Table 15.1, page 548.
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/firstcocaine, clear generate event = ~censor stset cokeage, failure(event) failure event: event ~= 0 & event ~= . obs. time interval: (0, cokeage] exit on or before: failure ------------------------------------------------------------------------------ 1658 total obs. 0 exclusions ------------------------------------------------------------------------------ 1658 obs. remaining, representing 382 failures in single record/single failure data 56221 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 42 /* Model A */ stcox birthyr earlymj earlyod, efron nohr failure _d: event analysis time _t: cokeage Cox regression -- Efron method for ties No. of subjects = 1658 Number of obs = 1658 No. of failures = 382 Time at risk = 56221 LR chi2(3) = 247.83 Log likelihood = -2638.6141 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .1550843 .0199279 7.78 0.000 .1160263 .1941422 earlymj | 1.217073 .1640307 7.42 0.000 .8955789 1.538567 earlyod | .7911743 .1962008 4.03 0.000 .4066279 1.175721 ------------------------------------------------------------------------------ display -2*e(ll) " " -2*(e(ll)-e(df_m)) 5277.2282 5283.2282 /* Model B */ use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/firstcocaine, clear generate event = ~censor expand cokeage sort id by id: generate t = _n generate event2 = 0 by id: replace event2 = event if _n==_N generate usemj = 0 replace usemj = 1 if t>mjage generate useod = 0 replace useod = 1 if t>odage compress stset t, fail(event2) id(id) stcox birthyr usemj useod, nohr efron failure _d: event2 analysis time _t: t id: id Cox regression -- Efron method for ties No. of subjects = 1658 Number of obs = 56221 No. of failures = 382 Time at risk = 56221 LR chi2(3) = 855.96 Log likelihood = -2334.5481 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .107414 .0214486 5.01 0.000 .0653754 .1494526 usemj | 2.551764 .2809543 9.08 0.000 2.001104 3.102425 useod | 1.853868 .1292125 14.35 0.000 1.600616 2.107119 ------------------------------------------------------------------------------ display -2*e(ll) " " -2*(e(ll)-e(df_m)) 4669.0962 4675.0962 /* Model C */ generate soldmj = 0 replace soldmj = 1 if t>sellmjage generate moreod = 0 replace moreod = 1 if t>sdage stcox birthyr usemj soldmj useod moreod, nohr efron failure _d: event2 analysis time _t: t id: id Cox regression -- Efron method for ties No. of subjects = 1658 Number of obs = 56221 No. of failures = 382 Time at risk = 56221 LR chi2(5) = 944.52 Log likelihood = -2290.2684 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .0849289 .0218326 3.89 0.000 .0421378 .1277201 usemj | 2.459197 .283572 8.67 0.000 1.903406 3.014988 soldmj | .6898893 .1226253 5.63 0.000 .4495482 .9302304 useod | 1.251102 .1565606 7.99 0.000 .944249 1.557955 moreod | .7603747 .1306618 5.82 0.000 .5042824 1.016467 ------------------------------------------------------------------------------ display -2*e(ll) " " -2*(e(ll)-e(df_m)) 4580.5369 4590.5369 /* Model D */ stcox birthyr earlymj usemj soldmj earlyod useod moreod, nohr efron failure _d: event2 analysis time _t: t id: id Cox regression -- Efron method for ties No. of subjects = 1658 Number of obs = 56221 No. of failures = 382 Time at risk = 56221 LR chi2(7) = 944.75 Log likelihood = -2290.1554 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .0835003 .0225715 3.70 0.000 .039261 .1277395 earlymj | .0752714 .1709014 0.44 0.660 -.2596892 .4102319 usemj | 2.452513 .2842857 8.63 0.000 1.895323 3.009702 soldmj | .6788679 .1249547 5.43 0.000 .4339611 .9237747 earlyod | -.0802819 .2032497 -0.39 0.693 -.4786439 .3180802 useod | 1.25428 .1572314 7.98 0.000 .9461116 1.562448 moreod | .7637909 .1321908 5.78 0.000 .5047017 1.02288 ------------------------------------------------------------------------------ display -2*e(ll) " " -2*(e(ll)-e(df_m)) 4580.3108 4594.3108
Table 15.2, page 555.
