Table 1.1, page 3.
use chdage.dta, clear (Hosmer and Lemeshow - from chapter 1) gen agrp=age recode agrp 20/29=1 30/34=2 35/39=3 40/44=4 45/49=5 50/54=6 55/59=7 60/69=8 (100 changes made) list id age agrp chd id age agrp chd 1. 1 20 1 0 2. 2 23 1 0 3. 3 24 1 0 4. 4 25 1 0 5. 5 25 1 1 6. 6 26 1 0 7. 7 26 1 0 8. 8 28 1 0 9. 9 28 1 0 10. 10 29 1 0 11. 11 30 2 0 12. 12 30 2 0 13. 13 30 2 0 14. 14 30 2 0 15. 15 30 2 0 16. 16 30 2 1 17. 17 32 2 0 18. 18 32 2 0 19. 19 33 2 0 20. 20 33 2 0 21. 21 34 2 0 22. 22 34 2 0 23. 23 34 2 1 24. 24 34 2 0 25. 25 34 2 0 26. 26 35 3 0 27. 27 35 3 0 28. 28 36 3 0 29. 29 36 3 1 30. 30 36 3 0 31. 31 37 3 0 32. 32 37 3 1 33. 33 37 3 0 34. 34 38 3 0 35. 35 38 3 0 36. 36 39 3 0 37. 37 39 3 1 38. 38 40 4 0 39. 39 40 4 1 40. 40 41 4 0 41. 41 41 4 0 42. 42 42 4 0 43. 43 42 4 0 44. 44 42 4 0 45. 45 42 4 1 46. 46 43 4 0 47. 47 43 4 0 48. 48 43 4 1 49. 49 44 4 0 50. 50 44 4 0 51. 51 44 4 1 52. 52 44 4 1 53. 53 45 5 0 54. 54 45 5 1 55. 55 46 5 0 56. 56 46 5 1 57. 57 47 5 0 58. 58 47 5 0 59. 59 47 5 1 60. 60 48 5 0 61. 61 48 5 1 62. 62 48 5 1 63. 63 49 5 0 64. 64 49 5 0 65. 65 49 5 1 66. 66 50 6 0 67. 67 50 6 1 68. 68 51 6 0 69. 69 52 6 0 70. 70 52 6 1 71. 71 53 6 1 72. 72 53 6 1 73. 73 54 6 1 74. 74 55 7 0 75. 75 55 7 1 76. 76 55 7 1 77. 77 56 7 1 78. 78 56 7 1 79. 79 56 7 1 80. 80 57 7 0 81. 81 57 7 0 82. 82 57 7 1 83. 83 57 7 1 84. 84 57 7 1 85. 85 57 7 1 86. 86 58 7 0 87. 87 58 7 1 88. 88 58 7 1 89. 89 59 7 1 90. 90 59 7 1 91. 91 60 8 0 92. 92 60 8 1 93. 93 61 8 1 94. 94 62 8 1 95. 95 62 8 1 96. 96 63 8 1 97. 97 64 8 0 98. 98 64 8 1 99. 99 65 8 1 100. 100 69 8 1
Figure 1.1, page 4.
graph twoway scatter chd age, xlabel(20(10)70) ylabel(0(.2)1)
Table 1.2, page 4.
sort agrp collapse (count) tot=chd (sum) present=chd, by(agrp) gen prop = present / tot gen absent = tot - present gen count = present + absent list agrp count absent present prop agrp count absent present prop 1. 1 10 9 1 .1 2. 2 15 13 2 .1333333 3. 3 12 9 3 .25 4. 4 15 10 5 .3333333 5. 5 13 7 6 .4615385 6. 6 8 3 5 .625 7. 7 17 4 13 .7647059 8. 8 10 2 8 .8
Figure 1.2, page 5.
graph twoway scatter prop agrp, ylabel(0(.2)1) xlabel(1(1)8)
Table 1.3, page 10.
use chdage.dta, clear (Hosmer and Lemeshow - from chapter 1) logistic chd age, coef Logit estimates Number of obs = 100 LR chi2(1) = 29.31 Prob > chi2 = 0.0000 Log likelihood = -53.676546 Pseudo R2 = 0.2145 ------------------------------------------------------------------------------ chd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .1109211 .0240598 4.61 0.000 .0637647 .1580776 _cons | -5.309453 1.133655 -4.68 0.000 -7.531376 -3.087531 ------------------------------------------------------------------------------
or you could use
logit chd age Iteration 0: log likelihood = -68.331491 Iteration 1: log likelihood = -54.170558 Iteration 2: log likelihood = -53.681645 Iteration 3: log likelihood = -53.676547 Iteration 4: log likelihood = -53.676546 Logit estimates Number of obs = 100 LR chi2(1) = 29.31 Prob > chi2 = 0.0000 Log likelihood = -53.676546 Pseudo R2 = 0.2145 ------------------------------------------------------------------------------ chd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .1109211 .0240598 4.61 0.000 .0637647 .1580776 _cons | -5.309453 1.133655 -4.68 0.000 -7.531376 -3.087531 ------------------------------------------------------------------------------
Table 1.4, page 20.
* Stata 8 code. vce * Stata 9 code and output. estat vce Covariance matrix of coefficients of logit model e(V) | age _cons -------------+------------------------ age | .00057888 _cons | -.02667702 1.2851728