Table 4.2 on page 97 using the whas100 dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/whas100, clear stset foltime, fail(folstatus) stcox gender, nohr failure _d: folstatus analysis time _t: foltime Iteration 0: log likelihood = -209.11972 Iteration 1: log likelihood = -207.2544 Iteration 2: log likelihood = -207.2423 Iteration 3: log likelihood = -207.2423 Refining estimates: Iteration 0: log likelihood = -207.2423 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 150540 LR chi2(1) = 3.75 Log likelihood = -207.2423 Prob > chi2 = 0.0527 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- gender | .5554704 .2823858 1.97 0.049 .0020044 1.108936 ------------------------------------------------------------------------------
Table 4.3 on page 98 using the actg320 dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/actg320, clear stset time, fail(censor) stcox tx, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -658.46549 Iteration 1: log likelihood = -653.12286 Iteration 2: log likelihood = -653.11789 Iteration 3: log likelihood = -653.11789 Refining estimates: Iteration 0: log likelihood = -653.11789 Cox regression -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(1) = 10.70 Log likelihood = -653.11789 Prob > chi2 = 0.0011 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tx | -.6843186 .2149187 -3.18 0.001 -1.105551 -.2630857 ------------------------------------------------------------------------------
Table 4.4 on page 99 using the whas100 dataset. We use the groups command, which is user written. To install it, type "ssc install groups" in your command window.
use https://stats.idre.ucla.edu/stat/examples/asa2/whas100, clear stset foltime, fail(folstatus) recode age 32/59=1 60/69=2 70/79=3 80/92=4, gen(agecat) tabulate agecat, gen(age) RECODE of | age | Freq. Percent Cum. ------------+----------------------------------- 1 | 25 25.00 25.00 2 | 23 23.00 48.00 3 | 22 22.00 70.00 4 | 30 30.00 100.00 ------------+----------------------------------- Total | 100 100.00 groups agecat age2 age3 age4 /* search groups */ +-----------------------------------------------+ | agecat age2 age3 age4 Freq. Percent | |-----------------------------------------------| | 1 0 0 0 25 25.00 | | 2 1 0 0 23 23.00 | | 3 0 1 0 22 22.00 | | 4 0 0 1 30 30.00 | +-----------------------------------------------+
Table 4.5 on page 101 continuing to use the whas100 dataset.
stcox age2 age3 age4, nohr failure _d: folstatus analysis time _t: foltime Iteration 0: log likelihood = -209.11972 Iteration 1: log likelihood = -201.55526 Iteration 2: log likelihood = -201.4586 Iteration 3: log likelihood = -201.45851 Refining estimates: Iteration 0: log likelihood = -201.45851 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 150540 LR chi2(3) = 15.32 Log likelihood = -201.45851 Prob > chi2 = 0.0016 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age2 | .0468675 .5186444 0.09 0.928 -.9696568 1.063392 age3 | .9856007 .4453697 2.21 0.027 .112692 1.858509 age4 | 1.262993 .4155407 3.04 0.002 .4485481 2.077438 ------------------------------------------------------------------------------
Table 4.6 on page 102 continuing to use the whas100 dataset.
stcox age2 age3 age4 failure _d: folstatus analysis time _t: foltime Iteration 0: log likelihood = -209.11972 Iteration 1: log likelihood = -201.55526 Iteration 2: log likelihood = -201.4586 Iteration 3: log likelihood = -201.45851 Refining estimates: Iteration 0: log likelihood = -201.45851 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 150540 LR chi2(3) = 15.32 Log likelihood = -201.45851 Prob > chi2 = 0.0016 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age2 | 1.047983 .5435306 0.09 0.928 .3792132 2.896178 age3 | 2.679421 1.193333 2.21 0.027 1.119287 6.414168 age4 | 3.535989 1.469347 3.04 0.002 1.566037 7.983985 ------------------------------------------------------------------------------
Table 4.7 on page 102 continuing to use the whas100 dataset.
quietly stcox age2 age3 age4, nohr matrix list e(V), nohalf format(%6.4f) symmetric e(V)[3,3] age2 age3 age4 age2 0.2690 0.1260 0.1251 age3 0.1260 0.1984 0.1260 age4 0.1251 0.1260 0.1727
Table 4.8 on page 105 continuing to use the whas100 dataset. Here, we code the variables using deviations from their means.
