Table 7.1 on page 211.
use https://stats.idre.ucla.edu/stat/examples/asa2/actg320, clear stset time, fail(censor) failure event: censor != 0 & censor < . obs. time interval: (0, time] exit on or before: failure ------------------------------------------------------------------------------ 1151 total obs. 0 exclusions ------------------------------------------------------------------------------ 1151 obs. remaining, representing 96 failures in single record/single failure data 264941 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 364 generate ivdrug_d=ivdrug>1 generate karnof_90=(karnof==90) generate karnof_70_80=(karnof==70|karnof==80) centile cd4, c(25 50 75) -- Binom. Interp. -- Variable | Obs Percentile Centile [95% Conf. Interval] -------------+------------------------------------------------------------- cd4 | 1151 25 23 19.5 26.09482 | 50 74.5 67.5 80.5 | 75 136.5 130 141.1559 generate cd4_q=1 replace cd4_q=2 if cd4>23 & cd4<=74.5 replace cd4_q=3 if cd4>74.5 & cd4<=136.5 replace cd4_q=4 if cd4>136.5 stcox tx ivdrug_d karnof_70_80 karnof_90 age, nolog nohr strata(cd4_q) /// bases(s0) failure _d: censor analysis time _t: time Stratified Cox regr. -- Breslow method for ties No. of subjects = 1151 Number of obs = 1151 No. of failures = 96 Time at risk = 264941 LR chi2(5) = 36.73 Log likelihood = -506.75521 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tx | -.6677746 .215533 -3.10 0.002 -1.090212 -.2453376 ivdrug_d | -.5463155 .3225604 -1.69 0.090 -1.178522 .0858912 karnof_70_80 | 1.191 .2962962 4.02 0.000 .6102697 1.77173 karnof_90 | .4118837 .2926676 1.41 0.159 -.1617343 .9855017 age | .0224756 .0112014 2.01 0.045 .0005213 .04443 ------------------------------------------------------------------------------ Stratified by cd4_q
Figure 7.1 on page 212 using the model from previous example.
local tx=_b[tx] predict r,xb replace r = r-tx*_b[tx] table cd4_q, con(median r)
---------------------- cd4_q | med(r) ----------+----------- 1 | 1.217556 2 | 1.176055 3 | 1.086152 4 | 1.093729 ---------------------- sort time foreach i of numlist 1/4 { quietly sum r if cd4_q==`i', detail local median = r(p50) gen s`i' = s0^(exp(`median')) gen s`i'_tr = s0^(exp(`median'+`tx')) scatter s`i' s`i'_tr time if cd4_q==`i', sort ms(none none) c(J J) clpattern(dash solid) /// ylabel(0.8(0.05)1) title( "CD4 Quartile `i'" , size(medsmall) pos(12) ) /// ytitle(Adjusted Survival Function) ylabel(,nogrid angle(horizontal)) /// xtitle("Time") legend(off) name(s`i', replace) }
Table 7.2 on page 217 and Table 7.3 on page 219 using uis data.
use https://stats.idre.ucla.edu/stat/examples/asa2/uis, clear generate enter=410-los generate exit=410+(time-los) stset exit, enter(enter) fail(censor) id(id) id: id failure event: censor != 0 & censor < . obs. time interval: (exit[_n-1], exit] enter on or after: time enter exit on or before: failure ------------------------------------------------------------------------------ 628 total obs. 0 exclusions ------------------------------------------------------------------------------ 628 obs. remaining, representing 628 subjects 508 failures in single failure-per-subject data 147394 total analysis time at risk, at risk from t = 0 earliest observed entry t = 10 last observed exit t = 1531 stsplit off_tx, at(0,410) replace off_tx=1 if off_tx==410 rename _t oldt stset oldt, origin(_t0) id(id) fail(censor) id: id failure event: censor != 0 & censor < . obs. time interval: (oldt[_n-1], oldt] exit on or before: failure t for analysis: (time-origin) origin: time oldt0 ------------------------------------------------------------------------------ 1174 total obs. 0 exclusions ------------------------------------------------------------------------------ 1174 obs. remaining, representing 628 subjects 508 failures in single failure-per-subject data 147394 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 1172 xi:stcox i.treat*off_tx, nolog nohr i.treat _Itreat_0-1 (naturally coded; _Itreat_0 omitted) i.treat*off_tx _ItreXoff_t_# (coded as above) failure _d: censor analysis time _t: (oldt-origin) origin: time oldt0 id: id Cox regression -- Breslow method for ties No. of subjects = 628 Number of obs = 1174 No. of failures = 508 Time at risk = 147394 LR chi2(3) = 387.12 Log likelihood = -2766.9447 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _Itreat_1 | -.52389 .2258328 -2.32 0.020 -.9665141 -.081266 off_tx | 2.270329 .1865035 12.17 0.000 1.904789 2.635869 _ItreXoff_~1 | .6209768 .2463036 2.52 0.012 .1382306 1.103723 ------------------------------------------------------------------------------
Table 7.3
