• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Institute for Digital Research and Education

Image

  • HOME
  • SOFTWARE
    • R
    • Stata
    • SAS
    • SPSS
    • Mplus
    • Other Packages
      • G*Power
      • SUDAAN
      • Sample Power
  • RESOURCES
    • Annotated Output
    • Data Analysis Examples
    • Frequently Asked Questions
    • Seminars
    • Textbook Examples
    • Which Statistical Test?
  • SERVICES
    • Remote Consulting
    • Services and Policies
      • Walk-In Consulting
      • Email Consulting
      • Fee for Service
      • FAQ
    • Software Purchasing and Updating
    • Consultants for Hire
    • Other Consulting Centers
      • Department of Statistics Consulting Center
      • Department of Biomathematics Consulting Clinic
  • ABOUT US

Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence by Judith D. Singer and John B. Willett Chapter 5: Treating TIME More Flexibly | Stata Textbook Examples


Table 5.1 on page 141 using reading_pp data.

use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/reading_pp, clear

list if inlist(id, 4, 27, 31, 33, 41, 49, 69, 77, 87)
     +--------------------------------------+
     | id   wave   agegrp        age   piat |
     |--------------------------------------|
 10. |  4      1      6.5          6     18 |
 11. |  4      2      8.5        8.5     31 |
 12. |  4      3     10.5   10.66667     50 |
 79. | 27      1      6.5       6.25     19 |
 80. | 27      2      8.5   9.166667     36 |
     |--------------------------------------|
 81. | 27      3     10.5   10.91667     57 |
 91. | 31      1      6.5   6.333333     18 |
 92. | 31      2      8.5   8.833333     31 |
 93. | 31      3     10.5   10.91667     51 |
 97. | 33      1      6.5   6.333333     18 |
     |--------------------------------------|
 98. | 33      2      8.5   8.916667     34 |
 99. | 33      3     10.5      10.75     29 |
121. | 41      1      6.5   6.333333     18 |
122. | 41      2      8.5       8.75     28 |
123. | 41      3     10.5   10.83333     36 |
     |--------------------------------------|
145. | 49      1      6.5        6.5     19 |
146. | 49      2      8.5       8.75     32 |
147. | 49      3     10.5   10.66667     48 |
205. | 69      1      6.5   6.666667     26 |
206. | 69      2      8.5   9.166667     47 |
     |--------------------------------------|
207. | 69      3     10.5   11.33333     45 |
229. | 77      1      6.5   6.833333     17 |
230. | 77      2      8.5   8.083333     19 |
231. | 77      3     10.5         10     28 |
259. | 87      1      6.5   6.916667     22 |
     |--------------------------------------|
260. | 87      2      8.5   9.416667     49 |
261. | 87      3     10.5       11.5     64 |
     +--------------------------------------+

Figure 5.1 on page 143.

preserve
keep if inlist(id, 4, 27, 31, 33, 41, 49, 69, 77, 87)
graph twoway (scatter piat age) (scatter piat agegrp) (lfit piat age, legend(off)) ///
(lfit piat agegrp, legend(off)) , by(id) ylabel(0(20)80) xlabel(6(1) 12) 

Image fig5_1-2


Table 5.2 on page 145.

Part 1: Unconditional growth model on centered agegrp variable.

gen cagegrp = agegrp - 6.5
xtmixed piat cagegrp || id: cagegrp, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -910.13718  
Iteration 1:   log likelihood = -909.97622  
Iteration 2:   log likelihood = -909.97465  
Iteration 3:   log likelihood = -909.97465  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       267
Group variable: id                              Number of groups   =        89
                                                Obs per group: min =         3
                                                               avg =       3.0
                                                               max =         3
                                                Wald chi2(1)       =    289.62
Log likelihood = -909.97465                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        piat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     cagegrp |   5.030899   .2956204    17.02   0.000     4.451494    5.610304
       _cons |   21.16292   .6142662    34.45   0.000     19.95898    22.36686
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                var(cagegrp) |    4.39745   1.271306      2.495273    7.749681
                  var(_cons) |   11.04583    6.06258      3.767131    32.38815
          cov(cagegrp,_cons) |   1.646659   2.062946     -2.396641    5.689959
-----------------------------+------------------------------------------------
               var(Residual) |   27.04309   4.053927      20.15839    36.27911
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =    86.92   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Part 2: Unconditional growth model on centered age variable.