foreach var in age2 age3 age4 { replace `var'=-1 if agecat==1 } stcox age2 age3 age4, nohr failure _d: folstatus analysis time _t: foltime Iteration 0: log likelihood = -209.11972 Iteration 1: log likelihood = -201.55526 Iteration 2: log likelihood = -201.4586 Iteration 3: log likelihood = -201.45851 Refining estimates: Iteration 0: log likelihood = -201.45851 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 150540 LR chi2(3) = 15.32 Log likelihood = -201.45851 Prob > chi2 = 0.0016 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age2 | -.5269978 .3099716 -1.70 0.089 -1.134531 .0805355 age3 | .4117354 .2455778 1.68 0.094 -.0695883 .8930591 age4 | .6891276 .2188689 3.15 0.002 .2601526 1.118103 ------------------------------------------------------------------------------
Table 4.9 on page 107 continuing to use the whas100 dataset.
stcox age, nohr failure _d: folstatus analysis time _t: foltime Iteration 0: log likelihood = -209.11972 Iteration 1: log likelihood = -200.64424 Iteration 2: log likelihood = -200.44425 Iteration 3: log likelihood = -200.44391 Refining estimates: Iteration 0: log likelihood = -200.44391 Cox regression -- Breslow method for ties No. of subjects = 100 Number of obs = 100 No. of failures = 51 Time at risk = 150540 LR chi2(1) = 17.35 Log likelihood = -200.44391 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0456618 .0119506 3.82 0.000 .0222391 .0690844 ------------------------------------------------------------------------------
Table 4.10 on page 107 using the actg320 dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/actg320, clear stset time, fail(censor) stcox cd4, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -658.46549 Iteration 1: log likelihood = -629.94428 Iteration 2: log likelihood = -626.73801 Iteration 3: log likelihood = -626.63616 Iteration 4: log likelihood = -626.636 Refining estimates: Iteration 0: log likelihood = -626.636 Cox regression -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(1) = 63.66 Log likelihood = -626.636 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cd4 | -.0161921 .0025026 -6.47 0.000 -.0210971 -.0112872 ------------------------------------------------------------------------------
Table 4.11 on page 113 using the gbcs dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/gbcs, clear stset rectime, fail(censrec) generate hormonexsize = hormone*size stcox hormone, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1783.774 Iteration 2: log likelihood = -1783.765 Iteration 3: log likelihood = -1783.765 Refining estimates: Iteration 0: log likelihood = -1783.765 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(1) = 8.82 Log likelihood = -1783.765 Prob > chi2 = 0.0030 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3638988 .1250441 -2.91 0.004 -.6089808 -.1188167 ------------------------------------------------------------------------------ stcox hormone size, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1776.0514 Iteration 2: log likelihood = -1775.6959 Iteration 3: log likelihood = -1775.6954 Refining estimates: Iteration 0: log likelihood = -1775.6954 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(2) = 24.96 Log likelihood = -1775.6954 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3734745 .125176 -2.98 0.003 -.6188149 -.1281341 size | .0152507 .0035639 4.28 0.000 .0082657 .0222358 ------------------------------------------------------------------------------ stcox hormone size hormonexsize, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1776.1541 Iteration 2: log likelihood = -1775.6918 Iteration 3: log likelihood = -1775.6912 Iteration 4: log likelihood = -1775.6912 Refining estimates: Iteration 0: log likelihood = -1775.6912 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(3) = 24.96 Log likelihood = -1775.6912 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3941755 .2601893 -1.51 0.130 -.9041372 .1157862 size | .0149727 .0047047 3.18 0.001 .0057515 .0241938 hormonexsize | .0006522 .0071812 0.09 0.928 -.0134227 .0147272 ------------------------------------------------------------------------------