xi:stcox i.treat*off_tx, nolog i.treat _Itreat_0-1 (naturally coded; _Itreat_0 omitted) i.treat*off_tx _ItreXoff_t_# (coded as above) failure _d: censor analysis time _t: (oldt-origin) origin: time oldt0 id: id Cox regression -- Breslow method for ties No. of subjects = 628 Number of obs = 1174 No. of failures = 508 Time at risk = 147394 LR chi2(3) = 387.12 Log likelihood = -2766.9447 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _Itreat_1 | .5922123 .1337409 -2.32 0.020 .3804068 .9219485 off_tx | 9.682585 1.805836 12.17 0.000 6.717989 13.95544 _ItreXoff_~1 | 1.860745 .4583082 2.52 0.012 1.14824 3.015372 ------------------------------------------------------------------------------ lincom _Itreat_1 + _ItreXoff_t_1 ( 1) _Itreat_1 + _ItreXoff_t_1 = 0 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .0970868 .097709 0.99 0.320 -.0944193 .2885929 ------------------------------------------------------------------------------ di exp( r(estimate) ) 1.101956 di exp( r(estimate) + 1.96*r(se)) 1.334553 di exp( r(estimate) - 1.96*r(se)) .90989798
lincom off_tx + _ItreXoff_t_1 ( 1) off_tx + _ItreXoff_t_1 = 0 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 2.891306 .2050128 14.10 0.000 2.489488 3.293123 ------------------------------------------------------------------------------ di exp( r(estimate) ) 18.01682 di exp( r(estimate) + 1.96*r(se)) 26.927036 di exp( r(estimate) - 1.96*r(se)) 12.055015
Table 7.5 on page 222 and Table 7.6 on page 223 using grace1000 data.
use https://stats.idre.ucla.edu/stat/examples/asa2/grace1000, clear stset days, fail(death) failure event: death != 0 & death < . obs. time interval: (0, days] exit on or before: failure ------------------------------------------------------------------------------ 1000 total obs. 0 exclusions ------------------------------------------------------------------------------ 1000 obs. remaining, representing 324 failures in single record/single failure data 109847.5 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 180 generate age_inv = 1/age*1000 generate sysbp_sqrt = sqrt(sysbp) stcox revasc age_inv sysbp_sqrt st , nolog nohr failure _d: death analysis time _t: days Cox regression -- Breslow method for ties No. of subjects = 1000 Number of obs = 1000 No. of failures = 324 Time at risk = 109847.5 LR chi2(4) = 185.82 Log likelihood = -2043.7251 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- revasc | -.5296277 .1171956 -4.52 0.000 -.759327 -.2999285 age_inv | -.1890701 .0224795 -8.41 0.000 -.2331292 -.145011 sysbp_sqrt | -.2072934 .0386913 -5.36 0.000 -.2831269 -.1314599 stchange | .5134163 .1188503 4.32 0.000 .2804741 .7463586 ------------------------------------------------------------------------------
Table 7.6
generate enter=200-revascdays generate exit=200+(days-revascdays) stset exit, enter(enter) fail(death) id(id) id: id failure event: death != 0 & death < . obs. time interval: (exit[_n-1], exit] enter on or after: time enter exit on or before: failure ------------------------------------------------------------------------------ 1000 total obs. 0 exclusions ------------------------------------------------------------------------------ 1000 obs. remaining, representing 1000 subjects 324 failures in single failure-per-subject data 109847.5 total analysis time at risk, at risk from t = 0 earliest observed entry t = 20 last observed exit t = 380 stsplit revasc_t, at(0,200) replace revasc_t=1 if revasc_t==200 replace revasc_t=0 if revasc==0 stset _t, origin(_t0) id(id) fail(death) id: id failure event: death != 0 & death < . obs. time interval: (_t[_n-1], _t] exit on or before: failure t for analysis: (time-origin) origin: time _t0 ------------------------------------------------------------------------------ 1359 total obs. 0 exclusions ------------------------------------------------------------------------------ 1359 obs. remaining, representing 1000 subjects 324 failures in single failure-per-subject data 109847.5 total analysis time at risk, at risk from t = 0 earliest observed entry t = 0 last observed exit t = 180 stcox revasc_t age_inv sysbp_sqrt st , nolog nohr failure _d: death analysis time _t: (_t-origin) origin: time _t0 id: id Cox regression -- Breslow method for ties No. of subjects = 1000 Number of obs = 1359 No. of failures = 324 Time at risk = 109847.5 LR chi2(4) = 169.38 Log likelihood = -2051.946 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- revasc_t | -.2609491 .1237083 -2.11 0.035 -.503413 -.0184853 age_inv | -.2020569 .0228396 -8.85 0.000 -.2468218 -.1572921 sysbp_sqrt | -.2146887 .0391799 -5.48 0.000 -.2914798 -.1378975 stchange | .500509 .1190631 4.20 0.000 .2671496 .7338684 ------------------------------------------------------------------------------