratio .0012 1 .9726 Pearson .0012 1 .9726
Row 2 comparing all first order terms with saturated
genlog sex treat inccat /model=poisson /print=none /plot=none /design inccat sex treat.
<some output omitted>
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Model and Design Information Model: Poisson Design: Constant + INCCAT + SEX + TREAT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Correspondence Between Parameters and Terms of the Design Parameter Aliased Term 1 Constant 2 [INCCAT = .00] 3 x [INCCAT = 1.00] 4 [SEX = 1.00] 5 x [SEX = 2.00] 6 [TREAT = 1.00] 7 x [TREAT = 2.00] Note: 'x' indicates an aliased (or a redundant) parameter. These parameters are set to zero. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Convergence Information Maximum number of iterations: 20 Relative difference tolerance: .001 Final relative difference: 2.60437E-06 Maximum likelihood estimation converged at iteration 4. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit Statistics Chi-Square DF Sig. Likelihood Ratio 24.0763 4 8.E-05 Pearson 24.6519 4 6.E-05
Row 1 comparing the empty model with the model of all two-factor models
To obtain the comparison with row 2 of the table, subtract the value of row 2 from the model below. Note also that the degrees of freedom listed in the output is incorrect, showing one more than it should. This is because we had to add the extra constant term to the model to get it to run. (We were unable to figure out how to get SPSS genlog to run a constant only model, so we created a constant and used that in addition to the one SPSS used.)
compute cons = 0. exe. genlog sex treat inccat with cons /model = poisson /print = none /plot = none /design cons.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Model and Design Information Model: Poisson Design: Constant + CONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Correspondence Between Parameters and Terms of the Design Parameter Aliased Term 1 Constant 2 x CONS Note: 'x' indicates an aliased (or a redundant) parameter. These parameters are set to zero. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Convergence Information Maximum number of iterations: 20 Relative difference tolerance: .001 Final relative difference: 8.68524E-06 Maximum likelihood estimation converged at iteration 4. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit Statistics Chi-Square DF Sig. Likelihood Ratio 55.9474 7 1.E-09 Pearson 61.3197 7 8.E-11
Page 447
hiloglinear sex(1 2) treat(1 2) inccat(0 1) /method=backward /print=none /design inccat*sex inccat*treat sex*treat.
* * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * DATA Information 294 unweighted cases accepted. 0 cases rejected because of out-of-range factor values. 0 cases rejected because of missing data. 294 weighted cases will be used in the analysis. FACTOR Information Factor Level Label SEX 2 TREAT 2 Has a doctor prescribed or recom INCCAT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * Backward Elimination (p = .050) for DESIGN 1 with generating class INCCAT*SEX INCCAT*TREAT SEX*TREAT Likelihood ratio chi square = .00118 DF = 1 P = .973 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*SEX 1 10.669 .0011 2 INCCAT*TREAT 1 .000 .9934 2 SEX*TREAT 1 12.451 .0004 2 Step 1 The best model has generating class INCCAT*SEX SEX*TREAT Likelihood ratio chi square = .00125 DF = 2 P = .999 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*SEX 1 11.147 .0008 2 SEX*TREAT 1 12.928 .0003 2 Step 2 The best model has generating class INCCAT*SEX SEX*TREAT Likelihood ratio chi square = .00125 DF = 2 P = .999 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * The final model has generating class INCCAT*SEX SEX*TREAT The Iterative Proportional Fit algorithm converged at iteration 0. The maximum difference between observed and fitted marginal totals is .000 and the convergence criterion is .250 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit test statistics Likelihood ratio chi square = .00125 DF = 2 P = .999 Pearson chi square = .00125 DF = 2 P = .999 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Page 448 The description of the stepwise analysis in the second half of the page.
hiloglinear inccat (0 1) sex1 (0 1) treat1 (0 1) cesdcat (0 1) /method = backward /maxorder=3 /design = inccat*sex1*treat1*cesdcat.
* * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * DATA Information 294 unweighted cases accepted. 0 cases rejected because of out-of-range factor values. 0 cases rejected because of missing data. 294 weighted cases will be used in the analysis. FACTOR Information Factor Level Label INCCAT 2 SEX1 2 TREAT1 2 CESDCAT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * Backward Elimination (p = .050) for DESIGN 1 with generating class INCCAT*SEX1*TREAT1 INCCAT*SEX1*CESDCAT INCCAT*TREAT1*CESDCAT SEX1*TREAT1*CESDCAT Likelihood ratio chi square = .04568 DF = 1 P = .831 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*SEX1*TREAT1 1 .008 .9294 4 INCCAT*SEX1*CESDCAT 1 .009 .9225 3 INCCAT*TREAT1*CESDCAT 1 4.742 .0294 2 SEX1*TREAT1*CESDCAT 1 1.227 .2681 3 Step 1 The best model has generating class INCCAT*SEX1*CESDCAT INCCAT*TREAT1*CESDCAT SEX1*TREAT1*CESDCAT Likelihood ratio chi square = .05353 DF = 2 P = .974 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*SEX1*CESDCAT 1 .011 .9173 3 INCCAT*TREAT1*CESDCAT 1 4.740 .0295 2 SEX1*TREAT1*CESDCAT 1 1.241 .2653 4 Step 2 The best model has generating class INCCAT*TREAT1*CESDCAT SEX1*TREAT1*CESDCAT INCCAT*SEX1 Likelihood ratio chi square = .06431 DF = 3 P = .996 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*TREAT1*CESDCAT 1 4.986 .0256 3 SEX1*TREAT1*CESDCAT 1 1.239 .2656 3 INCCAT*SEX1 1 10.495 .0012 2 Step 3 The best model has generating class INCCAT*TREAT1*CESDCAT INCCAT*SEX1 SEX1*TREAT1 SEX1*CESDCAT Likelihood ratio chi square = 1.30361 DF = 4 P = .861 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*TREAT1*CESDCAT 1 4.273 .0387 3 INCCAT*SEX1 1 9.783 .0018 3 SEX1*TREAT1 1 11.853 .0006 3 SEX1*CESDCAT 1 2.218 .1364 3 Step 4 The best model has generating class INCCAT*TREAT1*CESDCAT INCCAT*SEX1 SEX1*TREAT1 Likelihood ratio chi square = 3.52193 DF = 5 P = .620 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - If Deleted Simple Effect is DF L.R. Chisq Change Prob Iter INCCAT*TREAT1*CESDCAT 1 4.397 .0360 3 INCCAT*SEX1 1 10.669 .0011 2 SEX1*TREAT1 1 12.451 .0004 2 * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * Step 5 The best model has generating class INCCAT*TREAT1*CESDCAT INCCAT*SEX1 SEX1*TREAT1 Likelihood ratio chi square = 3.52193 DF = 5 P = .620 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * The final model has generating class INCCAT*TREAT1*CESDCAT INCCAT*SEX1 SEX1*TREAT1 The Iterative Proportional Fit algorithm converged at iteration 0. The maximum difference between observed and fitted marginal totals is .083 and the convergence criterion is .250 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Observed, Expected Frequencies and Residuals. Factor Code OBS count EXP count Residual Std Resid INCCAT 0 SEX1 0 TREAT1 0 CESDCAT 0 16.0 13.7 2.28 .62 CESDCAT 1 4.0 6.2 -2.22 -.89 TREAT1 1 CESDCAT 0 23.0 22.2 .82 .17 CESDCAT 1 11.0 11.9 -.88 -.26 SEX1 1 TREAT1 0 CESDCAT 0 48.0 50.3 -2.29 -.32 CESDCAT 1 25.0 22.8 2.21 .46 TREAT1 1 CESDCAT 0 33.0 33.8 -.81 -.14 CESDCAT 1 19.0 18.1 .89 .21 INCCAT 1 SEX1 0 TREAT1 0 CESDCAT 0 16.0 13.8 2.21 .60 CESDCAT 1 5.0 7.3 -2.28 -.84 TREAT1 1 CESDCAT 0 30.0 29.9 .05 .01 CESDCAT 1 6.0 6.0 .01 .00 SEX1 1 TREAT1 0 CESDCAT 0 20.0 22.2 -2.21 -.47 * * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * Observed, Expected Frequencies and Residuals. (Cont.) Factor Code OBS count EXP count Residual Std Resid CESDCAT 1 14.0 11.7 2.28 .67 TREAT1 1 CESDCAT 0 20.0 20.1 -.06 -.01 CESDCAT 1 4.0 4.0 -.01 -.01 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit test statistics Likelihood ratio chi square = 3.52193 DF = 5 P = .620 Pearson chi square = 3.37768 DF = 5 P = .642 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Page 451
NOTE: Because a /design subcommand was omitted, SPSS assumes a saturated model.