gen cage = age - 6.5
xtmixed piat cage || id: cage, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood =  -902.4384  
Iteration 1:   log likelihood = -901.98942  
Iteration 2:   log likelihood = -901.95011  
Iteration 3:   log likelihood =  -901.9478  
Iteration 4:   log likelihood = -901.94777  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       267
Group variable: id                              Number of groups   =        89
                                                Obs per group: min =         3
                                                               avg =       3.0
                                                               max =         3
                                                Wald chi2(1)       =    303.42
Log likelihood = -901.94777                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        piat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        cage |   4.540021   .2606349    17.42   0.000     4.029186    5.050856
       _cons |   21.06082   .5593131    37.65   0.000     19.96458    22.15705
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                   var(cage) |   3.301472   1.014522      1.807751    6.029435
                  var(_cons) |   5.107369   6.028915      .5051372    51.63986
             cov(cage,_cons) |   2.366531   1.802022     -1.165368     5.89843
-----------------------------+------------------------------------------------
               var(Residual) |   27.44634   4.371408      20.08689    37.50216
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =    88.91   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Table 5.3 on page 147 using wages_pp data.

clear
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/wages_pp
list exper lnw black hgc uerate if id == 206 | id == 332 | id ==1028
      +--------------------------------------+
      | exper     lnw   black   hgc   uerate |
      |--------------------------------------|
  75. | 1.874   2.028       0    10      9.2 |
  76. | 2.814   2.297       0    10       11 |
  77. | 4.314   2.482       0    10    6.295 |
 197. |  .125    1.63       0     8      7.1 |
 198. | 1.625   1.476       0     8      9.6 |
      |--------------------------------------|
 199. | 2.413   1.804       0     8      7.2 |
 200. | 3.393   1.439       0     8    6.195 |
 201. |  4.47   1.748       0     8    5.595 |
 202. | 5.178   1.526       0     8    4.595 |
 203. | 6.082   2.044       0     8    4.295 |
      |--------------------------------------|
 204. | 7.043   2.179       0     8    3.395 |
 205. | 8.197   2.186       0     8    4.395 |
 206. | 9.092   4.035       0     8    6.695 |
 466. |  .004    .872       1     8      9.3 |
 467. |  .035    .903       1     8      7.4 |
      |--------------------------------------|
 468. |  .515   1.389       1     8      7.3 |
 469. | 1.483   2.324       1     8      7.4 |
 470. | 2.141   1.484       1     8    6.295 |
 471. | 3.161   1.705       1     8    5.895 |
 472. | 4.103   2.343       1     8      6.9 |
      +--------------------------------------+

Table 5.4 on page 149.

Model A: Unconditional growth model

xtmixed lnw exper || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2460.7432  
Iteration 1:   log likelihood = -2460.6972  
Iteration 2:   log likelihood = -2460.6971  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(1)       =    380.59
Log likelihood = -2460.6971                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       exper |   .0456807   .0023416    19.51   0.000     .0410913    .0502701
       _cons |   1.715604   .0107965   158.90   0.000     1.694443    1.736765
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |    .001726     .00022      .0013444    .0022158
                  var(_cons) |   .0542681   .0050012      .0453001    .0650114
            cov(exper,_cons) |  -.0029149    .000869      -.004618   -.0012118
-----------------------------+------------------------------------------------
               var(Residual) |   .0951047   .0019442      .0913694    .0989927
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1580.05   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model B: Conditional growth model

gen hgc_exper = hgc_9*exper
gen bxexp = black*exper
xi: xtmixed lnw exper black hgc_9 hgc_exper bxexp || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2436.9369  
Iteration 1:   log likelihood = -2436.8758  
Iteration 2:   log likelihood = -2436.8757  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(5)       =    441.56
Log likelihood = -2436.8757                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       exper |   .0493428   .0026317    18.75   0.000     .0441848    .0545008
       black |   .0153954   .0239265     0.64   0.520    -.0314996    .0622905
       hgc_9 |   .0349201   .0078815     4.43   0.000     .0194727    .0503675
   hgc_exper |   .0012794   .0017232     0.74   0.458    -.0020979    .0046568
       bxexp |  -.0182129   .0054991    -3.31   0.001    -.0289911   -.0074348
       _cons |   1.717139   .0125424   136.91   0.000     1.692556    1.741721
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016358   .0002139       .001266    .0021137
                  var(_cons) |   .0517481   .0048685      .0430341    .0622265
            cov(exper,_cons) |  -.0028508   .0008441     -.0045052   -.0011965
-----------------------------+------------------------------------------------
               var(Residual) |   .0951938   .0019462      .0914547    .0990857
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1465.80   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model C: conditional growth model

