The FAQ at https://stats.idre.ucla.edu/stat/stata/faq/compreg3.htm shows how you can compare regression coefficients across three groups using xi and by forming interactions. This can also be done using suest as shown below.
use https://stats.idre.ucla.edu/stat/stata/faq/compreg3 regress weight height if age==1 Source | SS df MS Number of obs = 10 -------------+------------------------------ F( 1, 8) = 0.24 Model | 42.657257 1 42.657257 Prob > F = 0.6396 Residual | 1440.94274 8 180.117843 R-squared = 0.0288 -------------+------------------------------ Adj R-squared = -0.0927 Total | 1483.6 9 164.844444 Root MSE = 13.421 ------------------------------------------------------------------------------ weight | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- height | -.3768309 .7743341 -0.49 0.640 -2.162449 1.408787 _cons | 170.1664 49.43018 3.44 0.009 56.18024 284.1526 ------------------------------------------------------------------------------ est store age1 regress weight height if age==2 Source | SS df MS Number of obs = 10 -------------+------------------------------ F( 1, 8) = 359.81 Model | 1319.56112 1 1319.56112 Prob > F = 0.0000 Residual | 29.3388815 8 3.66736019 R-squared = 0.9782 -------------+------------------------------ Adj R-squared = 0.9755 Total | 1348.9 9 149.877778 Root MSE = 1.915 ------------------------------------------------------------------------------ weight | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- height | 2.095872 .110491 18.97 0.000 1.84108 2.350665 _cons | -2.39747 7.053272 -0.34 0.743 -18.66234 13.8674 ------------------------------------------------------------------------------ est store age2 regress weight height if age==3 Source | SS df MS Number of obs = 10 -------------+------------------------------ F( 1, 8) = 669.93 Model | 3882.53627 1 3882.53627 Prob > F = 0.0000 Residual | 46.3637317 8 5.79546646 R-squared = 0.9882 -------------+------------------------------ Adj R-squared = 0.9867 Total | 3928.9 9 436.544444 Root MSE = 2.4074 ------------------------------------------------------------------------------ weight | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- height | 3.189727 .1232367 25.88 0.000 2.905543 3.473912 _cons | 5.601677 8.930197 0.63 0.548 -14.99139 26.19475 ------------------------------------------------------------------------------ est store age3 suest age1 age2 age3 Simultaneous results for age1, age2, age3 Obs = 30 ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age1_mean | height | -.3768309 .496919 -0.76 0.448 -1.350774 .5971124 _cons | 170.1664 31.30796 5.44 0.000 108.804 231.5289 -------------+---------------------------------------------------------------- age1_lnvar | _cons | 5.193611 .3232765 16.07 0.000 4.560001 5.827222 -------------+---------------------------------------------------------------- age2_mean | height | 2.095872 .0862164 24.31 0.000 1.926891 2.264853 _cons | -2.39747 5.668326 -0.42 0.672 -13.50719 8.712246 -------------+---------------------------------------------------------------- age2_lnvar | _cons | 1.299472 .2573396 5.05 0.000 .7950958 1.803848 -------------+---------------------------------------------------------------- age3_mean | height | 3.189727 .1008442 31.63 0.000 2.992077 3.387378 _cons | 5.601677 7.218938 0.78 0.438 -8.547181 19.75054 -------------+---------------------------------------------------------------- age3_lnvar | _cons | 1.757076 .2637826 6.66 0.000 1.240072 2.27408 ------------------------------------------------------------------------------ test [age1_mean]height=[age2_mean]height ( 1) [age1_mean]height - [age2_mean]height = 0 chi2( 1) = 24.04 Prob > chi2 = 0.0000 test [age2_mean]height=[age3_mean]height, accum ( 1) [age1_mean]height - [age2_mean]height = 0 ( 2) [age2_mean]height - [age3_mean]height = 0 chi2( 2) = 102.25 Prob > chi2 = 0.0000