Table 4.12 on page 114 using the uis dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/uis, clear stset time, fail(censor) drop if age==. drop if ivhx==. generate drug = ivhx==2 | ivhx==3 generate drugxage = drug*age stcox drug, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -2831.8568 Iteration 1: log likelihood = -2825.9716 Iteration 2: log likelihood = -2825.9664 Refining estimates: Iteration 0: log likelihood = -2825.9664 Cox regression -- Breslow method for ties No. of subjects = 605 Number of obs = 605 No. of failures = 489 Time at risk = 144822 LR chi2(1) = 11.78 Log likelihood = -2825.9664 Prob > chi2 = 0.0006 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- drug | .3210045 .0948107 3.39 0.001 .1351789 .5068301 ------------------------------------------------------------------------------ stcox drug age, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -2831.8568 Iteration 1: log likelihood = -2820.2006 Iteration 2: log likelihood = -2820.1989 Refining estimates: Iteration 0: log likelihood = -2820.1989 Cox regression -- Breslow method for ties No. of subjects = 605 Number of obs = 605 No. of failures = 489 Time at risk = 144822 LR chi2(2) = 23.32 Log likelihood = -2820.1989 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- drug | .4394466 .1007151 4.36 0.000 .2420487 .6368445 age | -.0263792 .0078392 -3.37 0.001 -.0417438 -.0110147 ------------------------------------------------------------------------------ stcox drug age drugxage, nohr failure _d: censor analysis time _t: time Iteration 0: log likelihood = -2831.8568 Iteration 1: log likelihood = -2820.0329 Iteration 2: log likelihood = -2819.8471 Iteration 3: log likelihood = -2819.8471 Iteration 4: log likelihood = -2819.8471 Refining estimates: Iteration 0: log likelihood = -2819.8471 Cox regression -- Breslow method for ties No. of subjects = 605 Number of obs = 605 No. of failures = 489 Time at risk = 144822 LR chi2(3) = 24.02 Log likelihood = -2819.8471 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- drug | -.0124116 .5484471 -0.02 0.982 -1.087348 1.062525 age | -.0372282 .0152309 -2.44 0.015 -.0670801 -.0073762 drugxage | .0148441 .0177607 0.84 0.403 -.0199662 .0496543 ------------------------------------------------------------------------------
Table 4.13 on page 116 using the whas500 dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/whas500, clear stset lenfol, fail(fstat) generate genderxage = gender*age stcox gender, nohr failure _d: fstat analysis time _t: lenfol Iteration 0: log likelihood = -1227.579 Iteration 1: log likelihood = -1223.7894 Iteration 2: log likelihood = -1223.7851 Refining estimates: Iteration 0: log likelihood = -1223.7851 Cox regression -- Breslow method for ties No. of subjects = 500 Number of obs = 500 No. of failures = 215 Time at risk = 441218 LR chi2(1) = 7.59 Log likelihood = -1223.7851 Prob > chi2 = 0.0059 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- gender | .3812532 .137584 2.77 0.006 .1115935 .6509128 ------------------------------------------------------------------------------ stcox gender age, nohr failure _d: fstat analysis time _t: lenfol Iteration 0: log likelihood = -1227.579 Iteration 1: log likelihood = -1158.4911 Iteration 2: log likelihood = -1156.574 Iteration 3: log likelihood = -1156.5702 Refining estimates: Iteration 0: log likelihood = -1156.5702 Cox regression -- Breslow method for ties No. of subjects = 500 Number of obs = 500 No. of failures = 215 Time at risk = 441218 LR chi2(2) = 142.02 Log likelihood = -1156.5702 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- gender | -.0655551 .1405742 -0.47 0.641 -.3410755 .2099653 age | .0668283 .0061941 10.79 0.000 .054688 .0789686 ------------------------------------------------------------------------------ stcox gender age genderxage, nohr basehc(h) failure _d: fstat analysis time _t: lenfol Iteration 0: log likelihood = -1227.579 Iteration 1: log likelihood = -1157.5688 Iteration 2: log likelihood = -1153.7302 Iteration 3: log likelihood = -1153.6663 Iteration 4: log likelihood = -1153.6663 Refining estimates: Iteration 0: log likelihood = -1153.6663 Cox regression -- Breslow method for ties No. of subjects = 500 Number of obs = 500 No. of failures = 215 Time at risk = 441218 LR chi2(3) = 147.83 Log likelihood = -1153.6663 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- gender | 2.328526 .9923413 2.35 0.019 .3835728 4.273479 age | .0784022 .0080213 9.77 0.000 .0626807 .0941236 genderxage | -.0304264 .0125362 -2.43 0.015 -.0549968 -.0058559 ------------------------------------------------------------------------------
Figure 4.2 on page 117 continuing to use the whas500 dataset and the model above. The graphs shown on this page use the lean1 scheme.
