Table 14.2, page 380.
NOTE: The values shown in the text are listed as eigenvectors in the Stata output.
use https://stats.idre.ucla.edu/stat/stata/examples/cama4/depress, clear factor c1-c20, factors(5) pc (obs=294) (principal components; 5 components retained) Component Eigenvalue Difference Proportion Cumulative ------------------------------------------------------------------ 1 7.05542 5.56985 0.3528 0.3528 2 1.48557 0.25406 0.0743 0.4270 3 1.23151 0.16582 0.0616 0.4886 4 1.06569 0.05305 0.0533 0.5419 5 1.01263 0.04517 0.0506 0.5925 6 0.96746 0.02064 0.0484 0.6409 7 0.94682 0.17758 0.0473 0.6883 8 0.76924 0.07460 0.0385 0.7267 9 0.69464 0.03451 0.0347 0.7614 10 0.66013 0.05249 0.0330 0.7945 11 0.60764 0.05830 0.0304 0.8248 12 0.54934 0.01270 0.0275 0.8523 13 0.53663 0.02792 0.0268 0.8791 14 0.50872 0.05781 0.0254 0.9046 15 0.45090 0.07572 0.0225 0.9271 16 0.37518 0.05400 0.0188 0.9459 17 0.32118 0.02662 0.0161 0.9619 18 0.29456 0.02619 0.0147 0.9767 19 0.26837 0.07000 0.0134 0.9901 20 0.19838 . 0.0099 1.0000 Eigenvectors Variable | 1 2 3 4 5 -------------+------------------------------------------------------ c1 | 0.27744 -0.14498 -0.05770 0.00272 -0.08827 c2 | 0.31318 0.02714 -0.03163 -0.24781 -0.02440 c3 | 0.26780 -0.15472 -0.03459 -0.24725 0.21831 c4 | 0.24355 -0.31940 -0.17694 0.07155 0.17293 c5 | 0.28678 -0.04972 -0.13839 -0.27935 0.04111 c6 | 0.22057 0.05340 -0.22421 -0.18229 0.33987 c7 | 0.28437 -0.16436 0.01896 0.07606 0.08700 c8 | 0.10810 -0.30452 -0.11033 0.55670 0.09761 c9 | 0.17578 -0.16900 0.39623 0.01463 -0.53548 c10 | 0.27662 -0.04542 0.08346 -0.00842 -0.36505 c11 | 0.24327 -0.10482 0.13140 -0.04138 -0.24193 c12 | 0.17902 0.22998 -0.16343 -0.14506 -0.03684 c13 | 0.12591 0.21263 -0.26453 0.54002 -0.09529 c14 | 0.18025 0.40148 0.10141 0.24611 0.08471 c15 | 0.20036 0.20978 -0.27032 -0.03121 -0.08341 c16 | 0.19243 0.41745 0.18501 0.04674 0.03993 c17 | 0.20968 0.39048 0.08602 0.06840 0.04991 c18 | 0.17171 0.01533 -0.20193 0.06286 -0.27522 c19 | 0.13149 0.05687 0.63261 0.02318 0.33492 c20 | 0.23570 -0.22826 0.19325 0.24043 0.29094
Figure 14.5, page 381.
Panel A:
matrix E1 = get(Ev) matrix E2 = E1' svmat E2, name(col) gen eigen = _n if r1 != . gen c = sum(r1) if r1 != . gen cumlative = (c/20)*100 graph twoway scatter cumlative eigen, ylabel(0(10)100)
Panel B:
NOTE: The following graph can easily be reproduced using the greigen command, however, the greigen command only uses the first 13 eigenvalues.
graph twoway scatter r1 eigen, ylabel(0(1)7)