Table 3.1 on page 78 using the actg320 dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/actg320, clear stset time, fail(censor) stcox tx, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -658.46549 Iteration 1: log likelihood = -653.12286 Iteration 2: log likelihood = -653.11789 Iteration 3: log likelihood = -653.11789 Refining estimates: Iteration 0: log likelihood = -653.11789 Cox regression -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(1) = 10.70 Log likelihood = -653.11789 Prob > chi2 = 0.0011 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tx | -.6843186 .2149187 -3.18 0.001 -1.105551 -.2630857 ------------------------------------------------------------------------------
Table 3.2 on page 83 continuing to use the actg320 dataset.
stcox tx age sex cd4 priorzdv, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -658.46549 Iteration 1: log likelihood = -622.46228 Iteration 2: log likelihood = -618.94567 Iteration 3: log likelihood = -618.82581 Iteration 4: log likelihood = -618.8256 Refining estimates: Iteration 0: log likelihood = -618.8256 Cox regression -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(5) = 79.28 Log likelihood = -618.8256 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tx | -.6589906 .2152889 -3.06 0.002 -1.080949 -.2370322 age | .0283562 .0112658 2.52 0.012 .0062756 .0504368 sex | .0972738 .2841181 0.34 0.732 -.4595874 .654135 cd4 | -.0165767 .0025453 -6.51 0.000 -.0215654 -.0115879 priorzdv | -.0002931 .0036913 -0.08 0.937 -.007528 .0069417 ------------------------------------------------------------------------------
Table 3.3 on page 84 continuing to use the actg320 dataset.
stcox tx age cd4, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -658.46549 Iteration 1: log likelihood = -622.50294 Iteration 2: log likelihood = -619.00548 Iteration 3: log likelihood = -618.8856 Iteration 4: log likelihood = -618.88539 Refining estimates: Iteration 0: log likelihood = -618.88539 Cox regression -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(3) = 79.16 Log likelihood = -618.88539 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tx | -.6587076 .2150446 -3.06 0.002 -1.080187 -.237228 age | .0277729 .0111474 2.49 0.013 .0059243 .0496215 cd4 | -.0165606 .0025391 -6.52 0.000 -.0215372 -.011584 ------------------------------------------------------------------------------
Table 3.4 on page 87 using the whas100 dataset. We convert time to quarterly to increase the number of ties.
use https://stats.idre.ucla.edu/stat/examples/asa2/whas100, clear generate time=foltime/30.44 /* divide by days per month */ replace time=round(time/3) /* divide by months per quarter */ replace time=.5 if time==0 /* event can't occur at time zero */ stset time, fail(folstatus) /* exact ties */ stcox bmi gender, nohr exactp failure _d: folstatus analysis time _t: time Iteration 0: log likelihood = -183.56906 Iteration 1: log likelihood = -177.82554 Iteration 2: log likelihood = -177.79731 Iteration 3: log likelihood = -177.79731 Refining estimates: Iteration 0: log likelihood = -177.79731 Cox regression -- exact partial likelihood No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 1648 LR chi2(2) = 11.54 Log likelihood = -177.79731 Prob > chi2 = 0.0031 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- bmi | -.0921293 .0337883 -2.73 0.006 -.1583532 -.0259055 gender | .5391896 .2875519 1.88 0.061 -.0244017 1.102781 ------------------------------------------------------------------------------ /* Breslow ties */ stcox bmi gender, nohr failure _d: folstatus analysis time _t: time Iteration 0: log likelihood = -210.71578 Iteration 1: log likelihood = -205.1773 Iteration 2: log likelihood = -205.14533 Iteration 3: log likelihood = -205.14533 Refining estimates: Iteration 0: log likelihood = -205.14533 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 1648 LR chi2(2) = 11.14 Log likelihood = -205.14533 Prob > chi2 = 0.0038 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- bmi | -.0885065 .0329861 -2.68 0.007 -.1531582 -.0238549 gender | .5181654 .2830296 1.83 0.067 -.0365625 1.072893 ------------------------------------------------------------------------------ /* Efron ties */ stcox bmi gender, nohr efron failure _d: folstatus analysis time _t: time Iteration 0: log likelihood = -210.06393 Iteration 1: log likelihood = -204.20163 Iteration 2: log likelihood = -204.16685 Iteration 3: log likelihood = -204.16685 Refining estimates: Iteration 0: log likelihood = -204.16685 Cox regression -- Efron method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 1648 LR chi2(2) = 11.79 Log likelihood = -204.16685 Prob > chi2 = 0.0027 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- bmi | -.0925082 .0334316 -2.77 0.006 -.1580329 -.0269835 gender | .5332732 .282779 1.89 0.059 -.0209634 1.08751 ------------------------------------------------------------------------------