predict hr1, hr generate lnhr = ln(hr1) twoway (line lnhr age if gender==0)(line lnhr age if gender==1), /// xtitle(Age in Years) ytitle(Estimated Log Hazard) title(Figure 4.2) /// ylabel(2(1)8) legend(order(1 "Males" 2 "Females") ring(0) position(11))
Figure 4.3 on page 118 continuing to use the whas500 dataset. The calculations performed are from equations 4.19-4.22.
matrix V=e(V) gen ln_hr=_b[gender]+_b[genderxage]*age replace hr=exp(ln_hr) gen SE_ln_hr=sqrt(V[1,1]+2*age*V[3,1]+age^2*V[3,3]) gen ln_hr_l=ln_hr-1.96*SE_ln_hr gen ln_hr_u=ln_hr+1.96*SE_ln_hr twoway line ln_hr ln_hr_l ln_hr_u age, sort clpattern(l shortdash shortdash ) /// clcolor(black black black ) /// legend(row(2) col(1) pos(7) order(1 "Log Hazard Ratio" 2 "Confidence Limits") /// ring(0) size(medsmall) region(lc(white)) ) graphregion(color(white)) /// yline(0, lcolor(black)) yaxis(1 2) ytitle(Estimated Log Hazard Ratio) /// ylabel(-1(0.5)2.5, nogrid angle(horizontal)) xscale(titlegap(3)) /// xtitle(Age in Years) ylabel(, axis(2) angle(horizontal)) /// ylabel(-.69 "0.5" 0 "1" .69 "2.0" 1.39 "4.0" 2.30 "10.0", axis(2)) /// ytitle(Estimated Hazard Ratio, axis(2)) /// yscale(titlegap(3) axis(2)) yscale(titlegap(3) axis(1)) /// title(Figure 4.3)
Table 4.14 on page 118 continuing to use the whas500 dataset.
lincom _b[gender]+_b[genderxage]*40, hr ( 1) gender + 40 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 3.038824 1.52132 2.22 0.026 1.139122 8.106639 ------------------------------------------------------------------------------ lincom _b[gender]+_b[genderxage]*50, hr ( 1) gender + 50 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 2.241638 .8555832 2.11 0.034 1.060916 4.736419 ------------------------------------------------------------------------------ lincom _b[gender]+_b[genderxage]*60, hr ( 1) gender + 60 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 1.653581 .4441904 1.87 0.061 .9767261 2.799484 ------------------------------------------------------------------------------ lincom _b[gender]+_b[genderxage]*65, hr ( 1) gender + 65 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 1.420219 .3085033 1.61 0.106 .9278022 2.173979 ------------------------------------------------------------------------------ lincom _b[gender]+_b[genderxage]*85, hr ( 1) gender + 85 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .7728143 .124304 -1.60 0.109 .5638492 1.059223 ------------------------------------------------------------------------------ lincom _b[gender]+_b[genderxage]*90, hr ( 1) gender + 90 genderxage = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .6637509 .1330606 -2.04 0.041 .4480915 .9832037 ------------------------------------------------------------------------------
Table 4.15 on page 199 using the gbcs dataset.
use https://stats.idre.ucla.edu/stat/examples/asa2/gbcs, clear stset rectime, fail(censrec) generate hormonexnodes = hormone*nodes stcox hormone, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1783.774 Iteration 2: log likelihood = -1783.765 Iteration 3: log likelihood = -1783.765 Refining estimates: Iteration 0: log likelihood = -1783.765 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(1) = 8.82 Log likelihood = -1783.765 Prob > chi2 = 0.0030 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3638988 .1250441 -2.91 0.004 -.6089808 -.1188167 ------------------------------------------------------------------------------ stcox hormone nodes, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1759.9643 Iteration 2: log likelihood = -1758.9415 Iteration 3: log likelihood = -1758.9407 Refining estimates: Iteration 0: log likelihood = -1758.9407 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(2) = 58.46 Log likelihood = -1758.9407 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3569371 .1252197 -2.85 0.004 -.6023632 -.111511 nodes | .0576747 .0066566 8.66 0.000 .0446281 .0707213 ------------------------------------------------------------------------------ stcox hormone nodes hormonexnodes, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1758.5113 Iteration 2: log likelihood = -1755.9822 Iteration 3: log likelihood = -1755.971 Iteration 4: log likelihood = -1755.971 Refining estimates: Iteration 0: log likelihood = -1755.971 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(3) = 64.40 Log likelihood = -1755.971 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.6059966 .1635048 -3.71 0.000 -.9264602 -.285533 nodes | .0492431 .0081727 6.03 0.000 .0332249 .0652614 hormonexno~s | .0381956 .0149761 2.55 0.011 .0088429 .0675483 ------------------------------------------------------------------------------
Figure 4.4 on page 120 continuing to use the gbcs dataset. We will use the predicted values and the variance-covariance matrix from the model above to generate the figure.