We have not worked this example yet, but here is how you can get the data.
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/relapse_days, clear
Table 15.3, page 560.
Note: Uses data from Table 15.1, Model C. The unstratified model is not repeated.
/* stratified model */ stcox birthyr usemj soldmj useod moreod, nohr efron strat(rural) failure _d: event2 analysis time _t: t id: id Stratified Cox regr. -- Efron method for ties No. of subjects = 1658 Number of obs = 56221 No. of failures = 382 Time at risk = 56221 LR chi2(5) = 928.30 Log likelihood = -2135.9495 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .0853703 .0218743 3.90 0.000 .0424974 .1282432 usemj | 2.457945 .2837022 8.66 0.000 1.901899 3.013991 soldmj | .6847278 .1228423 5.57 0.000 .4439613 .9254944 useod | 1.251934 .1566545 7.99 0.000 .9448965 1.558971 moreod | .7468379 .1312596 5.69 0.000 .4895738 1.004102 ------------------------------------------------------------------------------ Stratified by rural display -2*e(ll) 4271.899 /* nonrural model */ stcox birthyr usemj soldmj useod moreod if ~rural, nohr efron failure _d: event2 analysis time _t: t id: id Cox regression -- Efron method for ties No. of subjects = 1316 Number of obs = 44333 No. of failures = 328 Time at risk = 44333 LR chi2(5) = 776.89 Log likelihood = -1904.6792 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .0812738 .0235786 3.45 0.000 .0350607 .127487 usemj | 2.436957 .3154511 7.73 0.000 1.818684 3.05523 soldmj | .7151351 .1312688 5.45 0.000 .457853 .9724171 useod | 1.272721 .1715663 7.42 0.000 .936457 1.608985 moreod | .6924939 .1410193 4.91 0.000 .416101 .9688867 ------------------------------------------------------------------------------ display -2*e(ll) 3809.3584 /* rural model */ stcox birthyr usemj soldmj useod moreod if rural, nohr efron failure _d: event2 analysis time _t: t id: id Cox regression -- Efron method for ties No. of subjects = 342 Number of obs = 11888 No. of failures = 54 Time at risk = 11888 LR chi2(5) = 153.00 Log likelihood = -230.47825 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- birthyr | .1097733 .0584298 1.88 0.060 -.0047469 .2242935 usemj | 2.517957 .6487525 3.88 0.000 1.246425 3.789488 soldmj | .4541637 .352952 1.29 0.198 -.2376095 1.145937 useod | 1.145638 .3842576 2.98 0.003 .3925069 1.898769 moreod | 1.105014 .3523088 3.14 0.002 .4145017 1.795527 ------------------------------------------------------------------------------ display -2*e(ll) 460.9565
Table 15.4 Page 566. Notice that the data set has a duplicated id. This will cause problem when we perform stset with the id option. We assume that this is a data entry error that the id should be recoded to other unique number.
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/lengthofstay, clear
duplicates list id
Duplicates in terms of id
+------------+ | obs: id | |------------| | 86 845 | | 87 845 | +------------+
replace id = 80000 if _n==87 (1 real change made)
stset days, failure(censor= 0) id(id)
id: id failure event: censor == 0 obs. time interval: (days[_n-1], days] exit on or before: failure
------------------------------------------------------------------------------ 174 total obs. 0 exclusions ------------------------------------------------------------------------------ 174 obs. remaining, representing 174 subjects 172 failures in single failure-per-subject data 4938 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 100
Model A:
stcox treat, nohr efron
Cox regression -- Efron method for ties
No. of subjects = 174 Number of obs = 174 No. of failures = 172 Time at risk = 4938 LR chi2(1) = 0.89 Log likelihood = -718.31392 Prob > chi2 = 0.3449
------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- treat | .1457002 .1541486 0.95 0.345 -.1564254 .4478259 ------------------------------------------------------------------------------
Model B:
stsplit new, every(1) (4764 observations (episodes) created)
gen tt1 = treat*(_t-1) stcox treat tt1, nohr efron