xi: xtmixed lnw exper hgc_9 bxexp || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2437.4097  
Iteration 1:   log likelihood = -2437.3518  
Iteration 2:   log likelihood = -2437.3518  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(3)       =    439.40
Log likelihood = -2437.3518                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       exper |    .048847   .0025134    19.43   0.000     .0439208    .0537732
       hgc_9 |   .0383608   .0064334     5.96   0.000     .0257516      .05097
       bxexp |   -.016115   .0045114    -3.57   0.000    -.0249571   -.0072729
       _cons |   1.721475   .0106971   160.93   0.000     1.700509    1.742441
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016467   .0002141      .0012762    .0021247
                  var(_cons) |   .0518309   .0048732      .0431081    .0623188
            cov(exper,_cons) |  -.0028798   .0008455     -.0045369   -.0012227
-----------------------------+------------------------------------------------
               var(Residual) |   .0951735   .0019453      .0914361    .0990637
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1474.50   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Figure 5.2 on page 150. We will have to create a data set first for generating predicted values for different groups.

input exper hgc_9 black group
exper      hgc_9      black      group
0  0 0 1
10 0 0 1
0  0 1 2
10 0 1 2
0  3 0 3
10 3 0 3
0  3 1 4
10 3 1 4
end

gen bxexp = black*exper
save fig5_2
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/wages_pp, clear
gen bxexp = black*exper
xi: xtmixed lnw exper hgc_9 bxexp || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2437.4097  
Iteration 1:   log likelihood = -2437.3518  
Iteration 2:   log likelihood = -2437.3518  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(3)       =    439.40
Log likelihood = -2437.3518                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       exper |    .048847   .0025134    19.43   0.000     .0439208    .0537732
       hgc_9 |   .0383608   .0064334     5.96   0.000     .0257516      .05097
       bxexp |   -.016115   .0045114    -3.57   0.000    -.0249571   -.0072729
       _cons |   1.721475   .0106971   160.93   0.000     1.700509    1.742441
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016467   .0002141      .0012762    .0021247
                  var(_cons) |   .0518309   .0048732      .0431081    .0623188
            cov(exper,_cons) |  -.0028798   .0008455     -.0045369   -.0012227
-----------------------------+------------------------------------------------
               var(Residual) |   .0951735   .0019453      .0914361    .0990637
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1474.50   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
use fig5_2, clear
predict p
(option xb assumed)
twoway scatter p exper, c(L) ytitle("predicted lnw")
Image fig5_2-1

Table 5.5 on page 154 using wages_small_pp data. Stata does not have problem estimating this model.

use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/wages_small_pp
gen bexper = black*exper
xtmixed lnw hgc_9 exper bexper || id: exper, var mle cov(un)
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -144.13188  
Iteration 1:   log likelihood = -142.21488  
Iteration 2:   log likelihood = -142.01812  
Iteration 3:   log likelihood =  -141.9574  
Iteration 4:   log likelihood =  -141.9398  
Iteration 5:   log likelihood = -141.93609  
Iteration 6:   log likelihood = -141.93515  
Iteration 7:   log likelihood = -141.93492  
Iteration 8:   log likelihood = -141.93487  
Iteration 9:   log likelihood = -141.93486  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       257
Group variable: id                              Number of groups   =       124
                                                Obs per group: min =         1
                                                               avg =       2.1
                                                               max =         3
                                                Wald chi2(3)       =     11.96
Log likelihood = -141.93486                     Prob > chi2        =    0.0075
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hgc_9 |   .0461057    .024471     1.88   0.060    -.0018565    .0940679
       exper |   .0516136   .0210767     2.45   0.014      .010304    .0929232
      bexper |  -.0596725   .0347673    -1.72   0.086    -.1278152    .0084701
       _cons |   1.737337   .0475981    36.50   0.000     1.644046    1.830628
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   3.57e-06   .0000829      5.94e-26    2.14e+14
                  var(_cons) |   .0821216   .0320226      .0382418    .1763503
            cov(exper,_cons) |   .0005401   .0061749     -.0115624    .0126427
-----------------------------+------------------------------------------------
               var(Residual) |   .1149779   .0147141      .0894713    .1477561
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =    23.71   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Fixed rates of change approach:

xi: xtmixed lnw exper hgc_9 bxexp || id: , mle var 
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -141.94137  
Iteration 1:   log likelihood = -141.93861  
Iteration 2:   log likelihood = -141.93861  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       257
Group variable: id                              Number of groups   =       124
                                                Obs per group: min =         1
                                                               avg =       2.1
                                                               max =         3
                                                Wald chi2(3)       =     12.09
Log likelihood = -141.93861                     Prob > chi2        =    0.0071
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       exper |   .0517798   .0209332     2.47   0.013     .0107516    .0928081
       hgc_9 |   .0457585   .0244959     1.87   0.062    -.0022525    .0937696
       bxexp |  -.0600723   .0345782    -1.74   0.082    -.1278443    .0076996
       _cons |   1.737344   .0477509    36.38   0.000     1.643754    1.830934
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Identity                 |
                  var(_cons) |   .0842504   .0211917      .0514597    .1379356
-----------------------------+------------------------------------------------
               var(Residual) |   .1147999   .0145473      .0895526    .1471652
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) =    23.71 Prob >= chibar2 = 0.0000