predict hr1, hr generate lnhr = ln(hr1) matrix V=e(V) gen ln_hr=_b[hormone]+_b[hormonexnodes]*nodes replace hr=exp(ln_hr) gen SE_ln_hr=sqrt(V[1,1]+2*nodes*V[3,1]+nodes^2*V[3,3]) gen ln_hr_l=ln_hr-1.96*SE_ln_hr gen ln_hr_u=ln_hr+1.96*SE_ln_hr twoway line ln_hr ln_hr_l ln_hr_u nodes, sort clpattern(l shortdash shortdash ) /// clcolor(black black black ) /// legend(row(2) col(1) pos(11) order(1 "Log Hazard Ratio" 2 "Confidence Limits") /// ring(0) size(medsmall) region(lc(white)) ) graphregion(color(white)) /// yline(0, lcolor(black)) yaxis(1 2) ytitle(Estimated Log Hazard Ratio) /// ylabel(-1(0.5)2.5, nogrid angle(horizontal)) xscale(titlegap(3)) /// xtitle(Number of Nodes) ylabel(, axis(2) angle(horizontal)) /// ylabel(-.69 "0.5" 0 "1" 1.39 "4.0" 2.71 "15.0", axis(2)) /// ytitle(Estimated Hazard Ratio, axis(2)) /// yscale(titlegap(3) axis(2)) yscale(titlegap(3) axis(1)) /// title(Figure 4.4)
Table 4.16 on page 120 continuing to use the gbcs dataset.
lincom _b[hormone]+_b[hormonexnodes]*1, hr ( 1) hormone + hormonexnodes = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .5667704 .0874547 -3.68 0.000 .418855 .766921 ------------------------------------------------------------------------------ lincom _b[hormone]+_b[hormonexnodes]*3, hr ( 1) hormone + 3 hormonexnodes = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .6117633 .085004 -3.54 0.000 .4659183 .8032619 ------------------------------------------------------------------------------ lincom _b[hormone]+_b[hormonexnodes]*5, hr ( 1) hormone + 5 hormonexnodes = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .660328 .0850732 -3.22 0.001 .512974 .85001 ------------------------------------------------------------------------------ lincom _b[hormone]+_b[hormonexnodes]*7, hr ( 1) hormone + 7 hormonexnodes = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .712748 .0892621 -2.70 0.007 .557615 .9110402 ------------------------------------------------------------------------------ lincom _b[hormone]+_b[hormonexnodes]*9, hr
( 1) hormone + 9 hormonexnodes = 0 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .7693293 .0990145 -2.04 0.042 .5978065 .9900654 ------------------------------------------------------------------------------
Table 4.17 on page 121 continuing to use the gbcs dataset.
stcox hormone, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1783.774 Iteration 2: log likelihood = -1783.765 Iteration 3: log likelihood = -1783.765 Refining estimates: Iteration 0: log likelihood = -1783.765 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(1) = 8.82 Log likelihood = -1783.765 Prob > chi2 = 0.0030 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3638988 .1250441 -2.91 0.004 -.6089808 -.1188167 ------------------------------------------------------------------------------
Figure 4.5 on page 123 continuing to use the gbcs dataset.
gen months = rectime / 30.4 stset months, fail(censrec) quietly stcox hormone, nohr basesurv(s45) gen s45_h = s45^(exp(-.364)) sort months twoway line s45 s45_h months, /// legend(row(2) col(1) pos(7) order(1 "No Hormone Therapy" 2 "Hormone Therapy") /// ring(0) size(medsmall)) /// ylabel(0(0.2)1) /// xtitle(Recurrence Time (Months)) /// ytitle(Covariate Adjusted Survival Function) /// title(Figure 4.5)
Table 4.18 on page 124 using the gbcs dataset.