Cox regression -- Efron method for ties
No. of subjects = 174 Number of obs = 4938 No. of failures = 172 Time at risk = 4938 LR chi2(2) = 6.15 Log likelihood = -715.68705 Prob > chi2 = 0.0463
------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- treat | .7064112 .2924036 2.42 0.016 .1333106 1.279512 tt1 | -.0208327 .0092073 -2.26 0.024 -.0388786 -.0027868 ------------------------------------------------------------------------------
Model C:
recode _t (min/7 = 1) (8/14 = 2) (15/21=3) (22/28=4) (29/35=5) (35/max=6), gen(catt) (4764 differences between _t and catt)
tab catt, gen(trt)
RECODE of | _t | Freq. Percent Cum. ------------+----------------------------------- 1 | 1,169 23.67 23.67 2 | 1,060 21.47 45.14 3 | 893 18.08 63.22 4 | 652 13.20 76.43 5 | 386 7.82 84.24 6 | 778 15.76 100.00 ------------+----------------------------------- Total | 4,938 100.00
foreach X of numlist 1/6 { 2. replace trt`X' = trt`X'*treat 3. } (616 real changes made) (585 real changes made) (506 real changes made) (398 real changes made) (209 real changes made) (357 real changes made)
stcox trt1 - trt6, nohr efron
Cox regression -- Efron method for ties
No. of subjects = 174 Number of obs = 4938 No. of failures = 172 Time at risk = 4938 LR chi2(6) = 19.74 Log likelihood = -708.89176 Prob > chi2 = 0.0031
------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- trt1 | 1.571139 .6406079 2.45 0.014 .3155702 2.826707 trt2 | .5677856 .4928543 1.15 0.249 -.398191 1.533762 trt3 | .8497044 .3620698 2.35 0.019 .1400607 1.559348 trt4 | -.3498585 .3641467 -0.96 0.337 -1.063573 .3638559 trt5 | -.7696889 .4159832 -1.85 0.064 -1.585001 .0456231 trt6 | -.069058 .3144735 -0.22 0.826 -.6854147 .5472987 ------------------------------------------------------------------------------
Model D:
gen t_lgtrt = treat*log(_t)/log(2) stcox treat t_lgtrt, nolog nohr efron
failure _d: censor == 0 analysis time _t: days id: id
Cox regression -- Efron method for ties
No. of subjects = 174 Number of obs = 4938 No. of failures = 172 Time at risk = 4938 LR chi2(2) = 14.46 Log likelihood = -711.53087 Prob > chi2 = 0.0007
------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- treat | 2.533511 .7603294 3.33 0.001 1.043292 4.023729 t_lgtrt | -.5301232 .1618843 -3.27 0.001 -.8474105 -.2128358 ------------------------------------------------------------------------------
Figure 15.4, Page 573
Top panel:
stcox treat, nohr strata(treat) basechazard(H0) efron
Stratified Cox regr. -- Efron method for ties
No. of subjects = 174 Number of obs = 4938 No. of failures = 172 Time at risk = 4938 LR chi2(1) = 0.00 Log likelihood = -602.5695 Prob > chi2 = 1.0000
------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- treat | (dropped) ------------------------------------------------------------------------------ Stratified by treat
gen logH0 = log(H0) (528 missing values generated)
separate logH0, by(treat) gen(y)
storage display value variable name type format label variable label ------------------------------------------------------------------------------- y0 float %9.0g logH0, treat == 0 y1 float %9.0g logH0, treat == 1
line y1 y0 _t if _t<=77, sort ylab(-4(1) 2) xlab(0(7) 77)
Bottom panel using the steps for the top panel.
keep _t treat y0 y1
save whole, replace file whole.dta saved
drop if treat ==0 (412 observations deleted)
drop y0 sort _t save treat1, replace file treat1.dta saved use whole, clear
drop if treat==1 (358 observations deleted)
drop y1 sort _t
save treat0, replace file treat0.dta saved merge _t using treat1 gen diff= y1-y0 (37 missing values generated)
line diff _t if _t<=77, sort ylab(-.25(.25) 1.75) xlab(0(7) 77)
Table 15.8, Page 601
We have not worked this example yet, but here is how you can get the data.
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/doctors, clear
Table 15.9, Page 604
We have not worked this example yet, but here is how you can get the data.
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/monkeys, clear