hiloglinear inccat (0 1) sex1 (0 1) treat1 (0 1) cesdcat (0 1) /print=all.
<some output omitted>
* * * * * * * * H I E R A R C H I C A L L O G L I N E A R * * * * * * * * Tests of PARTIAL associations. Effect Name DF Partial Chisq Prob Iter INCCAT*SEX1*TREAT1 1 .008 .9294 4 INCCAT*SEX1*CESDCAT 1 .009 .9225 3 INCCAT*TREAT1*CESDCAT 1 4.742 .0294 2 SEX1*TREAT1*CESDCAT 1 1.227 .2681 3 INCCAT*SEX1 1 9.906 .0016 3 INCCAT*TREAT1 1 .002 .9653 3 SEX1*TREAT1 1 11.976 .0005 3 INCCAT*CESDCAT 1 1.168 .2799 4 SEX1*CESDCAT 1 2.342 .1259 4 TREAT1*CESDCAT 1 .317 .5733 4 INCCAT 1 14.044 .0002 2 SEX1 1 17.813 .0000 2 TREAT1 1 .014 .9071 2 CESDCAT 1 48.722 .0000 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (sex = 1) sex1= 1. if (sex = 2) sex1 = -1. if (treat =1) treat1 = 1. if (treat = 2) treat1 = -1. if (inccat = 0) inccat1 = -1. if (inccat = 1) inccat1 = 1. compute sextreat = sex1*treat1. compute sexinc = sex1*inccat1. compute treatinc = treat1*inccat1. execute. genlog sex inccat treat with sex1 inccat1 treat1 sexinc sextreat treatinc /model = poisson /print = estim /plot = none /design inccat1 sex1 sexinc sextreat treat1 treatinc.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Data Information 294 cases are accepted. 0 cases are rejected because of missing data. 294 weighted cases will be used in the analysis. 8 cells are defined. 0 structural zeros are imposed by design. 0 sampling zeros are encountered. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Variable Information Factor Levels Value SEX 2 1.00 male 2.00 female INCCAT 2 .00 1.00 TREAT 2 Has a doctor prescribed or recommended that you take 1.00 yes 2.00 no - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Covariates SEX1 INCCAT1 TREAT1 SEXINC SEXTREAT TREATINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Model and Design Information Model: Poisson Design: Constant + INCCAT1 + SEX1 + SEXINC + SEXTREAT + TREAT1 + TREATINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Correspondence Between Parameters and Terms of the Design Parameter Aliased Term 1 Constant 2 INCCAT1 3 SEX1 4 SEXINC 5 SEXTREAT 6 TREAT1 7 TREATINC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Convergence Information Maximum number of iterations: 20 Relative difference tolerance: .001 Final relative difference: .0003 Maximum likelihood estimation converged at iteration 2. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Goodness-of-fit Statistics Chi-Square DF Sig. Likelihood Ratio .0012 1 .9726 Pearson .0012 1 .9726 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GENERAL LOGLINEAR ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Parameter Estimates Asymptotic 95% CI Parameter Estimate SE Z-value Lower Upper 1 3.5121 .0636 55.25 3.39 3.64 2 -.1784 .0620 -2.88 -.30 -.06 3 -.2246 .0636 -3.53 -.35 -.10 4 .2056 .0633 3.25 .08 .33 5 -.2194 .0630 -3.48 -.34 -.10 6 -.0481 .0627 -.77 -.17 .07 7 .0005 .0623 8.324E-03 -.12 .12
Page 457 top of the page
get file 'c:pma5depress.sav'. compute sex1 = sex - 1. compute treat1 = treat - 1. logistic regression var = treat1 with sex1, inccat.