stcox hormone size, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1783.774 Iteration 2: log likelihood = -1783.765 Iteration 3: log likelihood = -1783.765 Refining estimates: Iteration 0: log likelihood = -1783.765 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(1) = 8.82 Log likelihood = -1783.765 Prob > chi2 = 0.0030 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3638988 .1250441 -2.91 0.004 -.6089808 -.1188167 ------------------------------------------------------------------------------
Figure 4.6 on page 125 continuing to use the gbcs dataset.
gen size_c = size-25 quietly stcox hormone size_c, nohr basesurv(s46) gen s46_h = s46^(exp(-.373)) sort months twoway line s46 s46_h months, /// legend(row(2) col(1) pos(7) order(1 "No Hormone Therapy" 2 "Hormone Therapy") /// ring(0) size(medsmall)) /// ylabel(0(0.2)1) /// xtitle(Recurrence Time (Months)) /// ytitle(Covariate Adjusted Survival Function) /// title(Figure 4.6)
Table 4.19 on page 126 continuing to use the gbcs dataset.
tabulate grade, gen(grade) grade | Freq. Percent Cum. ------------+----------------------------------- 1 | 81 11.81 11.81 2 | 444 64.72 76.53 3 | 161 23.47 100.00 ------------+----------------------------------- Total | 686 100.00 generate ln_prg=ln(prog_recp+1) stcox hormone grade2 grade3 size ln_prg, nohr failure _d: censrec analysis time _t: rectime Iteration 0: log likelihood = -1788.1731 Iteration 1: log likelihood = -1750.0796 Iteration 2: log likelihood = -1748.986 Iteration 3: log likelihood = -1748.9843 Iteration 4: log likelihood = -1748.9843 Refining estimates: Iteration 0: log likelihood = -1748.9843 Cox regression -- Breslow method for ties No. of subjects = 686 Number of obs = 686 No. of failures = 299 Time at risk = 771400 LR chi2(5) = 78.38 Log likelihood = -1748.9843 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hormone | -.3258777 .1261629 -2.58 0.010 -.5731524 -.078603 grade2 | .6244348 .2507907 2.49 0.013 .1328941 1.115975 grade3 | .6289099 .2758348 2.28 0.023 .0882837 1.169536 size | .0135163 .0036485 3.70 0.000 .0063653 .0206673 ln_prg | -.1806934 .0314822 -5.74 0.000 -.2423974 -.1189895 ------------------------------------------------------------------------------
Figure 4.7 on page 127 continuing to use the gbcs dataset.
quietly stcox hormone grade2 grade3 size ln_prg, nohr basesurv(s47) gen s47_10 = s47^(exp(-.487)) gen s47_25 = s47^(exp(-.118)) gen s47_50 = s47^(exp(.239)) gen s47_75 = s47^(exp(.593)) gen s47_90 = s47^(exp(.899)) sort months twoway line s47_10 s47_25 s47_50 s47_75 s47_90 months, /// legend(row(5) col(1) pos(7) order(1 "10th Percentile" 2 "25th Percentile" /// 3 "50th Percentile" 4 "75th Percentile" 5 "90th Percentile") /// ring(0) size(medsmall)) /// ylabel(0(0.2)1) /// xtitle(Recurrence Time (Months)) /// ytitle(Covariate Adjusted Survival Function) /// title(Figure 4.7)
Figure 4.8 on page 129 continuing to use the gbcs dataset.
quietly stcox hormone grade2 grade3 size ln_prg, nohr basesurv(s48) gen s48_noh = s48^(exp(.35)) gen s48_h = s48^(exp(.35-.326)) sort months twoway line s48_noh s48_h months, /// legend(row(2) col(1) pos(7) order(1 "No Hormone Therapy" 2 "Hormone Therapy") /// ring(0) size(medsmall)) /// ylabel(0(0.2)1) /// xtitle(Recurrence Time (Months)) /// ytitle(Covariate Adjusted Survival Function) /// title(Figure 4.8)