Table 5.6 on page 161 using unemployment_pp data.

use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/unemployment_pp, clear
list id months cesd unemp if id == 7589 | id == 55697 | id == 67641 | id ==65441 | id == 53782
     +---------------------------------+
     |    id     months   cesd   unemp |
     |---------------------------------|
212. |  7589   1.314168     36       1 |
213. |  7589   5.092402     40       1 |
214. |  7589   11.79466     39       1 |
454. | 53782   .4271047     22       1 |
455. | 53782   4.238193     15       0 |
     |---------------------------------|
456. | 53782   11.07187     21       1 |
504. | 55697   1.347023      7       1 |
505. | 55697   5.782341      4       1 |
623. | 65441   1.084189     27       1 |
624. | 65441   4.698152     15       1 |
     |---------------------------------|
625. | 65441   11.26899      7       0 |
647. | 67641   .3285421     32       1 |
648. | 67641   4.106776      9       0 |
649. | 67641   10.94045     10       0 |
     +---------------------------------+

Table 5.7 on page 163.

Model A: Initial growth model:

xi: xtmixed cesd months || id:  months, mle cov(un) var 
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2567.3171  
Iteration 1:   log likelihood = -2566.5828  
Iteration 2:   log likelihood = -2566.5688  
Iteration 3:   log likelihood = -2566.5687  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       674
Group variable: id                              Number of groups   =       254
                                                Obs per group: min =         1
                                                               avg =       2.7
                                                               max =         3
                                                Wald chi2(1)       =     25.86
Log likelihood = -2566.5687                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |  -.4219943   .0829791    -5.09   0.000    -.5846302   -.2593583
       _cons |   17.66936   .7755634    22.78   0.000     16.14929    19.18944
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .3550396   .1844914      .1282217    .9830869
                  var(_cons) |    86.8483   14.96308      61.95951    121.7348
           cov(months,_cons) |  -3.057268   1.384603     -5.771041   -.3434951
-----------------------------+------------------------------------------------
               var(Residual) |   68.85002    6.60262      57.05254      83.087
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   106.52   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model B: Main effect of unemployment

xi: xtmixed cesd months unemp || id: months, mle cov(un) var 
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2554.2517  
Iteration 1:   log likelihood = -2553.8054  
Iteration 2:   log likelihood = -2553.8016  
Iteration 3:   log likelihood = -2553.8016  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       674
Group variable: id                              Number of groups   =       254
                                                Obs per group: min =         1
                                                               avg =       2.7
                                                               max =         3
                                                Wald chi2(2)       =     52.78
Log likelihood = -2553.8016                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |  -.2019835   .0933162    -2.16   0.030      -.38488    -.019087
       unemp |   5.111305   .9888446     5.17   0.000     3.173205    7.049405
       _cons |    12.6656   1.242071    10.20   0.000     10.23118    15.10001
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .4647019   .1797873      .2176985    .9919587
                  var(_cons) |   93.51871   14.82016      68.54982    127.5824
           cov(months,_cons) |  -3.894087   1.370257     -6.579741   -1.208433
-----------------------------+------------------------------------------------
               var(Residual) |   62.38761   6.013247      51.64818    75.36013
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   114.84   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model C: Effect of unemployment on initial status and growth rate

