Page 343, table 13.1 Regression of estimated 1980 U.S. census undercount of area characteristics, for 66 central cities, state remainders, and states.
NOTE: Stata lists the variables in descending order of their VIF, which is different from the order that they are listed in the text.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/ericksen, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data) regress undcount perc_min crimrate poverty diffeng hsgrad housing city countprc Source | SS df MS Number of obs = 66 -------------+------------------------------ F( 8, 57) = 17.25 Model | 280.795421 8 35.0994276 Prob > F = 0.0000 Residual | 115.984804 57 2.03482113 R-squared = 0.7077 -------------+------------------------------ Adj R-squared = 0.6667 Total | 396.780225 65 6.10431116 Root MSE = 1.4265 ------------------------------------------------------------------------------ undcount | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- perc_min | .0798341 .0226094 3.53 0.001 .0345595 .1251086 crimrate | .0301168 .0129978 2.32 0.024 .0040892 .0561444 poverty | -.178369 .0849158 -2.10 0.040 -.3484098 -.0083281 diffeng | .2151249 .0922088 2.33 0.023 .0304799 .3997699 hsgrad | .0612903 .0447749 1.37 0.176 -.0283698 .1509505 housing | -.0349569 .0246298 -1.42 0.161 -.0842771 .0143633 city | 1.159982 .7706438 1.51 0.138 -.3832056 2.703169 countprc | .0369889 .0092531 4.00 0.000 .0184598 .055518 _cons | -1.771393 1.382183 -1.28 0.205 -4.539166 .9963797 ------------------------------------------------------------------------------ * Stata 8 code. vif * Stata 9 code and output. estat vif Variable | VIF 1/VIF -------------+---------------------- perc_min | 5.01 0.199638 poverty | 4.63 0.216208 hsgrad | 4.62 0.216489 city | 3.54 0.282666 crimrate | 3.34 0.299080 housing | 1.87 0.534261 countprc | 1.69 0.591254 diffeng | 1.64 0.611409 -------------+---------------------- Mean VIF | 3.29 display sqrt(5.01) 2.2383029 di sqrt(4.63) 2.1517435 di sqrt(4.62) 2.1494185 di sqrt(3.54) 1.8814888 di sqrt(3.34) 1.8275667 di sqrt(1.87) 1.3674794 di sqrt(1.69) 1.3 di sqrt(1.64) 1.2806248
Page 343 Table 13.2 Correlations among eight predictors of the 1980 U.S. census undercount.
corr perc_min crimrate poverty diffeng hsgrad housing city countprc (obs=66) | perc_min crimrate poverty diffeng hsgrad housing city -------------+--------------------------------------------------------------- perc_min | 1.0000 crimrate | 0.6549 1.0000 poverty | 0.7384 0.3691 1.0000 diffeng | 0.3954 0.5116 0.1516 1.0000 hsgrad | 0.5352 0.0666 0.7506 -0.1164 1.0000 housing | 0.3568 0.5317 0.3352 0.3402 0.2348 1.0000 city | 0.7577 0.7286 0.5375 0.4804 0.3148 0.5657 1.0000 countprc | -0.3344 -0.2331 -0.1570 -0.1082 -0.4142 -0.0863 -0.2688 | countprc -------------+--------- countprc | 1.0000
Page 355, table 13.3 B. Fox’s Canadian women’s labor force participation data T is year; L is women’s labor force participation rate, in percent; F is the total fertility rate, per 1000; M is men’s average weekly wages in 1935 dollars; W is women’s average weekly wages; D is per-capita consumer debt; and P is the percentage of part-time workers.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/bfox, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data) list year womwork fertil mwage fwage debt parttime Observation 1 year 1946 womwork 25.3 fertil 3748 mwage 25.35 fwage 14.05 debt 18.18 parttime 10.28 Observation 2 year 1947 womwork 24.4 fertil 3996 mwage 26.14 fwage 14.61 debt 28.33 parttime 9.28 Observation 3 year 1948 womwork 24.2 fertil 3725 mwage 25.11 fwage 14.23 debt 30.55 parttime 9.51 Observation 4 year 1949 womwork 24.2 fertil 3750 mwage 25.45 fwage 14.61 debt 35.81 parttime 8.87 Observation 5 year 1950 womwork 23.7 fertil 3669 mwage 26.79 fwage 15.26 debt 38.39 parttime 8.54 Observation 6 year 1951 womwork 24.2 fertil 3682 mwage 26.33 fwage 14.58 debt 26.52 parttime 8.84 Observation 7 year 1952 womwork 24.1 fertil 3845 mwage 27.89 fwage 15.66 debt 45.65 parttime 8.6 Observation 8 year 1953 womwork 23.8 fertil 3905 mwage 29.15 fwage 16.3 debt 52.99 parttime 5.49 Observation 9 year 1954 womwork 23.6 fertil 4047 mwage 29.52 fwage 16.57 debt 54.84 parttime 6.67 Observation 10 year 1955 womwork 24.3 fertil 4043 mwage 32.05 fwage 17.99 debt 65.53 parttime 6.25 Observation 11 year 1956 womwork 25.1 fertil 4092 mwage 32.98 fwage 18.33 debt 72.56 parttime 6.32 Observation 12 year 1957 womwork 26.2 fertil 4168 mwage 32.25 fwage 17.64 debt 69.49 parttime 7.3 Observation 13 year 1958 womwork 26.6 fertil 4073 mwage 32.52 fwage 18.16 debt 71.71 parttime 8.65 Observation 14 year 1959 womwork 26.9 fertil 4100 mwage 33.95 fwage 18.58 debt 78.89 parttime 8.8 Observation 15 year 1960 womwork 27.9 fertil 4119 mwage 34.63 fwage 18.95 debt 84.99 parttime 9.39 Observation 16 year 1961 womwork 29.1 fertil 4159 mwage 