Please note that the early_int data file (which is used in Chapter 3) is not included among the data files. This was done at the request of the researcher who contributed this data file to ensure the privacy of the participants in the study. Although the web page shows how to obtain the results with this data file, we regret that visitors do not have access to this file to be able to replicate the results for themselves.
Table 3.1, page 48.
use earlyint_pp, clear list id age cog program in 1/12 id age cog program 1. 68 1 103 1 2. 68 1.5 119 1 3. 68 2 96 1 4. 70 1 106 1 5. 70 1.5 107 1 6. 70 2 96 1 7. 71 1 112 1 8. 71 1.5 86 1 9. 71 2 73 1 10. 72 1 100 1 11. 72 1.5 93 1 12. 72 2 87 1 list id age cog program in 175/186 id age cog program 175. 902 1 119 0 176. 902 1.5 93 0 177. 902 2 99 0 178. 904 1 112 0 179. 904 1.5 98 0 180. 904 2 79 0 181. 906 1 89 0 182. 906 1.5 66 0 183. 906 2 81 0 184. 908 1 117 0 185. 908 1.5 90 0 186. 908 2 76 0
Figure 3.1, page 50.
generate select = inlist(id,68,70,71,72,902,904,906,908) keep if select graph twoway (lfit cog age)(scatter cog age), by(id)
Figure 3.3, page 57.
use earlyint_pp, clear egen grp=group(id) generate p1=. forvalues i = 1/103 { quietly regress cog age if grp==`i' quietly predict p quietly replace p1=p if grp==`i' quietly drop p } graph twoway (scatter p1 age, msym(i) connect(L))(lfit cog age), legend(off) statsby _b[_cons] _b[time] (e(rmse)^2), by(id): regress cog time stem _stat_1, round(1) Stem-and-leaf plot for _stat_1 (_b[_cons]) _stat_1 rounded to integers _stat_1 rounded to integers 5. | 7 6* | 6. | 7* | 7. | 7 8* | 34 8. | 89 9* | 344 9. | 6666677799 10* | 0012222244 10. | 55666788999 11* | 000111112222333334444 11. | 55677777888999 12* | 12233344 12. | 5556778999 13* | 0013 13. | 55568 14* | 0 stem _stat_2 Stem-and-leaf plot for _stat_2 (_b[time]) -4* | 443111 -3. | 987 -3* | 443322100000 -2. | 9999877776655 -2* | 44322211110000 -1. | 99888877666655 -1* | 4333322211000 -0. | 99998888777765 -0* | 4444332 0* | 134 0. | 79 1* | 0 1. | 2* | 0 stem _stat_3, round(1) lines(1) Stem-and-leaf plot for _stat_3 (e(rmse)^2) _stat_3 rounded to integers 0* | 0000111122233334444444466668 1* | 111114447 2* | 044448888 3* | 33338888888 4* | 3338 5* | 44 6* | 777 7* | 44 8* | 111888 9* | 6666 10* | 444 11* | 33 12* | 2 13* | 1 14* | 15* | 16* | 000 17* | 11 18* | 19* | 3 20* | 21* | 22* | 8 23* | 24* | 1 25* | 444 26* | 7 27* | 28* | 29* | 4 30* | 31* | 32* | 3 33* | 34* | 35* | 36* | 8 37* | 38* | 39* | 40* | 00 41* | 42* | 43* | 44* | 45* | 46* | 8
Figure 3.4, page 59.
use earlyint_pp, clear egen grp=group(id) generate p1=. forvalues i = 1/103 { quietly regress cog age if grp==`i' quietly predict p quietly replace p1=p if grp==`i' quietly drop p } graph twoway (scatter p1 age if program==0, msym(i) connect(L))(lfit cog age if program==0), legend(off) graph twoway (scatter p1 age if program==1, msym(i) connect(L))(lfit cog age if program==1), legend(off)
Table 3.3, page 69.
Note: The xtmixed command is new to Stata 9.
generate prg_time = program*time xtmixed cog program time prg_time || id: time, variance cov(un) mle Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -1186.0251 [Iterations ommitted ] Iteration 9: log likelihood = -1184.9703 Computing standard errors: Mixed-effects ML regression Number of obs = 309 Group variable: id Number of groups = 103 Obs per group: min = 3 avg = 3.0 max = 3 Wald chi2(3) = 242.63 Log likelihood = -1184.9703 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ cog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- program | 6.854662 2.71105 2.53 0.011 1.541101 12.16822 time | -21.13333 1.883386 -11.22 0.000 -24.8247 -17.44196 prg_time | 5.271264 2.509829 2.10 0.036 .3520907 10.19044 _cons | 107.8407 2.034384 53.01 0.000 103.8534 111.8281 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ id: Unstructured | var(time) | 10.08915 8.747843 1.844236 55.19411 var(_cons) | 123.9371 25.82037 82.38856 186.4387 cov(time,_cons) | -35.36098 18.02242 -70.68427 -.0376942 -----------------------------+------------------------------------------------ var(Residual) | 74.76618 7.370867 61.62955 90.70295 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(3) = 89.46 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference estat ic ------------------------------------------------------------------------------ Model | Obs ll(null) ll(model) df AIC BIC -------------+---------------------------------------------------------------- | 309 . -1184.97 8 2385.941 2415.807 ------------------------------------------------------------------------------
Figure 3.5 on page 71.
predict pred sort prog age twoway scatter cog pred age, msymbol(i i) connect(. L) /// ylabel(50(25)150) xlabel(1(.5)2) legend(off)