gen unempxmth = unemp*months
xi: xtmixed cesd months unemp unempxmth|| id: months, mle cov(un) var 
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2551.9898  
Iteration 1:   log likelihood = -2551.5272  
Iteration 2:   log likelihood = -2551.5235  
Iteration 3:   log likelihood = -2551.5235  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =       674
Group variable: id                              Number of groups   =       254
                                                Obs per group: min =         1
                                                               avg =       2.7
                                                               max =         3
                                                Wald chi2(3)       =     57.88
Log likelihood = -2551.5235                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |    .162036   .1936623     0.84   0.403    -.2175351    .5416072
       unemp |   8.529059   1.877875     4.54   0.000     4.848492    12.20963
   unempxmth |  -.4652222   .2172146    -2.14   0.032     -.890955   -.0394895
       _cons |   9.616744   1.889309     5.09   0.000     5.913766    13.31972
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .4512058   .1773447      .2088397    .9748464
                  var(_cons) |   93.71305   14.77709      68.79849    127.6501
           cov(months,_cons) |  -3.873144   1.358796     -6.536335   -1.209953
-----------------------------+------------------------------------------------
               var(Residual) |   62.03126   5.965555      51.37484     74.8981
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   116.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model D: This model is problematic. The problem with this example is that the variance-covariance matrix of the three random effects is singular. The determinant is negative. Different algorithms and packages react differently to this situation. Many researchers might consider this an unacceptable model. Stata was not able to estimate standard errors for the random effects variance components using the default NR algorithm. Experimentation with other estimators produced no results at all. So we decided to show the solution using the default algorithm even though the standard errors of the random effects are missing.

xi: xtmixed cesd unemp unempxmth || id: unemp unempxmth , mle cov(un) var  
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2552.1214  
Iteration 1:   log likelihood = -2548.5862  
Iteration 2:   log likelihood = -2548.1007  
Iteration 3:   log likelihood = -2547.7787  
Iteration 4:   log likelihood = -2547.6959  
Iteration 5:   log likelihood = -2547.6587  
Iteration 6:   log likelihood = -2547.6504  
Iteration 7:   log likelihood = -2547.6481  (not concave)
Iteration 8:   log likelihood =  -2547.648  
Iteration 9:   log likelihood = -2547.6475  
Iteration 10:  log likelihood = -2547.6474  
Iteration 11:  log likelihood = -2547.6474  
Iteration 12:  log likelihood = -2547.6474  (not concave)
Iteration 13:  log likelihood = -2547.6474  
Iteration 14:  log likelihood = -2547.6474  (not concave)
Iteration 15:  log likelihood = -2547.6474  
Computing standard errors:
standard error calculation failed
Mixed-effects ML regression                     Number of obs      =       674
Group variable: id                              Number of groups   =       254
                                                Obs per group: min =         1
                                                               avg =       2.7
                                                               max =         3
                                                Wald chi2(2)       =     55.93
Log likelihood = -2547.6474                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       unemp |   6.927277    .930033     7.45   0.000     5.104445    8.750108
   unempxmth |  -.3029831   .1120893    -2.70   0.007    -.5226741   -.0832921
       _cons |   11.19491   .7898805    14.17   0.000     9.646771    12.74305
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(unemp) |   44.96733          .             .           .
               var(unempx~h) |    .753401          .             .           .
                  var(_cons) |   45.25229          .             .           .
         cov(unemp,unempx~h) |  -5.628865          .             .           .
            cov(unemp,_cons) |   6.544479          .             .           .
         cov(unempx~h,_cons) |   .6510678          .             .           .
-----------------------------+------------------------------------------------
               var(Residual) |   59.01838          .             .           .
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(6) =   124.60   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Figure 5.3 on page 165 based on model B from the previous example. We will have to create a small data set for generating predicted values.

input months unemp group
0  1  1
5  1  1
14 1  1
0  1  2
5  1  2
5  0  2
14 0  2
0  1  3 
10 1  3 
10 0  3
14 0  3
0  1  4
5  1  4
5  0  4
10 0  4
10 1  4
14 1  4
end
save fig5_3
file fig5_3.dta saved
use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/unemployment_pp, clear
xtmixed cesd months unemp || id:  months, cov(un) var  mle nolog
Mixed-effects ML regression                     Number of obs      =       674
Group variable: id                              Number of groups   =       254
                                                Obs per group: min =         1
                                                               avg =       2.7
                                                               max =         3
                                                Wald chi2(2)       =     52.78
Log likelihood = -2553.8016                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |  -.2019835   .0933162    -2.16   0.030      -.38488    -.019087
       unemp |   5.111305   .9888446     5.17   0.000     3.173205    7.049405
       _cons |    12.6656   1.242071    10.20   0.000     10.23118    15.10001
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .4647019   .1797873      .2176985    .9919587
                  var(_cons) |   93.51871   14.82016      68.54982    127.5824
           cov(months,_cons) |  -3.894087   1.370257     -6.579741   -1.208433
-----------------------------+------------------------------------------------
               var(Residual) |   62.38761   6.013247      51.64818    75.36013
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   114.84   Prob > chi2 = 0.0000
use fig5_3,  clear
predict p
(option xb assumed)
twoway scatter p month, by(group) c(L)
Image fig5_3-1

Figure 5.4 on page 167 based on Model B, C and D from previous example.