35.14 fwage 18.78 debt 87.71 parttime 10.23 Observation 17 year 1962 womwork 29.9 fertil 4134 mwage 34.49 fwage 18.74 debt 95.31 parttime 10.77 Observation 18 year 1963 womwork 29.8 fertil 4017 mwage 35.99 fwage 19.71 debt 104.4 parttime 10.84 Observation 19 year 1964 womwork 30.9 fertil 3886 mwage 36.68 fwage 20.06 debt 116.8 parttime 11.7 Observation 20 year 1965 womwork 32.1 fertil 3467 mwage 37.96 fwage 20.94 debt 130.99 parttime 12.33 Observation 21 year 1966 womwork 33.2 fertil 3150 mwage 38.68 fwage 21.2 debt 135.25 parttime 12.18 Observation 22 year 1967 womwork 34.5 fertil 2879 mwage 39.65 fwage 21.95 debt 142.93 parttime 13.67 Observation 23 year 1968 womwork 35.1 fertil 2681 mwage 41.2 fwage 22.68 debt 155.47 parttime 13.82 Observation 24 year 1969 womwork 36.1 fertil 2563 mwage 42.44 fwage 23.75 debt 165.04 parttime 14.91 Observation 25 year 1970 womwork 36.9 fertil 2571 mwage 42.02 fwage 25.63 debt 164.53 parttime 15.52 Observation 26 year 1971 womwork 37 fertil 2503 mwage 45.32 fwage 26.79 debt 169.63 parttime 15.47 Observation 27 year 1972 womwork 37.9 fertil 2302 mwage 45.61 fwage 27.51 debt 190.62 parttime 15.85 Observation 28 year 1973 womwork 40.1 fertil 2931 mwage 45.59 fwage 27.35 debt 209.6 parttime 15.4 Observation 29 year 1974 womwork 40.6 fertil 1875 mwage 48.06 fwage 29.64 debt 216.66 parttime 16.23 Observation 30 year 1975 womwork 42.2 fertil 1866 mwage 46.12 fwage 29.33 debt 224.34 parttime 16.71
Page 358, Figure 13.6 Plot of C(p)-p against p for the census undercount regression. Only subsets for which C(p)-p < 10 are shown. The following capitalized letter are employed to label the predictors in each subset: Minority, Crime, Poverty, Language, High school, hOusing, cIty, and coNventaional. Ericksen, et al. (1989) selected the predictor subset MCN (i.e., Minority, Crime and coNventaional).
NOTE: We were unable to reproduce this graph.
Page 359 Table 13.4 Best subset regression models for Ericksen et. al.’s census undercount data. Coefficient standard errors are in parentheses.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/ericksen, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data)
p = 4
regress undcount perc_min crimrate countprc Source | SS df MS Number of obs = 66 -------------+------------------------------ F( 3, 62) = 36.35 Model | 252.966408 3 84.322136 Prob > F = 0.0000 Residual | 143.813817 62 2.3195777 R-squared = 0.6375 -------------+------------------------------ Adj R-squared = 0.6200 Total | 396.780225 65 6.10431116 Root MSE = 1.523 ------------------------------------------------------------------------------ undcount | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- perc_min | .0786078 .01473 5.34 0.000 .0491629 .1080527 crimrate | .0363026 .0100445 3.61 0.001 .016224 .0563813 countprc | .0280009 .0080623 3.47 0.001 .0118846 .0441172 _cons | -2.22443 .5609767 -3.97 0.000 -3.345807 -1.103054 ------------------------------------------------------------------------------
p = 5
regress undcount perc_min crimrate countprc diffeng Source | SS df MS Number of obs = 66 -------------+------------------------------ F( 4, 61) = 30.84 Model | 265.503897 4 66.3759742 Prob > F = 0.0000 Residual | 131.276328 61 2.15207096 R-squared = 0.6691 -------------+------------------------------ Adj R-squared = 0.6475 Total | 396.780225 65 6.10431116 Root MSE = 1.467 ------------------------------------------------------------------------------ undcount | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- perc_min | .0751885 .0142587 5.27 0.000 .0466764 .1037006 crimrate | .027154 .010391 2.61 0.011 .0063758 .0479321 countprc | .0272961 .0077712 3.51 0.001 .0117566 .0428356 diffeng | .2093535 .0867368 2.41 0.019 .0359126 .3827943 _cons | -1.975947 .5500616 -3.59 0.001 -3.075864 -.8760313 ------------------------------------------------------------------------------
p = 6
regress undcount perc_min crimrate countprc diffeng poverty Source | SS df MS Number of obs = 66 -------------+------------------------------ F( 5, 60) = 26.16 Model | 272.005773 5 54.4011547 Prob > F = 0.0000 Residual | 124.774452 60 2.0795742 R-squared = 0.6855 -------------+------------------------------ Adj R-squared = 0.6593 Total | 396.780225 65 6.10431116 Root MSE = 1.4421 ------------------------------------------------------------------------------ undcount | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- perc_min | .1009673 .0202241 4.99 0.000 .0605131 .1414214 crimrate | .0243456 .0103372 2.36 0.022 .003668 .0450231 countprc | .029327 .0077251 3.80 0.000 .0138746 .0447795 diffeng | .1838497 .0864747 2.13 0.038 .0108747 .3568248 poverty | -.1100304 .0622272 -1.77 0.082 -.2345034 .0144426 _cons | -.7926886 .860341 -0.92 0.361 -2.513627 .9282497 ------------------------------------------------------------------------------