Table in the middle of page 160 on data file duncan.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/duncan, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data) sort occ_type by occ_type: summarize prestige -> occ_type= bc Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- prestige | 21 22.7619 18.05521 3 67 -> occ_type= prof Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- prestige | 18 80.44444 14.10558 45 97 -> occ_type= wc Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- prestige | 6 36.66667 11.79265 16 52
Figure 8.1, page 161 using teh data file duncan.
graph box prestige, over(occ_type) ylabel(0 50 100)
Table in the middle of page 161 using the data file duncan.
anova prestige occ_type Number of obs = 45 R-squared = 0.7574 Root MSE = 15.8847 Adj R-squared = 0.7459 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 33090.0571 2 16545.0286 65.57 0.0000 | occ_type | 33090.0571 2 16545.0286 65.57 0.0000 | Residual | 10597.5873 42 252.323507 -----------+---------------------------------------------------- Total | 43687.6444 44 992.90101
Table 8.2 on page 167 using the data file moore.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/moore, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data) table status fcat, contents(n conform mean conform sd conform) ----------+----------------------------- Status of | F-scale categorized partner | high low medium ----------+----------------------------- high | 7 5 11 | 11.85714 17.4 14.27273 | 3.933979 4.505552 3.951985 | low | 8 10 4 | 12.625 8.9 7.25 | 7.347254 2.643651 3.947573 ----------+-----------------------------
Figure 8.5 on page 169 using the data file moore. In the first part, we use a anovaplot program. Next, we will try to create the graph directly.
Using anovaplot program. You can download anovaplot from within Stata by typing search anovaplot (see How can I use the search command to search for programs and get additional help? for more information about using search).
recode fcat 1=3 2=1 3=2 anovaplot, scatter(msymbol(none)) ylabel(5(5)20)
Next we do it directly.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/moore, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data) recode fcat 1=3 2=1 3=2 label define flab 1 low 2 medium 3 high label value fcat flab egen xmeanh = mean(conform) if (status==1), by(fcat) egen xmeanl = mean(conform) if (status==2), by(fcat) graph twoway (scatter xmeanl fcat, connect(l) sort) /// (scatter xmeanh fcat, connect(l) sort), xlabel(1 2 3) ylabel(5(5)20)
Figure 8.6 on page 170 using the data file moore.
graph twoway (scatter conform fcat if status ==1, jitter(5)) /// (scatter xmeanh fcat, connect(l) sort), xlabel(1 2 3) ylabel(5 15 25)
graph twoway (scatter conform fcat if status ==2, jitter(5)) /// (scatter xmeanl fcat, connect(l) sort), xlabel(1 2 3) ylabel(5 15 25)
Results on page 177 using the data file moore.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/moore, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data ) gen c1=1 if (fcat==1) gen c2=0 if (fcat==1) replace c1=0 if (fcat==2) replace c2=1 if (fcat==2) replace c1=-1 if (fcat==3) replace c2=-1 if (fcat==3) gen r=1 if(status==1) replace r=-1 if(status==2) gen rc1=r*c1 gen rc2=r*c2
The anova procedures below give the sum of squares on page 177 and the tests yield table 8.6 on page 178. Also notice that the F-values for the case alpha|beta and the case beta|alpha are different from the results in the book as different degree of freedom has been used in both cases.
anova conform r c1 c2 rc1 rc2 , se cont(r c1 c2 rc1 rc2) Number of obs = 45 R-squared = 0.3237 Root MSE = 4.57912 Adj R-squared = 0.2370 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 391.436039 5 78.2872078 3.73 0.0074 | r | 204.332411 1 204.332411 9.74 0.0034 c1 | 7.92747828 1 7.92747828 0.38 0.5422 c2 | 3.68722176 1 3.68722176 0.18 0.6773 rc1 | 111.656569 1 111.656569 5.33 0.0264 rc2 | 63.8323592 1 63.8323592 3.04 0.0889 | Residual | 817.763961 39 20.9683067 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182 test r Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- r | 239.56237 1 239.56237 11.42 0.0017 Residual | 817.763961 39 20.9683067 test rc1 rc2 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- rc1 rc2 | 175.488928 2 87.7444639 4.18 0.0226 Residual | 817.763961 39 20.9683067 test c1 c2 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- c1 c2 | 36.0187056 2 18.0093528 0.86 0.4315 Residual | 817.763961 39 20.9683067 anova conform r c1 c2, se cont(r c1 c2) Number of obs = 45 R-squared = 0.1786 Root MSE = 4.92196 Adj R-squared = 0.1185 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 215.947111 3 71.9823704 2.97 0.0428 | r | 204.332411 1 204.332411 8.43 0.0059 c1 | 7.92747828 1 7.92747828 0.33 0.5704 c2 | 3.68722176 1 3.68722176 0.15 0.6985 | Residual | 993.252889 41 24.2256802 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182 test r Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- r | 212.213778 1 212.213778 8.76 0.0051 Residual | 993.252889 41 24.2256802 test c1 c2 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- c1 c2 | 11.6147 2 5.80735002 0.24 0.7879 Residual | 993.252889 41 24.2256802 anova conform r rc1 rc2, se cont(r rc1 rc2) Number of obs = 45 R-squared = 0.2939 Root MSE = 4.56333 Adj R-squared = 0.2423 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 355.417333 3 118.472444 5.69 0.0024 | r | 204.332411 1 204.332411 9.81 0.0032 rc1 | 85.0926235 1 85.0926235 4.09 0.0498 rc2 | 65.9922988 1 65.9922988 3.17 0.0825 | Residual | 853.782667 41 20.8239675 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182 anova conform c1 c2 rc1 rc2, se cont(c1 c2 rc1 rc2) Number of obs = 45 R-squared = 0.1256 Root MSE = 5.14132 Adj R-squared = 0.0382 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 151.873669 4 37.9684173 1.44 0.2398 | c1 | .133333333 1 .133333333 0.01 0.9437 c2 | 3.60 1 3.60 0.14 0.7140 rc1 | 82.6026667 1 82.6026667 3.12 0.0847 rc2 | 65.5376692 1 65.5376692 2.48 0.1232 | Residual | 1057.32633 40 26.4331583 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182 anova conform r, se cont(r) Number of obs = 45 R-squared = 0.1690 Root MSE = 4.83415 Adj R-squared = 0.1497 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 204.332411 1 204.332411 8.74 0.0050 | r | 204.332411 1 204.332411 8.74 0.0050 | Residual | 1004.86759 43 23.3690137 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182 anova conform c1 c2, se cont(c1 c2) Number of obs = 45 R-squared = 0.0031 Root MSE = 5.35739 Adj R-squared = -0.0444 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 3.73333333 2 1.86666667 0.07 0.9371 | c1 | .133333333 1 .133333333 0.00 0.9460 c2 | 3.60 1 3.60 0.13 0.7250 | Residual | 1205.46667 42 28.7015873 -----------+---------------------------------------------------- Total | 1209.20 44 27.4818182
Result in the middle of page 192 using the data file moore.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/moore, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data> ) gen d=1 if(status==2) (23 missing values generated) replace d=0 if(status==1) (23 real changes made) gen intfd=fscore*d reg conform fscore d intfd Source | SS df MS Number of obs = 45 ---------+------------------------------ F( 3, 41) = 5.70 Model | 355.782627 3 118.594209 Prob > F = 0.0023 Residual | 853.417373 41 20.8150579 R-squared = 0.2942 ---------+------------------------------ Adj R-squared = 0.2426 Total | 1209.20 44 27.4818182 Root MSE = 4.5624 ------------------------------------------------------------------------------ conform | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- fscore | -.1510988 .0717105 -2.107 0.041 -.2959211 -.0062766 d | -15.53408 4.400445 -3.530 0.001 -24.42096 -6.647198 intfd | .2611023 .0969992 2.692 0.010 .0652084 .4569961 _cons | 20.79348 3.262732 6.373 0.000 14.20425 27.3827 ------------------------------------------------------------------------------
Result on page 194 using the same data file as above.
gen s=1 if(status==2) (23 missing values generated) replace s=-1 if(status==1) (23 real changes made) gen intfs=fscore*s reg conform fscore s intfs Source | SS df MS Number of obs = 45 ---------+------------------------------ F( 3, 41) = 5.70 Model | 355.782627 3 118.594209 Prob > F = 0.0023 Residual | 853.417373 41 20.8150579 R-squared = 0.2942 ---------+------------------------------ Adj R-squared = 0.2426 Total | 1209.20 44 27.4818182 Root MSE = 4.5624 ------------------------------------------------------------------------------ conform | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- fscore | -.0205477 .0484996 -0.424 0.674 -.1184946 .0773992 s | -7.767039 2.200223 -3.530 0.001 -12.21048 -3.323599 intfs | .1305511 .0484996 2.692 0.010 .0326042 .2284981 _cons | 13.02644 2.200223 5.921 0.000 8.582997 17.46988 ------------------------------------------------------------------------------
Table in the middle of page 197 using teh data file friendly.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/friendly, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data ) sort cond by cond: summarize correct -> cond=Before Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- correct | 10 36.6 5.337498 24 40 -> cond=Meshed Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- correct | 10 36.6 3.025815 30 40 -> cond=SFR Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- correct | 10 30.3 7.334091 21 39
Figure 8.8 on page 198.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/friendly, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data ) egen cm=mean(correct), by(cond) encode cond, gen (x) graph twoway (scatter correct x, jitter(5)) (scatter cm x, connect(l) sort), xlabel(1 2 3)
Table at bottom of page 199 First we do the encoding based on the scheme on page 198.
use https://stats.idre.ucla.edu/stat/stata/examples/ara/friendly, clear (From Fox, Applied Regression Analysis. Use 'notes' command for source of data ) gen c1=1 if(cond=="SFR") (20 missing values generated) gen c2=0 if(cond=="SFR") (20 missing values generated) replace c1=-1/2 if(cond=="Before") (10 real changes made) replace c2=1 if(cond=="Before") (10 real changes made) replace c1=-1/2 if(cond=="Meshed") (10 real changes made) replace c2=-1 if(cond=="Meshed") (10 real changes made) reg correct c1 c2 Source | SS df MS Number of obs = 30 ---------+------------------------------ F( 2, 27) = 4.34 Model | 264.60 2 132.30 Prob > F = 0.0232 Residual | 822.90 27 30.4777778 R-squared = 0.2433 ---------+------------------------------ Adj R-squared = 0.1873 Total | 1087.50 29 37.50 Root MSE = 5.5207 ------------------------------------------------------------------------------ correct | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- c1 | -4.2 1.42543 -2.946 0.007 -7.124742 -1.275258 c2 | 0 1.234459 0.000 1.000 -2.532901 2.532901 _cons | 34.5 1.007932 34.229 0.000 32.4319 36.5681 ------------------------------------------------------------------------------ anova correct c1 c2, se cont(c1 c2) Number of obs = 30 R-squared = 0.2433 Root MSE = 5.52067 Adj R-squared = 0.1873 Source | Seq. SS df MS F Prob > F -----------+---------------------------------------------------- Model | 264.60 2 132.30 4.34 0.0232 | c1 | 264.60 1 264.60 8.68 0.0065 c2 | 0.00 1 0.00 0.00 1.0000 | Residual | 822.90 27 30.4777778 -----------+---------------------------------------------------- Total | 1087.50 29 37.50