Leftmost panel using Model B:

xi: xtmixed cesd months unemp || id: months, mle cov(un) var 
(output omitted)
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |  -.2019835   .0933162    -2.16   0.030      -.38488    -.019087
       unemp |   5.111305   .9888446     5.17   0.000     3.173205    7.049405
       _cons |    12.6656   1.242071    10.20   0.000     10.23118    15.10001
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .4647019   .1797873      .2176985    .9919587
                  var(_cons) |   93.51871   14.82016      68.54982    127.5824
           cov(months,_cons) |  -3.894087   1.370257     -6.579741   -1.208433
-----------------------------+------------------------------------------------
               var(Residual) |   62.38761   6.013247      51.64818    75.36013
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   114.84   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
predict p
(option xb assumed)
sort unemp months
scatter p months, c(L)
Image fig5_4a

Panel in the middle using Model C:

xi: xtmixed cesd months unemp unempxmth || id: months, mle cov(un) var 
(output omitted)
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      months |    .162036   .1936623     0.84   0.403    -.2175351    .5416072
       unemp |   8.529059   1.877875     4.54   0.000     4.848492    12.20963
   unempxmth |  -.4652222   .2172146    -2.14   0.032     -.890955   -.0394895
       _cons |   9.616744   1.889309     5.09   0.000     5.913766    13.31972
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                 var(months) |   .4512058   .1773447      .2088397    .9748464
                  var(_cons) |   93.71305   14.77709      68.79849    127.6501
           cov(months,_cons) |  -3.873144   1.358796     -6.536335   -1.209953
-----------------------------+------------------------------------------------
               var(Residual) |   62.03126   5.965555      51.37484     74.8981
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   116.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
predict pc
(option xb assumed)
sort unemp months
scatter pc months, c(L)

Image fig5_4b

Rightmost panel using Model D:

xi: xtmixed cesd unemp unempxmth || id: unemp unempxmth , mle cov(un) var  
(output omitted)
------------------------------------------------------------------------------
        cesd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       unemp |   6.927277    .930033     7.45   0.000     5.104445    8.750108
   unempxmth |  -.3029831   .1120893    -2.70   0.007    -.5226741   -.0832921
       _cons |   11.19491   .7898805    14.17   0.000     9.646771    12.74305
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(unemp) |   44.96733          .             .           .
               var(unempx~h) |    .753401          .             .           .
                  var(_cons) |   45.25229          .             .           .
         cov(unemp,unempx~h) |  -5.628865          .             .           .
            cov(unemp,_cons) |   6.544479          .             .           .
         cov(unempx~h,_cons) |   .6510678          .             .           .
-----------------------------+------------------------------------------------
               var(Residual) |   59.01838          .             .           .
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(6) =   124.60   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
predict pd
(option xb assumed)
sort unemp months
scatter pd months, c(L)

Image fig5_4c


Table 5.8 on page 175 using data set wages_pp.

Model A: Unemployment rate centered around 7

xtmixed lnw hgc_9 ue_7 exper bexper || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2415.3186  
Iteration 1:   log likelihood = -2415.2596  
Iteration 2:   log likelihood = -2415.2595  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(4)       =    488.69
Log likelihood = -2415.2595                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hgc_9 |    .040011   .0063627     6.29   0.000     .0275403    .0524816
        ue_7 |  -.0119504   .0017916    -6.67   0.000     -.015462   -.0084389
       exper |   .0440539   .0026034    16.92   0.000     .0389513    .0491564
      bexper |  -.0181832   .0044837    -4.06   0.000    -.0269711   -.0093953
       _cons |   1.748989   .0113993   153.43   0.000     1.726646    1.771331
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016317   .0002126       .001264    .0021064
                  var(_cons) |   .0506369   .0048085      .0420374    .0609955
            cov(exper,_cons) |  -.0029129   .0008386     -.0045565   -.0012693
-----------------------------+------------------------------------------------
               var(Residual) |   .0947952   .0019382      .0910714    .0986711
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1423.34   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model B: Within context centering

xtmixed lnw hgc_9 ue_mean ue_person_centered exper bexper || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2413.5457  
Iteration 1:   log likelihood = -2413.4893  
Iteration 2:   log likelihood = -2413.4892  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(5)       =    494.17
Log likelihood = -2413.4892                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hgc_9 |   .0401695   .0063507     6.33   0.000     .0277224    .0526166
     ue_mean |  -.0177091   .0035202    -5.03   0.000    -.0246085   -.0108097
ue_person_~d |  -.0099015   .0020973    -4.72   0.000    -.0140121   -.0057909
       exper |   .0450568   .0026498    17.00   0.000     .0398632    .0502503
      bexper |  -.0188696   .0044769    -4.21   0.000    -.0276441    -.010095
       _cons |    1.87426   .0295235    63.48   0.000     1.816395    1.932125
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016286   .0002123      .0012615    .0021026
                  var(_cons) |   .0510114   .0048412       .042353    .0614399
            cov(exper,_cons) |  -.0030248   .0008431     -.0046772   -.0013724
-----------------------------+------------------------------------------------
               var(Residual) |   .0948018   .0019384      .0910777    .0986782
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1407.18   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model C: Centering on time-1

xtmixed lnw hgc_9 ue1 ue_centert1 exper bexper || id: exper, mle cov(un) var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -2412.9798  
Iteration 1:   log likelihood = -2412.9209  
Iteration 2:   log likelihood = -2412.9208  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      6402
Group variable: id                              Number of groups   =       888
                                                Obs per group: min =         1
                                                               avg =       7.2
                                                               max =        13
                                                Wald chi2(5)       =    493.23
Log likelihood = -2412.9208                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hgc_9 |   .0399276   .0063491     6.29   0.000     .0274835    .0523717
         ue1 |  -.0161774   .0026484    -6.11   0.000    -.0213682   -.0109866
 ue_centert1 |   -.010309   .0019445    -5.30   0.000    -.0141201    -.006498
       exper |   .0447649   .0026249    17.05   0.000     .0396202    .0499096
      bexper |  -.0183238   .0044848    -4.09   0.000    -.0271138   -.0095338
       _cons |   1.869345   .0260316    71.81   0.000     1.818324    1.920366
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                  var(exper) |   .0016354   .0002129      .0012672    .0021107
                  var(_cons) |   .0502771   .0047894      .0417143    .0605976
            cov(exper,_cons) |  -.0029024   .0008381      -.004545   -.0012598
-----------------------------+------------------------------------------------
               var(Residual) |   .0947669   .0019371      .0910452    .0986406
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =  1423.82   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Table 5.10 on page 184 using medication_pp data.

Model A: TIME

use https://stats.idre.ucla.edu/stat/stata/examples/alda/data/medication_pp, clear
gen ttime = treat*time
xtmixed pos treat time ttime || id: time, cov(un) mle var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -6340.2258  
Iteration 1:   log likelihood = -6340.2258  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      1242
Group variable: id                              Number of groups   =        64
                                                Obs per group: min =         2
                                                               avg =      19.4
                                                               max =        21
                                                Wald chi2(3)       =      7.05
Log likelihood = -6340.2258                     Prob > chi2        =    0.0702
------------------------------------------------------------------------------
         pos |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       treat |  -3.109294   12.33256    -0.25   0.801    -27.28067    21.06208
        time |  -2.418128   1.730852    -1.40   0.162    -5.810535    .9742796
       ttime |    5.53681   2.277846     2.43   0.015     1.072314    10.00131
       _cons |   167.4635    9.32626    17.96   0.000     149.1843    185.7426
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                   var(time) |   63.73588   14.27148      41.09476     98.8511
                  var(_cons) |   2111.401   420.2165      1429.428    3118.739
             cov(time,_cons) |  -121.6214   59.03397     -237.3259   -5.916964
-----------------------------+------------------------------------------------
               var(Residual) |    1229.93   52.09137      1131.955    1336.384
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   971.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model B: TIME-3.33

gen ttime333 = treat*time333
xtmixed pos treat time333 ttime333 || id: time333, cov(un) mle var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -6340.2258  
Iteration 1:   log likelihood = -6340.2258  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      1242
Group variable: id                              Number of groups   =        64
                                                Obs per group: min =         2
                                                               avg =      19.4
                                                               max =        21
                                                Wald chi2(3)       =      7.05
Log likelihood = -6340.2258                     Prob > chi2        =    0.0702
------------------------------------------------------------------------------
         pos |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       treat |   15.34674   11.54466     1.33   0.184    -7.280383    37.97386
     time333 |  -2.418128   1.730852    -1.40   0.162    -5.810535    .9742798
    ttime333 |   5.536811   2.277846     2.43   0.015     1.072314    10.00131
       _cons |    159.403   8.764519    18.19   0.000     142.2249    176.5812
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                var(time333) |   63.73589   14.27147      41.09478    98.85109
                  var(_cons) |   2008.768   367.2589      1403.804     2874.44
          cov(time333,_cons) |    90.8317   52.45916     -11.98636    193.6498
-----------------------------+------------------------------------------------
               var(Residual) |   1229.929   52.09137      1131.955    1336.384
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   971.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Model C: TIME-6.67

gen ttime667 = treat*time667
xtmixed pos treat time667 ttime667 || id: time667, cov(un) mle var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -6340.2258  
Iteration 1:   log likelihood = -6340.2258  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      1242
Group variable: id                              Number of groups   =        64
                                                Obs per group: min =         2
                                                               avg =      19.4
                                                               max =        21
                                                Wald chi2(3)       =      7.05
Log likelihood = -6340.2258                     Prob > chi2        =    0.0702
------------------------------------------------------------------------------
         pos |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       treat |   33.80278    15.1581     2.23   0.026     4.093444    63.51211
     time667 |  -2.418128   1.730852    -1.40   0.162    -5.810535    .9742797
    ttime667 |   5.536811   2.277846     2.43   0.015     1.072314    10.00131
       _cons |   151.3426   11.54247    13.11   0.000     128.7198    173.9654
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                var(time667) |   63.73588   14.27144      41.09481    98.85099
                  var(_cons) |   3322.485   632.1168      2288.328    4824.004
          cov(time667,_cons) |   303.2845   80.90138      144.7207    461.8483
-----------------------------+------------------------------------------------
               var(Residual) |    1229.93   52.09138      1131.955    1336.384
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   971.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference

Figure 5.5 on page 185

xtmixed pos treat time ttime || id: time, cov(un) mle var
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -6340.2258  
Iteration 1:   log likelihood = -6340.2258  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      1242
Group variable: id                              Number of groups   =        64
                                                Obs per group: min =         2
                                                               avg =      19.4
                                                               max =        21
                                                Wald chi2(3)       =      7.05
Log likelihood = -6340.2258                     Prob > chi2        =    0.0702
------------------------------------------------------------------------------
         pos |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       treat |  -3.109294   12.33256    -0.25   0.801    -27.28067    21.06208
        time |  -2.418128   1.730852    -1.40   0.162    -5.810535    .9742796
       ttime |    5.53681   2.277846     2.43   0.015     1.072314    10.00131
       _cons |   167.4635    9.32626    17.96   0.000     149.1843    185.7426
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                   var(time) |   63.73588   14.27148      41.09476     98.8511
                  var(_cons) |   2111.401   420.2165      1429.428    3118.739
             cov(time,_cons) |  -121.6214   59.03397     -237.3259   -5.916964
-----------------------------+------------------------------------------------
               var(Residual) |    1229.93   52.09137      1131.955    1336.384
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   971.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
predict pf
(option xb assumed)
scatter pf time, c(L)

Image fig5_5-1


Page 188 on modeling initial and final status.

xtmixed pos initial tinit final tfinal, nocons || id: initial final, cov(un) mle var nocons
Performing EM optimization: 
Performing gradient-based optimization: 
Iteration 0:   log likelihood = -6340.2258  
Iteration 1:   log likelihood = -6340.2258  
Computing standard errors:
Mixed-effects ML regression                     Number of obs      =      1242
Group variable: id                              Number of groups   =        64
                                                Obs per group: min =         2
                                                               avg =      19.4
                                                               max =        21
                                                Wald chi2(4)       =    912.52
Log likelihood = -6340.2258                     Prob > chi2        =    0.0000
------------------------------------------------------------------------------
         pos |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     initial |   167.4635   9.326258    17.96   0.000     149.1843    185.7426
       tinit |  -3.109296   12.33256    -0.25   0.801    -27.28066    21.06207
       final |   151.3426   11.54248    13.11   0.000     128.7198    173.9654
      tfinal |   33.80278    15.1581     2.23   0.026     4.093439    63.51211
------------------------------------------------------------------------------
------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Unstructured             |
                var(initial) |   2111.399   420.2156      1429.428    3118.735
                  var(final) |   3322.486   632.1178      2288.328    4824.009
          cov(initial,final) |   1300.589   392.7855      530.7431    2070.434
-----------------------------+------------------------------------------------
               var(Residual) |    1229.93   52.09137      1131.955    1336.384
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(3) =   971.31   Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference
estat recov, corr
Random-effects correlation matrix for level id
             |   initial      final 
-------------+----------------------
     initial |         1            
       final |  .4910471          1 

Primary Sidebar


Click here to report an error on this page or leave a comment

    How to cite this page

    UCLA OIT
    1. © 2021 UC REGENTS
    2. HOME
    3. CONTACT